Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (30)

Search Parameters:
Keywords = endophytic herbivores

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 4410 KiB  
Article
Host-Specific and Environment-Dependent Effects of Endophyte Alternaria oxytropis on Three Locoweed Oxytropis Species in China
by Yue-Yang Zhang, Yan-Zhong Li and Zun-Ji Shi
J. Fungi 2025, 11(7), 516; https://doi.org/10.3390/jof11070516 - 9 Jul 2025
Viewed by 412
Abstract
Plant–endophyte symbioses are widespread in grasslands. While symbiotic interactions often provide hosts with major fitness enhancements, the role of the endophyte Alternaria oxytropis, which produces swainsonine in locoweeds (Oxytropis and Astragalus spp.), remains enigmatic. We compared endophyte-infected (E+) and endophyte-free (E−) [...] Read more.
Plant–endophyte symbioses are widespread in grasslands. While symbiotic interactions often provide hosts with major fitness enhancements, the role of the endophyte Alternaria oxytropis, which produces swainsonine in locoweeds (Oxytropis and Astragalus spp.), remains enigmatic. We compared endophyte-infected (E+) and endophyte-free (E−) plants of three main Chinese locoweed species (O. kansuensis, O. glabra, and O. ochrocephala) under controlled conditions, and analyzed environmental factors at locoweed poisoning hotspots for herbivores. The results demonstrated significant species-specific effects: E+ plants of O. glabra and O. ochrocephala exhibited 26–39% reductions in biomass, net photosynthetic rate, and stomatal conductance, with elevated CO2 levels, while O. kansuensis showed no measurable impacts. Swainsonine concentrations were 16–20 times higher in E+ plants (122.6–151.7 mg/kg) than in E− plants. Geospatial analysis revealed that poisoning hotspots for herbivores consistently occurred in regions with extreme winter conditions (minimum temperatures ≤ −17 °C and precipitation ≤ 1 mm during the driest month), suggesting context-dependent benefits under abiotic stress. These findings suggest that the ecological role of A. oxytropis may vary depending on both host species and environmental context, highlighting a trade-off between growth costs and potential stress tolerance conferred by A. oxytropis. The study underscores the need for field validation to elucidate the adaptive mechanisms maintaining this symbiosis in harsh environments. Full article
(This article belongs to the Section Fungi in Agriculture and Biotechnology)
Show Figures

Figure 1

18 pages, 3602 KiB  
Article
Effects of Geraniol on Survival, Reproduction, Endophytes, and Transcriptome of Tea Green Leafhoppers (Empoasca onukii)
by Junjie Tian, Hainuo Hong, Shiliang Mo, Shiqin Mo, Hongliang Shi, Juan Shi and Ying Zhou
Agronomy 2025, 15(4), 782; https://doi.org/10.3390/agronomy15040782 - 22 Mar 2025
Viewed by 571
Abstract
Herbivore-induced plant volatiles (HIPVs) serve as powerful defense mechanisms that help plants mitigate pest-induced stress. Geraniol is a HIPV released by tea leaves in response to damage inflicted by tea green leafhoppers. In order to investigate whether the release of geraniol is a [...] Read more.
Herbivore-induced plant volatiles (HIPVs) serve as powerful defense mechanisms that help plants mitigate pest-induced stress. Geraniol is a HIPV released by tea leaves in response to damage inflicted by tea green leafhoppers. In order to investigate whether the release of geraniol is a defensive mechanism of tea plants against infestation by tea green leafhoppers, our study explored the effects of geraniol on tea green leafhoppers, including the selectivity of tea green leafhoppers’ response to geraniol, survival and reproductive parameters, as well as alterations in endophytes and the transcriptome. The findings indicated that while geraniol did not exhibit strong repellent or lethal effects on tea green leafhoppers, it significantly reduced the egg-laying and hatching rates. Through 16S rRNA microbial sequencing, we found that geraniol treatment significantly altered the composition of endophytic microbial communities in tea green leafhoppers, potentially affecting their metabolic functions. Transcriptome analysis further showed that genes associated with energy metabolism, such as glutamate dehydrogenase, were significantly upregulated in response to geraniol, suggesting that tea green leafhoppers may enhance energy metabolism to counteract geraniol-induced stress. Additionally, the downregulation of antimicrobial peptide-related signaling pathways suggests that geraniol may weaken the immune capacity of tea green leafhoppers, potentially reducing their resistance to pathogens. These findings indicate that the strategic application of geraniol could be a promising approach to controlling tea green leafhopper populations. This study enhances our understanding of the insect-resistant mechanisms of HIPVs and provides new insights into environmentally sustainable pest management strategies for tea plantations. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

13 pages, 2803 KiB  
Article
Citrus Greening Disease Infection Reduces the Energy Flow Through Soil Nematode Food Webs
by Mengqiang Wang, Zhilei Li and Jie Zhao
Agronomy 2025, 15(3), 635; https://doi.org/10.3390/agronomy15030635 - 2 Mar 2025
Viewed by 852
Abstract
Citrus greening disease (CGD), also known as Huanglongbing in China, is caused by the endophytic bacterium ‘Candidatus Liberibacter asiaticus’ and poses a severe threat to the global citrus industry. The disease affects microbial communities in leaves, stems, roots, and soil. Soil [...] Read more.
Citrus greening disease (CGD), also known as Huanglongbing in China, is caused by the endophytic bacterium ‘Candidatus Liberibacter asiaticus’ and poses a severe threat to the global citrus industry. The disease affects microbial communities in leaves, stems, roots, and soil. Soil nematodes, which occupy multiple trophic levels, play crucial roles in nutrient cycling, pest regulation, and plant-soil interactions. However, the impact of CGD on soil nematode community structure and energy flow remains unclear. This study examined the effects of different levels of CGD infection on soil nematode communities and energy dynamics. Three infection levels were selected: control (healthy plants with no yellowing symptoms), mild infection (≤50% leaf yellowing), and severe infection (entire canopy affected). The results showed that increasing CGD severity significantly reduced the nematode abundance, community structure index, and total energy flux by 94.2%, 86.7%, and 93.5%, respectively, in the severely infected group. Both mild and severe infections resulted in a higher proportion of bacterivorous nematodes compared to the control. Moreover, herbivorous energy flux was significantly reduced by 99.2% in the severe infection group, suggesting that herbivorous endophytic nematodes are particularly sensitive to CGD. The total energy flux through nematode food web, the energy flux through fungal or herbivorous channels, and the energy flow uniformity were positively correlated with the nematode structure index but negatively correlated with the nematode richness and evenness indices. Furthermore, the reduction in soil resource input (especially total nitrogen and total carbon) caused by CGD was the primary driver of the changes in nematode communities and energy flows. These findings highlight the destructive effects of CGD on soil ecosystems through bottom-up control. The CGD-induced obstruction of photosynthate transport primarily impacts phytophagous organisms and could also influence other trophic levels. To mitigate these effects and ensure healthy citrus production, future research should focus on early detection and effective CGD management strategies. Full article
(This article belongs to the Section Pest and Disease Management)
Show Figures

Figure 1

12 pages, 1889 KiB  
Article
Silicon Effects Depend upon Insect Herbivore Guild and Has Limited Influence on Gall-Inducing Insects of Bauhinia brevipes
by Guilherme Ramos Demetrio, Henrique Venâncio, Janaina Correa Batista and Jean Carlos Santos
Plants 2025, 14(2), 250; https://doi.org/10.3390/plants14020250 - 17 Jan 2025
Viewed by 952
Abstract
Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role [...] Read more.
Silicon (Si) is a widely recognized element in plant defense, often enhancing resistance to herbivory by strengthening cell walls and deterring feeding by external herbivores. However, its impact on internal, endophytic herbivores, such as gall-inducing insects, remains underexplored. This study investigates the role of silicon in Bauhinia brevipes, focusing on its effects on herbivory by insects. We hypothesize that while silicon strengthens plant tissues and reduces feeding by external herbivores, it may have a limited effect on internal feeders, such as gall-inducing insects. Our results indicate that silicon accumulation in leaves significantly reduces herbivory by chewing insects but has no direct effect on the occurrence of gall-inducing insects. Silicon content in galled tissues was lower compared to healthy leaves, suggesting that gall-inducing insects may manipulate silicon distribution to mitigate its defensive effects. Our results indicate that hypersensitivity reactions were positively influenced by silicon, highlighting the role of this element in enhancing localized defense mechanisms. Our findings reveal silicon’s tissue-specific roles in plant defense, emphasizing the need for more research on its nuanced interactions with endophytic herbivores and implications for ecological applications. This research contributes to the literature on silicon’s multifaceted role in plant–herbivore interactions and its potential applications in sustainable pest management. Full article
(This article belongs to the Special Issue Phytochemical Diversity and Interactions with Herbivores)
Show Figures

Figure 1

15 pages, 1608 KiB  
Article
Induced Defense in Ryegrass–Epichloë Symbiosis Against Listronotus bonariensis: Impact on Peramine Levels and Pest Performance
by Manuel Chacón-Fuentes, Gunnary León-Finalé, Marcelo Lizama, Gastón Gutiérrez-Gamboa, Daniel Martínez-Cisterna, Andrés Quiroz and Leonardo Bardehle
J. Fungi 2025, 11(1), 50; https://doi.org/10.3390/jof11010050 - 9 Jan 2025
Viewed by 913
Abstract
The Argentine stem weevil (ASW), a major pest in ryegrass pastures, causes significant agricultural losses. Ryegrass can establish a symbiotic association with Epichloë endophytic fungi, which supply chemical defenses, including peramine. This symbiosis helps protect ryegrass by providing peramine, which acts as a [...] Read more.
The Argentine stem weevil (ASW), a major pest in ryegrass pastures, causes significant agricultural losses. Ryegrass can establish a symbiotic association with Epichloë endophytic fungi, which supply chemical defenses, including peramine. This symbiosis helps protect ryegrass by providing peramine, which acts as a primary defense. In addition, ryegrass can activate induced defense mechanisms, with peramine remaining the central agent in response to herbivorous insect attacks. Therefore, this study assessed the feeding of the ASW on ryegrass carrying endophytic fungus and peramine levels in aerial organs and its effects on pest performance. Argentine stem weevil adults and larvae were placed on ryegrass leaves and stems to assess feeding. Two treatments were used: endophyte-free plants and endophyte-colonized plants. After ASW feeding damage, insect consumption was measured by the leaf area consumed. To evaluate peramine production and its increase in response to ASW attack, peramine levels in leaves were analyzed using liquid chromatography. Damaged E+ ryegrass plants showed significant increases in peramine, with adult and larval herbivory raising levels by 291% and 216% in stems and by 135% and 85% in leaves, respectively, compared to controls. Endophyte-free (E−) plants experienced more ASW damage, as insects preferred feeding on them, showing reduced activity as peramine levels rose in endophyte-infected (E+) plants. An oviposition assay confirmed insect preference for endophyte-free (E−) plants. Additionally, larvae reared on endophyte-infected (E+) plants had lower survival rates, correlating negatively with peramine levels. These results emphasize peramine’s role in strengthening ryegrass defenses against ASW, impacting both feeding and larval development. Full article
(This article belongs to the Special Issue Fungal Endophytes of Plants: Friend or Foe?)
Show Figures

Figure 1

12 pages, 707 KiB  
Article
A Countermeasure Strategy against Peramine Developed by Chilesia rudis in the Endophyte–Ryegrass–Herbivore Model
by Manuel Chacón-Fuentes, Daniel Martínez-Cisterna, Marcelo Lizama, Valeria Asencio-Cancino, Ignacio Matamala and Leonardo Bardehle
J. Fungi 2024, 10(8), 512; https://doi.org/10.3390/jof10080512 - 23 Jul 2024
Viewed by 1167
Abstract
Exploitation of the symbiotic relationship between endophytic fungi and ryegrass is a crucial technique for reducing the incidence of insect pests. This is primarily due to the production of alkaloids, such as peramine, by the fungi. This alkaloid has been reported as both [...] Read more.
Exploitation of the symbiotic relationship between endophytic fungi and ryegrass is a crucial technique for reducing the incidence of insect pests. This is primarily due to the production of alkaloids, such as peramine, by the fungi. This alkaloid has been reported as both a deterrent and toxic to a variety of insects. However, insects have developed various strategies to counteract plant defenses. One of the most studied methods is their ability to sequester toxic compounds from plants. In this study, we examined the feeding preferences and adaptation to peramine in Chilesia rudis, a native Chilean larva. Using a no-choice assay, we assessed larval feeding preferences and mass gain on seven experimental lines and two commercial cultivars of endophyte-infected and non-infected ryegrass. Pupal development time and adult performance were evaluated post-assay. Additionally, we measured peramine content in larval carcasses, feces, and ryegrass leaves. Jumbo was the most preferred cultivar with 32 mm2 of leaf tissues consumed. The longest pupal development time was observed in L161 and ALTO AR1, both at 28 days. Wing length in adults was greatest in the Jumbo and L163 cultivars, measuring 1.25 cm and 1.32 cm, respectively. Peramine concentrations were detected in the bodies of C. rudis. In conclusion, this larva can adapt to endophyte-infected ryegrass and develop counter-adaptation mechanisms to mitigate the effects of peramine. Full article
Show Figures

Figure 1

16 pages, 3150 KiB  
Article
Trichoderma virens and Pseudomonas chlororaphis Differentially Regulate Maize Resistance to Anthracnose Leaf Blight and Insect Herbivores When Grown in Sterile versus Non-Sterile Soils
by Pei-Cheng Huang, Peiguo Yuan, John M. Grunseich, James Taylor, Eric-Olivier Tiénébo, Elizabeth A. Pierson, Julio S. Bernal, Charles M. Kenerley and Michael V. Kolomiets
Plants 2024, 13(9), 1240; https://doi.org/10.3390/plants13091240 - 30 Apr 2024
Cited by 4 | Viewed by 2076
Abstract
Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we [...] Read more.
Soil-borne Trichoderma spp. have been extensively studied for their biocontrol activities against pathogens and growth promotion ability in plants. However, the beneficial effect of Trichoderma on inducing resistance against insect herbivores has been underexplored. Among diverse Trichoderma species, consistent with previous reports, we showed that root colonization by T. virens triggered induced systemic resistance (ISR) to the leaf-infecting hemibiotrophic fungal pathogens Colletotrichum graminicola. Whether T. virens induces ISR to insect pests has not been tested before. In this study, we investigated whether T. virens affects jasmonic acid (JA) biosynthesis and defense against fall armyworm (FAW) and western corn rootworm (WCR). Unexpectedly, the results showed that T. virens colonization of maize seedlings grown in autoclaved soil suppressed wound-induced production of JA, resulting in reduced resistance to FAW. Similarly, the bacterial endophyte Pseudomonas chlororaphis 30-84 was found to suppress systemic resistance to FAW due to reduced JA. Further comparative analyses of the systemic effects of these endophytes when applied in sterile or non-sterile field soil showed that both T. virens and P. chlororaphis 30-84 triggered ISR against C. graminicola in both soil conditions, but only suppressed JA production and resistance to FAW in sterile soil, while no significant impact was observed when applied in non-sterile soil. In contrast to the effect on FAW defense, T. virens colonization of maize roots suppressed WCR larvae survival and weight gain. This is the first report suggesting the potential role of T. virens as a biocontrol agent against WCR. Full article
Show Figures

Figure 1

17 pages, 1560 KiB  
Article
Contrasting Effects of Grazing in Shaping the Seasonal Trajectory of Foliar Fungal Endophyte Communities on Two Semiarid Grassland Species
by Xin Dong, Feifei Jiang, Dongdong Duan, Zhen Tian, Huining Liu, Yinan Zhang, Fujiang Hou, Zhibiao Nan and Tao Chen
J. Fungi 2023, 9(10), 1016; https://doi.org/10.3390/jof9101016 - 14 Oct 2023
Viewed by 1898
Abstract
Fungal endophytes are harboured in the leaves of every individual plant host and contribute to plant health, leaf senescence, and early decomposition. In grasslands, fungal endophytes and their hosts often coexist with large herbivores. However, the influence of grazing by large herbivores on [...] Read more.
Fungal endophytes are harboured in the leaves of every individual plant host and contribute to plant health, leaf senescence, and early decomposition. In grasslands, fungal endophytes and their hosts often coexist with large herbivores. However, the influence of grazing by large herbivores on foliar fungal endophyte communities remains largely unexplored. We conducted a long-term (18 yr) grazing experiment to explore the effects of grazing on the community composition and diversity of the foliar fungal endophytes of two perennial grassland species (i.e., Artemisia capillaris and Stipa bungeana) across one growing season. Grazing significantly increased the mean fungal alpha diversity of A. capillaris in the early season. In contrast, grazing significantly reduced the mean fungal alpha diversity of endophytic fungi of S. bungeana in the late season. Grazing, growing season, and their interactions concurrently structured the community composition of the foliar fungal endophytes of both plant species. However, growing season consistently outperformed grazing and environmental factors in shaping the community composition and diversity of both plant species. Overall, our findings demonstrate that the foliar endophytic fungal community diversity and composition differed in response to grazing between A. capillaris and S. bungeana during one growing season. The focus on this difference will enhance our understanding of grazing’s impact on ecological systems and improve land management practices in grazing regions. This variation in the effects of leaf nutrients and plant community characteristics on foliar endophytic fungal community diversity and composition may have a pronounced impact on plant health and plant–fungal interactions. Full article
Show Figures

Figure 1

21 pages, 3479 KiB  
Article
A New Proposed Symbiotic Plant–Herbivore Relationship between Burkea africana Trees, Cirina forda Caterpillars and Their Associated Fungi Pleurostomophora richardsiae and Aspergillus nomius
by Lufuno Ethel Nemadodzi and Gerhard Prinsloo
Microorganisms 2023, 11(7), 1864; https://doi.org/10.3390/microorganisms11071864 - 24 Jul 2023
Cited by 1 | Viewed by 2071
Abstract
Burkea africana is a tree found in savannah and woodland in southern Africa, as well as northwards into tropical African regions as far as Nigeria and Ethiopia. It is used as fuel wood, medicinally to treat various conditions, such as toothache, headache, migraine, [...] Read more.
Burkea africana is a tree found in savannah and woodland in southern Africa, as well as northwards into tropical African regions as far as Nigeria and Ethiopia. It is used as fuel wood, medicinally to treat various conditions, such as toothache, headache, migraine, pain, inflammation, and sexually transmitted diseases, such as gonorrhoea, but also an ornamental tree. The current study investigated the possible symbiotic relationship between B. africana trees and the C. forda caterpillars and the mutual role played in ensuring the survival of B. africana trees/seedlings in harsh natural conditions and low-nutrient soils. Deoxyribonucleic acid isolation and sequencing results revealed that the fungal species Pleurostomophora richardsiae was highly predominant in the leaves of B. africana trees and present in the caterpillars. The second most prominent fungal species in the caterpillars was Aspergillus nomius. The latter is known to be related to a Penicillium sp. which was found to be highly prevalent in the soil where B. africana trees grow and is suggested to play a role in enhancing the effective growth of B. africana trees in their natural habitat. To support this, a phylogenetic analysis was conducted, and a tree was constructed, which shows a high percentage similarity between Aspergillus and Penicillium sp. The findings of the study revealed that B. africana trees not only serve as a source of feed for the C. forda caterpillar but benefit from C. forda caterpillars which, after dropping onto the soil, is proposed to inoculate the soil surrounding the trees with the fungus A. nomius which suggests a symbiotic and/or synergistic relationship between B. africana trees and C. forda caterpillars. Full article
(This article belongs to the Special Issue Plant-Pathogenic Fungi)
Show Figures

Figure 1

18 pages, 3093 KiB  
Article
Community Richness and Diversity of Endophytic Fungi Associated with the Orchid Guarianthe skinneri Infested with “Black Blotch” in the Soconusco Region, Chiapas, Mexico
by Fabiola Hernández-Ramírez, Anne Damon, Sylvia Patricia Fernández Pavía, Karina Guillén-Navarro, Leobardo Iracheta-Donjuan, Eugenia Zarza and Ricardo Alberto Castro-Chan
Diversity 2023, 15(7), 807; https://doi.org/10.3390/d15070807 - 26 Jun 2023
Cited by 6 | Viewed by 2497
Abstract
Orchids coexist with a diversity of endophytic fungi within their roots and other parts of the plant. These are presumed to contribute to nutrition, and may protect the plants against pathogens and herbivores; however, some may be latent pathogens and/or bring no benefit [...] Read more.
Orchids coexist with a diversity of endophytic fungi within their roots and other parts of the plant. These are presumed to contribute to nutrition, and may protect the plants against pathogens and herbivores; however, some may be latent pathogens and/or bring no benefit to the plant. Guarianthe skinneri is an epiphytic Central American threatened orchid used as an ornamental plant and in the rituals and celebrations of many communities. However, in the Soconusco region (Chiapas, Mexico), the pseudobulbs of mature plants are affected by the Lasiodiplodia theobromae fungus, causing the disease “black blotch”. We evaluated and compared the diversity of the endophytic fungal community within the leaves, pseudobulbs and roots of mature plants in two conditions, asymptomatic and symptomatic. Thirty samples from each condition and tissue were amplified with ITS and sequenced by Illumina MiSeq. Sequences were obtained and analyzed to determine taxonomic assignment and functionality with FUNGuild, obtaining 1857 amplicon sequence variants (ASVs). Alpha diversity was similar between plant conditions. In symptomatic plants, significant differences were found between the three types of tissue. According to the FUNGuild functionality analysis, 368 ASVs were determined to be endophytic fungi. The tissues of G. skinneri plants are reservoirs of fungal endophytes that should be considered for further exploration for research and conservation purposes. Full article
(This article belongs to the Special Issue Orchid Conservation and Associated Fungal Diversity)
Show Figures

Figure 1

19 pages, 2063 KiB  
Article
Bioactive Metabolite from Endophytic Aspergillus versicolor SB5 with Anti-Acetylcholinesterase, Anti-Inflammatory and Antioxidant Activities: In Vitro and In Silico Studies
by Mohamed E. Elawady, Ahmed A. Hamed, Wamedh M. Alsallami, Ebtsam Z. Gabr, Mohamed O. Abdel-Monem and Mervat G. Hassan
Microorganisms 2023, 11(4), 1062; https://doi.org/10.3390/microorganisms11041062 - 19 Apr 2023
Cited by 28 | Viewed by 2553
Abstract
Endophytic fungi are a highly unpredictable group of microorganisms that can create a diverse range of secondary metabolites with biological activity. These metabolites enhance the host’s ability to tolerate stress caused by various factors, such as disease, insects, pathogens, and herbivores. The secondary [...] Read more.
Endophytic fungi are a highly unpredictable group of microorganisms that can create a diverse range of secondary metabolites with biological activity. These metabolites enhance the host’s ability to tolerate stress caused by various factors, such as disease, insects, pathogens, and herbivores. The secondary metabolites produced by endophytic fungi may have potential applications in agriculture, pharmacy, and medicine. The purpose of this study was to examine the anti-acetylcholinesterase activity of secondary metabolites extracted from endophytic fungi. Aspergillus versicolor SB5 was one of the many endophytic fungi isolated from Juncus rigidus and identified genetically with accession number ON872302. Our study utilized fermentation and microbial cultivation techniques to obtain secondary metabolites. During the course of our investigation, we isolated a compound called Physcion (C1) from the endophytic fungus Aspergillus versicolor SB5. We subsequently identified that C1 possesses inhibitory activity against COX-2 and LOX-1, with IC50 values of 43.10 and 17.54 µg/mL, respectively, making it an effective anti-inflammatory agent. Moreover, we found that C1 also exhibited potent anticholinesterase activity (86.9 ± 1.21%). In addition to these promising therapeutic properties, our experiments demonstrated that C1 possesses strong antioxidant capacity, as evidenced by its ability to scavenge DPPH, ABTS, O2 radicals, and NO and inhibit lipid peroxidation. To further investigate the molecular mechanisms underlying C1 pharmacological properties, we employed SwissADME web tools to predict the compound’s ADME-related physicochemical properties and used Molecular Operating Environment and PyMOL for molecular docking studies. Full article
Show Figures

Figure 1

19 pages, 3377 KiB  
Review
Bioactive Compounds Produced by Endophytic Microorganisms Associated with Bryophytes—The “Bryendophytes”
by Mateusz Stelmasiewicz, Łukasz Świątek, Simon Gibbons and Agnieszka Ludwiczuk
Molecules 2023, 28(7), 3246; https://doi.org/10.3390/molecules28073246 - 5 Apr 2023
Cited by 14 | Viewed by 4555
Abstract
The mutualistic coexistence between the host and endophyte is diverse and complex, including host growth regulation, the exchange of substances like nutrients or biostimulants, and protection from microbial or herbivore attack. The latter is commonly associated with the production by endophytes of bioactive [...] Read more.
The mutualistic coexistence between the host and endophyte is diverse and complex, including host growth regulation, the exchange of substances like nutrients or biostimulants, and protection from microbial or herbivore attack. The latter is commonly associated with the production by endophytes of bioactive natural products, which also possess multiple activities, including antibacterial, insecticidal, antioxidant, antitumor, and antidiabetic properties, making them interesting and valuable model substances for future development into drugs. The endophytes of higher plants have been extensively studied, but there is a dearth of information on the biodiversity of endophytic microorganisms associated with bryophytes and, more importantly, their bioactive metabolites. For the first time, we name bryophyte endophytes “bryendophytes” to elaborate on this important and productive source of biota. In this review, we summarize the current knowledge on the diversity of compounds produced by endophytes, emphasizing bioactive molecules from bryendophytes. Moreover, the isolation methods and biodiversity of bryendophytes from mosses, liverworts, and hornworts are described. Full article
Show Figures

Figure 1

17 pages, 2708 KiB  
Article
Studying Plant–Insect Interactions through the Analyses of the Diversity, Composition, and Functional Inference of Their Bacteriomes
by Zyanya Mayoral-Peña, Víctor Lázaro-Vidal, Juan Fornoni, Roberto Álvarez-Martínez and Etzel Garrido
Microorganisms 2023, 11(1), 40; https://doi.org/10.3390/microorganisms11010040 - 22 Dec 2022
Cited by 6 | Viewed by 3882
Abstract
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both [...] Read more.
As with many other trophic interactions, the interchange of microorganisms between plants and their herbivorous insects is unavoidable. To test the hypothesis that the composition and diversity of the insect bacteriome are driven by the bacteriome of the plant, the bacteriomes of both the plant Datura inoxia and its specialist insect Lema daturaphila were characterised using 16S sRNA gene amplicon sequencing. Specifically, the bacteriomes associated with seeds, leaves, eggs, guts, and frass were described and compared. Then, the functions of the most abundant bacterial lineages found in the samples were inferred. Finally, the patterns of co-abundance among both bacteriomes were determined following a multilayer network approach. In accordance with our hypothesis, most genera were shared between plants and insects, but their abundances differed significantly within the samples collected. In the insect tissues, the most abundant genera were Pseudomonas (24.64%) in the eggs, Serratia (88.46%) in the gut, and Pseudomonas (36.27%) in the frass. In contrast, the most abundant ones in the plant were Serratia (40%) in seeds, Serratia (67%) in foliar endophytes, and Hymenobacter (12.85%) in foliar epiphytes. Indeed, PERMANOVA analysis showed that the composition of the bacteriomes was clustered by sample type (F = 9.36, p < 0.001). Functional inferences relevant to the interaction showed that in the plant samples, the category of Biosynthesis of secondary metabolites was significantly abundant (1.4%). In turn, the category of Xenobiotics degradation and metabolism was significantly present (2.5%) in the insect samples. Finally, the phyla Proteobacteria and Actinobacteriota showed a pattern of co-abundance in the insect but not in the plant, suggesting that the co-abundance and not the presence–absence patterns might be more important when studying ecological interactions. Full article
(This article belongs to the Section Plant Microbe Interactions)
Show Figures

Figure 1

20 pages, 4626 KiB  
Article
Impact of Beauveria bassiana and Metarhizium anisopliae on the Metabolic Interactions between Cucumber (Cucumis sativus L.) and Cucumber Mosaic Virus (CMV)
by Roshan Shaalan, Ludmilla Ibrahim, Falah As-sadi and Walid El Kayal
Horticulturae 2022, 8(12), 1182; https://doi.org/10.3390/horticulturae8121182 - 10 Dec 2022
Cited by 3 | Viewed by 3994
Abstract
In natural systems, plant–endophyte interactions are important for reducing abiotic and biotic stresses in plants by producing a variety of metabolites that protect plants from pathogens and herbivores. Biocontrol strategies are increasingly being used as a viable alternative to chemical pesticides. Entomopathogenic fungi [...] Read more.
In natural systems, plant–endophyte interactions are important for reducing abiotic and biotic stresses in plants by producing a variety of metabolites that protect plants from pathogens and herbivores. Biocontrol strategies are increasingly being used as a viable alternative to chemical pesticides. Entomopathogenic fungi (EPF) are one of them, and they have been touted as a successful method for biological pest control in plants. Because EPF strains are sensitive to environmental conditions when sprayed, the recently discovered endophytic behavior of several EPF strains has improved their management. Cucumber mosaic virus (CMV) is one of the most common and serious plant viruses worldwide, infecting over 1200 plant species and being spread by more than 80 aphid species. CMV control is directed towards the use of chemical insecticides to eradicate its insect vectors. Endophytic EPF is currently being studied to control plant virus infection, and antagonistic effects have been reported. Metabolomics is an emerging research field for plant metabolite profiling and is employed to study plant–endophyte interactions. In the present research, metabolomics approaches were conducted to gain information into mechanisms involved in defense against CMV in endophytes Beauveria bassiana and Metarhizium anisopliae (EPF)-treated diseased cucumber plants. In addition, CMV-induced metabolic changes in cucumber plants were investigated. Our analysis indicated large differences in cucumber metabolites due to endophytes application. In total, six hundred and thirty-one metabolites were differentially expressed in endophyte-treated CMV diseased cucumber plants. Regulation of different kinds of amino acids, organic acids, and phenylpropanoids metabolites could provide insight about plant defense mechanism against CMV pathogen. Important metabolites were found to be regulated in diseased cucumber plants due to fungal endophytes treatment that could possibly confer tolerance to CMV disease. Full article
(This article belongs to the Section Plant Pathology and Disease Management (PPDM))
Show Figures

Figure 1

14 pages, 1024 KiB  
Review
Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review
by Frederic Francis, Junior Corneille Fingu-Mabola and Ibtissem Ben Fekih
Agriculture 2022, 12(12), 2081; https://doi.org/10.3390/agriculture12122081 - 4 Dec 2022
Cited by 17 | Viewed by 5584
Abstract
Entomopathogenic fungi (EPF) are cosmopolitan species of great interest in pest management due to their ability to cause epizooty in soil-dwelling and aboveground insects. Besides their direct effect against a wide host range of serious agricultural insect pests, such as aphids, a major [...] Read more.
Entomopathogenic fungi (EPF) are cosmopolitan species of great interest in pest management due to their ability to cause epizooty in soil-dwelling and aboveground insects. Besides their direct effect against a wide host range of serious agricultural insect pests, such as aphids, a major emphasis has been placed on investigating the impact of EPF with endophytic traits (EIPF) on aboveground tripartite interactions between host plants, herbivores and beneficial insects. However, despite their valuable role in biocontrol processes, there is still more to explore about their diverse potential as ecofriendly biological control agents. Herein, we provide an overview of the meaningful role and faced challenges following the use of EPF and EIPF to control aphids. Full article
(This article belongs to the Section Crop Protection, Diseases, Pests and Weeds)
Show Figures

Figure 1

Back to TopTop