Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review
Abstract
:1. Introduction
2. Fungal Entomopathogens to Control Aphids
2.1. Infection Cycle
2.2. Host Immune Response to EPF Infection
2.3. Host Range and Potential
3. Fungal Entomopathogens with Endophytic Traits
3.1. State of the Art
3.2. Pathways of Insect Pathogenic Fungi as Endophytes
4. Mode of Action of EIPF
5. Illustration of the Potential of EPF and EIPF on Aphid Fitness and Performance
6. Multitrophic Effects of EIPF
7. Molecular Approaches to Enhance EPF Performance
8. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Dedryver, C.A.; Le Ralec, A.; Fabre, F. The Conflicting Relationships between Aphids and Men: A Review of Aphid Damage and Control Strategies. Comptes Rendus-Biol. 2010, 333, 539–553. [Google Scholar] [CrossRef] [PubMed]
- Powell, G.; Tosh, C.R.; Hardie, J. Host Plant Selection by Aphids: Behavioral, Evolutionary, and Applied Perspectives. Annu. Rev. Entomol. 2006, 51, 309–330. [Google Scholar] [CrossRef] [PubMed]
- Elbert, A.; Haas, M.; Springer, B.; Thielert, W.; Nauen, R. Applied Aspects of Neonicotinoid Uses in Crop Protection. Pest Manag. Sci. 2008, 64, 1099–1105. [Google Scholar] [CrossRef]
- Hauer, M.; Hansen, A.L.; Manderyck, B.; Olsson, Å.; Raaijmakers, E.; Hanse, B.; Stockfisch, N.; Märländer, B. Neonicotinoids in Sugar Beet Cultivation in Central and Northern Europe: Efficacy and Environmental Impact of Neonicotinoid Seed Treatments and Alternative Measures. Crop Prot. 2017, 93, 132–142. [Google Scholar] [CrossRef]
- Schulz, R.; Bub, S.; Petschick, L.L.; Stehle, S.; Wolfram, J. Applied Pesticide Toxicity Shifts toward Plants and Invertebrates, Even in GM Crops. Science 2021, 372, 81–84. [Google Scholar] [CrossRef]
- Goulson, D. An Overview of the Environmental Risks Posed by Neonicotinoid Insecticides. J. Appl. Ecol. 2013, 50, 977–987. [Google Scholar] [CrossRef]
- Baron, G.L.; Jansen, V.A.A.; Brown, M.J.F.; Raine, N.E. Pesticide Reduces Bumblebee Colony Initiation and Increases Probability of Population Extinction. Nat. Ecol. Evol. 2017, 1, 1308–1316. [Google Scholar] [CrossRef]
- Camp, A.A.; Lehmann, D.M. Impacts of Neonicotinoids on the Bumble Bees Bombus terrestris and Bombus Impatiens Examined through the Lens of an Adverse Outcome Pathway Framework. Environ. Toxicol. Chem. 2021, 40, 309–322. [Google Scholar] [CrossRef]
- Riedo, J.; Herzog, C.; Banerjee, S.; Fenner, K.; Walder, F.; Van Der Heijden, M.G.A.; Bucheli, T.D. Concerted Evaluation of Pesticides in Soils of Extensive Grassland Sites and Organic and Conventional Vegetable Fields Facilitates the Identification of Major Input Processes. Environ. Sci. Technol. 2022, 56, 13686–13695. [Google Scholar] [CrossRef]
- Bass, C.; Puinean, A.M.; Zimmer, C.T.; Denholm, I.; Field, L.M.; Foster, S.P.; Gutbrod, O.; Nauen, R.; Slater, R.; Williamson, M.S. The Evolution of Insecticide Resistance in the Peach Potato Aphid, Myzus persicae. Insect Biochem. Mol. Biol. 2014, 51, 41–51. [Google Scholar] [CrossRef]
- European Food Safety Authority Neonicotinoids: Risks to Bees Confirmed. Available online: https://www.efsa.europa.eu/en/press/news/180228 (accessed on 3 October 2022).
- Hesketh, H.; Roy, H.E.; Eilenberg, J.; Pell, J.K.; Hails, R.S. Challenges in Modelling Complexity of Fungal Entomopathoghens in Semi-Natural Populations of Insects. BioControl 2010, 55, 55–73. [Google Scholar] [CrossRef]
- Jactel, H.; Verheggen, F.; Thiéry, D.; Escobar-Gutiérrez, A.J.; Gachet, E.; Desneux, N. Alternatives to Neonicotinoids. Environ. Int. 2019, 129, 423–429. [Google Scholar] [CrossRef]
- Scorsetti, A.C.; Humber, R.A.; García, J.J.; Lastra, C.C.L. Natural Occurrence of Entomopathogenic Fungi (Zygomycetes: Entomophthorales) of Aphid (Hemiptera: Aphididae) Pests of Horticultural Crops in Argentina. BioControl 2007, 52, 641–655. [Google Scholar] [CrossRef]
- Powell, W.; Pell, J.K. Biological Control. In Aphids as Crop Pests; Van Emden, H.F., Harrington, R., Eds.; CABI: Wallingford, UK, 2007; pp. 469–513. [Google Scholar]
- Butt, T.M.; Goettel, M.S. Bioassays of Entomogenous Fungi. In Bioassays of Entomopathogenic Microbes and Nematodes; CABI: Wallingford, UK, 2000; pp. 141–195. [Google Scholar]
- Humber, R.A. Entomophthoromycota: A New Phylum and Reclassification for Entomophthoroid Fungi. Mycotaxon 2012, 120, 477–492. [Google Scholar] [CrossRef]
- Branine, M.; Bazzicalupo, A.; Branco, S. Biology and Applications of Endophytic Insect-Pathogenic Fungi. PLoS Pathog. 2019, 15, e1007831. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.R.; Enkerli, J. Fungal Entomopathogens as Endophytes: Can They Promote Plant Growth? Biocontrol Sci. Technol. 2017, 27, 28–41. [Google Scholar] [CrossRef]
- Boomsma, J.J.; Jensen, A.B.; Meyling, N.V.; Eilenberg, J. Evolutionary Interaction Networks of Insect Pathogenic Fungi. Annu. Rev. Entomol. 2014, 59, 467–485. [Google Scholar] [CrossRef]
- Clifton, E.H.; Jaronski, S.T.; Coates, B.S.; Hodgson, E.W.; Gassmann, A.J. Effects of Endophytic Entomopathogenic Fungi on Soybean Aphid and Identification of Metarhizium Isolates from Agricultural Fields. PLoS ONE 2018, 13, e0194815. [Google Scholar] [CrossRef] [Green Version]
- Gerardo, N.M.; Altincicek, B.; Anselme, C.; Atamian, H.; Barribeau, M.; De Vos, M.; Duncan, E.; Evans, J.D.; Gabaldón, T.; Ghanim, M.; et al. Immunity and Other Defenses in Pea Aphids. Genome Biol. 2010, 11, 1–17. [Google Scholar] [CrossRef] [Green Version]
- Wang, J.; Zhou, X.; Guo, K.; Zhang, X.; Lin, H.; Montalva, C. Transcriptomic Insight into Pathogenicity-Associated Factors of Conidiobolus obscurus, an Obligate Aphid-Pathogenic Fungus Belonging to Entomopthoromycota. Pest Manag. Sci. 2018, 74, 1677–1686. [Google Scholar] [CrossRef]
- Im, Y.; Park, S.E.; Lee, S.Y.; Kim, J.C.; Kim, J.S. Early-Stage Defense Mechanism of the Cotton Aphid Aphis gossypii against Infection with the Insect-Killing Fungus Beauveria bassiana JEF-544. Front. Immunol. 2022, 13, 907088. [Google Scholar] [CrossRef] [PubMed]
- Hajek, A.E.; St Leger, R.J. Interactions between Fungal Pathogens and Insect Hosts. Annu. Rev. Entomol. 1994, 39, 293–322. [Google Scholar] [CrossRef]
- Yu, S.; Ding, L.; Luo, R.; Li, X.; Yang, J.; Liu, H.; Cong, L.; Ran, C. Identification of Immunity-Related Genes in Dialeurodes citri against Entomopathogenic Fungus Lecanicillium attenuatum by Rnaseq Analysis. PLoS ONE 2016, 11, e0162659. [Google Scholar] [CrossRef] [Green Version]
- Dubovskiy, I.M.; Whitten, M.M.A.; Yaroslavtseva, O.N.; Greig, C.; Kryukov, V.Y.; Grizanova, E.V.; Mukherjee, K.; Vilcinskas, A.; Glupov, V.V.; Butt, T.M. Can Insects Develop Resistance to Insect Pathogenic Fungi? PLoS ONE 2013, 8, e60248. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Black, J.L.; Clark, M.K.; Sword, G.A. Physiological and Transcriptional Immune Responses of a Non-Model Arthropod to Infection with Different Entomopathogenic Groups. PLoS ONE 2022, 17, e0263620. [Google Scholar] [CrossRef] [PubMed]
- Ortiz-Urquiza, A.; Keyhani, N.O. Action on the Surface: Entomopathogenic Fungi versus the Insect Cuticle. Insects 2013, 4, 357–374. [Google Scholar] [CrossRef] [Green Version]
- Lundgren, J.G.; Jurat-Fuentes, J.L. Physiology and Ecology of Host Defense against Microbial Invaders, 2nd ed.; Elsevier Inc.: Amsterdam, The Netherlands, 2012; ISBN 9780123849847. [Google Scholar]
- Butt, T.M.; Wraight, S.P.; Galaini-Wraight, S.; Humber, R.A.; Roberts, D.W.; Soper, R.S. Humoral Encapsulation of the Fungus Erynia radicans (Entomophthorales) by the Potato Leafhopper, Empoasca fabae (Homoptera: Cicadellidae). J. Invertebr. Pathol. 1988, 52, 49–56. [Google Scholar] [CrossRef]
- Wang, H.; Peng, H.; Li, W.; Cheng, P.; Gong, M. The Toxins of Beauveria bassiana and the Strategies to Improve Their Virulence to Insects. Front. Microbiol. 2021, 12, 705343. [Google Scholar] [CrossRef]
- Pell, J.K.; Eilenberg, J.; Hajek, A.E.; Steinkraus, D.C. Biology, Ecology and Pest Management Potential of Entomophthorales. Fungi Biocontrol Agents Prog. Probl. Potential 2001, 390, 71–153. [Google Scholar] [CrossRef]
- Barta, M.; Cagáň, L. Aphid-Pathogenic Entomophthorales (Their Taxonomy, Biology and Ecology). Biologia 2006, 61, S543–S616. [Google Scholar] [CrossRef]
- Steinkraus, D.C. Factors Affecting Transmission of Fungal Pathogens of Aphids. J. Invertebr. Pathol. 2006, 92, 125–131. [Google Scholar] [CrossRef]
- Muskat, L.C.; Przyklenk, M.; Humbert, P.; Eilenberg, J.; Patel, A.V. Fermentation of the Psyllid-Pathogenic Fungus Pandora sp. Nov. Inedit. (Entomophthorales: Entomophthoraceae). Biocontrol Sci. Technol. 2022, 32, 564–585. [Google Scholar] [CrossRef]
- Eilenberg, J.; Hajek, A.; Lomer, C. Suggestions for Unifying the Terminology in Biological Control. BioControl 2001, 46, 387–400. [Google Scholar] [CrossRef]
- Gurulingappa, P.; McGee, P.A.; Sword, G. Endophytic Lecanicillium lecanii and Beauveria bassiana Reduce the Survival and Fecundity of Aphis gossypii Following Contact with Conidia and Secondary Metabolites. Crop Prot. 2011, 30, 349–353. [Google Scholar] [CrossRef]
- Wraight, S.P.; Jacksonz, M.A.; De Kock, S.L. Production, stabilization and formulation of fungal biocontrol agents. In Fungi as Biocontrol Agents: Progress, Problems and Potential; Butt, T.M., Jackson, C., Magan, N., Eds.; CAB International: Wallingford, UK, 2001; pp. 253–287. [Google Scholar]
- Klingen, I.; Eilenberg, J.; Meadow, R. Effects of Farming System, Field Margins and Bait Insect on the Occurrence of Insect Pathogenic Fungi in Soils. Agric. Ecosyst. Environ. 2002, 91, 191–198. [Google Scholar] [CrossRef]
- Da Sun, B.; Liu, X.Z. Occurrence and Diversity of Insect-Associated Fungi in Natural Soils in China. Appl. Soil Ecol. 2008, 39, 100–108. [Google Scholar] [CrossRef]
- Bawin, T.; Seye, F.; Boukraa, S.; Zimmer, J.Y.; Delvigne, F.; Francis, F. The Fight against Mosquitoes (Diptera: Culicidae): Diversity of Approaches and Application of Biological Control. Can. Entomol. 2015, 147, 476–500. [Google Scholar] [CrossRef]
- Rodriguez, R.J.; White, J.F.; Arnold, A.E.; Redman, R.S. Fungal Endophytes: Diversity and Functional Roles: Tansley Review. New Phytol. 2009, 182, 314–330. [Google Scholar] [CrossRef]
- Khare, E.; Mishra, J.; Arora, N.K. Multifaceted Interactions between Endophytes and Plant: Developments and Prospects. Front. Microbiol. 2018, 9, 2732. [Google Scholar] [CrossRef]
- Meyling, N.V.; Eilenberg, J. Ecology of the Entomopathogenic Fungi Beauveria bassiana and Metarhizium anisopliae in Temperate Agroecosystems: Potential for Conservation Biological Control. Biol. Control 2007, 43, 145–155. [Google Scholar] [CrossRef]
- Vega, F.E.; Posada, F.; Catherine Aime, M.; Pava-Ripoll, M.; Infante, F.; Rehner, S.A. Entomopathogenic Fungal Endophytes. Biol. Control 2008, 46, 72–82. [Google Scholar] [CrossRef] [Green Version]
- Bruck, D.J. Fungal Entomopathogens in the Rhizosphere. BioControl 2010, 55, 103–112. [Google Scholar] [CrossRef]
- Hu, G.; St. Leger, R.J. Field Studies Using a Recombinant Mycoinsecticide (Metarhizium anisopliae) Reveal That It Is Rhizosphere Competent. Appl. Environ. Microbiol. 2002, 68, 6383–6387. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Behie, S.W.; Jones, S.J.; Bidochka, M.J. Plant Tissue Localization of the Endophytic Insect Pathogenic Fungi Metarhizium and Beauveria. Fungal Ecol. 2015, 13, 112–119. [Google Scholar] [CrossRef]
- Mantzoukas, S. Endophytic Colonization of Solanum tuberosum L. (Solanales: Solanaceae) Plants Can Affect the Infestation of Serious Pests. Appl. Microbiol. Theory Technol. 2020, 1, 52–58. [Google Scholar] [CrossRef]
- Vega, F.E.; Goettel, M.S.; Blackwell, M.; Chandler, D.; Jackson, M.A.; Keller, S.; Koike, M.; Maniania, N.K.; Monzón, A.; Ownley, B.H.; et al. Fungal Entomopathogens: New Insights on Their Ecology. Fungal Ecol. 2009, 2, 149–159. [Google Scholar] [CrossRef] [Green Version]
- Mantzoukas, S.; Lagogiannis, I. Endophytic Colonization of Pepper (Capsicum annum) Controls Aphids (Myzus persicae Sulzer). Appl. Sci. 2019, 9, 2239. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Vidal, S.; Lopez-Llorca, L.V.; Jansson, H.B.; Salinas, J. Endophytic Colonization of Date Palm (Phoenix dactylifera L.) Leaves by Entomopathogenic Fungi. Micron 2006, 37, 624–632. [Google Scholar] [CrossRef]
- Gange, A.C.; Koricheva, J.; Currie, A.F.; Jaber, L.R.; Vidal, S. Meta-Analysis of the Role of Entomopathogenic and Unspecialized Fungal Endophytes as Plant Bodyguards. New Phytol. 2019, 223, 2002–2010. [Google Scholar] [CrossRef] [Green Version]
- Berbee, M.L. The Phylogeny of Plant and Animal Pathogens in the Ascomycota. Physiol. Mol. Plant Pathol. 2001, 59, 165–187. [Google Scholar] [CrossRef]
- Lovett, B.; St. Leger, R.J. The Insect Pathogens. Microbiol Spect. 2017, 5, FUNK-0001-2016. [Google Scholar] [CrossRef]
- Gurulingappa, P.; Sword, G.A.; Murdoch, G.; McGee, P.A. Colonization of Crop Plants by Fungal Entomopathogens and Their Effects on Two Insect Pests When in Planta. Biol. Control 2010, 55, 34–41. [Google Scholar] [CrossRef]
- Wagner, B.L.; Lewis, L.C. Colonization of Corn, Zea Mays, by the Entomopathogenic Fungus Beauveria Bassiana. Appl. Environ. Microbiol. 2000, 66, 3468–3473. [Google Scholar] [CrossRef] [Green Version]
- Allegrucci, N.; Velazquez, M.S.; Russo, M.L.; Vianna, M.F.; Abarca, C.; Scorsetti, A.C. Establishment of the Entomopathogenic Fungus Beauveria bassiana as an Endophyte in Capsicum annuum and Its Effects on the Aphid Pest Myzus persicae (Homoptera: Aphididae). Rev. Biol. Trop. 2020, 68, 1084–1094. [Google Scholar] [CrossRef]
- Posada, F.; Aime, M.C.; Peterson, S.W.; Rehner, S.A.; Vega, F.E. Inoculation of Coffee Plants with the Fungal Entomopathogen Beauveria bassiana (Ascomycota: Hypocreales). Mycol. Res. 2007, 111, 748–757. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- González-Mas, N.; Quesada-moraga, E.; Sánchez-Ortiz, A.; Valverde-García, P. Effects of Endophytic Entomopathogenic Ascomycetes on the Life-History Traits of Aphis gossypii Glover. Insects 2019, 10, 165. [Google Scholar] [CrossRef] [Green Version]
- Allegrucci, N.; Velazquez, M.S.; Russo, M.L.; Perez, E.; Scorsetti, A.C. Endophytic Colonisation of Tomato by the Entomopathogenic Fungus Beauveria bassiana: The Use of Different Inoculation Techniques and Their Effects on the Tomato Leafminer Tuta absoluta (Lepidoptera: Gelechiidae). J. Plant Prot. Res. 2017, 57, 331–337. [Google Scholar] [CrossRef] [Green Version]
- Rasool, S.; Vidkjær, N.H.; Hooshmand, K.; Jensen, B.; Fomsgaard, I.S.; Meyling, N.V. Seed Inoculations with Entomopathogenic Fungi Affect Aphid Populations Coinciding with Modulation of Plant Secondary Metabolite Profiles across Plant Families. New Phytol. 2021, 229, 1715–1727. [Google Scholar] [CrossRef]
- Jaber, L.R.; Ownley, B.H. Can We Use Entomopathogenic Fungi as Endophytes for Dual Biological Control of Insect Pests and Plant Pathogens? Biol. Control 2017, 116, 36–45. [Google Scholar] [CrossRef]
- Vidal, S.; Jaber, L.R. Entomopathogenic Fungi as Endophytes: Plant-Endophyte-Herbivore Interactions and Prospects for Use in Biological Control. Curr. Sci. 2015, 109, 46–54. [Google Scholar]
- Hu, S.; Bidochka, M.J. Root Colonization by Endophytic Insect-Pathogenic Fungi. J. Appl. Microbiol. 2021, 130, 570–581. [Google Scholar] [CrossRef] [PubMed]
- Trinh, D.N.; Ha, T.K.L.; Qiu, D. Biocontrol Potential of Some Entomopathogenic Fungal Strains against Bean Aphid Megoura japonica (Matsumura). Agriculture 2020, 10, 114. [Google Scholar] [CrossRef] [Green Version]
- Vega, F.E. The Use of Fungal Entomopathogens as Endophytes in Biological Control: A Review. Mycologia 2018, 110, 4–30. [Google Scholar] [CrossRef]
- Anderson, C.M.; MgGee, P.A.; Nehl, D.; Mensah, R. The Fungus Lecanicillium lecanii Colonises the Plant Gossypium hirsutum and the Aphid Aphis gossypii. Aust. Mycol. 2007, 26, 65–70. [Google Scholar]
- Castillo Lopez, D.; Zhu-Salzman, K.; Ek-Ramos, M.J.; Sword, G.A. The Entomopathogenic Fungal Endophytes Purpureocillium lilacinum (Formerly Paecilomyces lilacinus) and Beauveria bassiana Negatively Affect Cotton Aphid Reproduction under Both Greenhouse and Field Conditions. PLoS ONE 2014, 9, e103891. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Raps, A.; Vidal, S. Indirect Effects of an Unspecialized Endophytic Fungus on Specialized Plant-Herbivorous Insect Interactions. Oecologia 1998, 114, 541–547. [Google Scholar] [CrossRef] [PubMed]
- Kuldau, G.; Bacon, C. Clavicipitaceous Endophytes: Their Ability to Enhance Resistance of Grasses to Multiple Stresses. Biol. Control 2008, 46, 57–71. [Google Scholar] [CrossRef]
- Yue, Q.; Miller, C.J.; White, J.F.; Richardson, M.D. Isolation and Characterization of Fungal Inhibitors from Epichloe festucae. J. Agric. Food Chem. 2000, 48, 4687–4692. [Google Scholar] [CrossRef]
- Jaber, L.R.; Araj, S.E. Interactions among Endophytic Fungal Entomopathogens (Ascomycota: Hypocreales), the Green Peach Aphid Myzus persicae Sulzer (Homoptera: Aphididae), and the Aphid Endoparasitoid Aphidius colemani Viereck (Hymenoptera: Braconidae). Biol. Control 2018, 116, 53–61. [Google Scholar] [CrossRef]
- Züst, T.; Agrawal, A.A. Mechanisms and Evolution of Plant Resistance to Aphids. Nat. Plants 2016, 2, 15206. [Google Scholar] [CrossRef]
- Li, T.; Blande, J.D.; Gundel, P.E.; Helander, M.; Saikkonen, K. Epichloë Endophytes Alter Inducible Indirect Defences in Host Grasses. PLoS ONE 2014, 9, e101331. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ali, J.G.; Agrawal, A.A. Specialist versus Generalist Insect Herbivores and Plant Defense. Trends Plant Sci. 2012, 17, 293–302. [Google Scholar] [CrossRef] [PubMed]
- Li, T.; Holopainen, J.K.; Kokko, H.; Tervahauta, A.I.; Blande, J.D. Herbivore-Induced Aspen Volatiles Temporally Regulate Two Different Indirect Defences in Neighbouring Plants. Funct. Ecol. 2012, 26, 1176–1185. [Google Scholar] [CrossRef]
- Hartley, S.E.; Gange, A.C. Impacts of Plant Symbiotic Fungi on Insect Herbivores: Mutualism in a Multitrophic Context. Annu. Rev. Entomol. 2009, 54, 323–342. [Google Scholar] [CrossRef] [PubMed]
- Dara, S.K. Reporting the occurrence of rice root aphid and honeysuckle aphid and their management in organic celery. UCANR eJ. Strawb. Veg. 2015, 21. Available online: http://ucanr.edu/blogs/blogcore/postdetail.cfm?postnum=18740 (accessed on 3 October 2022).
- Pieterse, C.M.J.; Zamioudis, C.; Berendsen, R.L.; Weller, D.M.; Van Wees, S.C.M.; Bakker, P.A.H.M. Induced Systemic Resistance by Beneficial Microbes. Annu. Rev. Phytopathol. 2014, 52, 347–375. [Google Scholar] [CrossRef] [Green Version]
- Smart, L.E.; Aradottir, G.I.; Bruce, T.J.A. Chapter 6—Role of Semiochemicals in Integrated Pest Management. In Integrated Pest Management: Current Concepts and Ecological Perspective; Abrol, D.P., Ed.; Academic Press: Cambridge, MA, USA, 2014; pp. 93–109. [Google Scholar]
- Baverstock, J.; Roy, H.E.; Clark, S.J.; Alderson, P.G.; Pell, J.K. Effect of Fungal Infection on the Reproductive Potential of Aphids and Their Progeny. J. Invertebr. Pathol. 2006, 91, 136–139. [Google Scholar] [CrossRef]
- Akello, J.; Sikora, R. Systemic Acropedal Influence of Endophyte Seed Treatment on Acyrthosiphon pisum and Aphis fabae Offspring Development and Reproductive Fitness. Biol. Control 2012, 61, 215–221. [Google Scholar] [CrossRef]
- Vu, V.H.; Hong, S., II; Kim, K. Selection of Entomopathogenic Fungi for Aphid Control. J. Biosci. Bioeng. 2007, 104, 498–505. [Google Scholar] [CrossRef]
- Akmal, M.; Freed, S.; Malik, M.; Gul, H. Efficacy of Beauveria bassiana (Deuteromycotina: Hypomycetes) against Different Aphid Species under Laboratory Conditions. Pak. J. Zool. 2013, 45, 71–78. [Google Scholar]
- Kim, J.J.; Jeong, G.; Han, J.H.; Lee, S. Biological Control of Aphid Using Fungal Culture and Culture Filtrates of Beauveria bassiana. Mycobiology 2013, 41, 221–224. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Reingold, V.; Kottakota, C.; Birnbaum, N.; Goldenberg, M.; Lebedev, G.; Ghanim, M.; Ment, D. Intraspecies Variation of Metarhizium Brunneum against the Green Peach Aphid, Myzus persicae, Provides Insight into the Complexity of Disease Progression. Pest Manag. Sci 2021, 77, 2557–2567. [Google Scholar] [CrossRef] [PubMed]
- Gindin, G.; Barash, I.; Harari, N.; Raccah, B. Effect of Endotoxic Compounds Isolated from Verticillium lecanii on the Sweetpotato Whitefly, Bemisia tabaci. Phytoparasitica 1994, 22, 189–196. [Google Scholar] [CrossRef]
- Manoussopoulos, Y.; Mantzoukas, S.; Lagogiannis, I.; Goudoudaki, S.; Kambouris, M. Effects of Three Strawberry Entomopathogenic Fungi on the Prefeeding Behavior of the Aphid Myzus persicae. J. Insect Behav. 2019, 32, 99–108. [Google Scholar] [CrossRef]
- Mahmood, Z.; Steenberg, T.; Mahmood, K.; Labouriau, R.; Kristensen, M. Endophytic Beauveria bassiana in Maize Affects Survival and Fecundity of the Aphid Sitobion avenae. Biol. Control 2019, 137, 104017. [Google Scholar] [CrossRef]
- Collinson, N.P.; Mann, R.C.; Giri, K.; Malipatil, M.; Kaur, J.; Spangenberg, G.; Valenzuela, I. Novel Bioassay to Assess Antibiotic Effects of Fungal Endophytes on Aphids. PLoS ONE 2020, 15, e0228813. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Siegel, M.R.; Latch, G.C.M.; Bush, L.P.; Fannin, F.F.; Rowan, D.D.; Tapper, B.A.; Bacon, C.W.; Johnson, M.C. Fungal Endophyte-Infected Grasses: Alkaloid Accumulation and Aphid Response. J. Chem. Ecol. 1990, 16, 3301–3315. [Google Scholar] [CrossRef]
- Martinuz, A.; Schouten, A.; Menjivar, R.D.; Sikora, R.A. Effectiveness of Systemic Resistance toward Aphis Gossypii (Hom., Aphididae) as Induced by Combined Applications of the Endophytes Fusarium oxysporum Fo162 and Rhizobium Etli G12. Biol. Control 2012, 62, 206–212. [Google Scholar] [CrossRef]
- Meister, B.; Krauss, J.; Härri, S.A.; Victoria Schneider, M.; Müller, C.B. Fungal Endosymbionts Affect Aphid Population Size by Reduction of Adult Life Span and Fecundity. Basic Appl. Ecol. 2006, 7, 244–252. [Google Scholar] [CrossRef]
- Wilson, A.D. Survey and Detection of Endophytic Fungi in Lolium Germ Plasm by Direct Staining and Aphid Assays. Plant Dis. 1991, 75, 169. [Google Scholar] [CrossRef] [Green Version]
- Jaber, L.R.; Salem, N.M. Endophytic Colonisation of Squash by the Fungal Entomopathogen Beauveria bassiana (Ascomycota: Hypocreales) for Managing Zucchini Yellow Mosaic Virus in Cucurbits. Biocontrol Sci. Technol. 2014, 24, 1096–1109. [Google Scholar] [CrossRef]
- González-Mas, N.; Quesada-Moraga, E.; Plaza, M.; Fereres, A.; Moreno, A. Changes in Feeding Behaviour Are Not Related to the Reduction in the Transmission Rate of Plant Viruses by Aphis gossypii (Homoptera: Aphididae) to Melon Plants Colonized by Beauveria bassiana (Ascomycota: Hypocreales). Biol. Control 2019, 130, 95–103. [Google Scholar] [CrossRef]
- Rúa, M.A.; Mcculley, R.L.; Mitchell, C.E. Fungal Endophyte Infection and Host Genetic Background Jointly Modulate Host Response to an Aphid-Transmitted Viral Pathogen. J. Ecol. 2013, 101, 1007–1018. [Google Scholar] [CrossRef]
- Kiarie, S.; Nyasani, J.O.; Gohole, L.S.; Maniania, N.K.; Subramanian, S. Impact of Fungal Endophyte Colonization of Maize Aphid-Transmitted Viruses. Plants 2020, 9, 416. [Google Scholar] [CrossRef]
- Fang, W.; Azimzadeh, P.; St. Leger, R.J. Strain Improvement of Fungal Insecticides for Controlling Insect Pests and Vector-Borne Diseases. Curr. Opin. Microbiol. 2012, 15, 232–238. [Google Scholar] [CrossRef] [PubMed]
- Sharma, A.; Srivastava, A.; Shukla, A.K.; Srivastava, K.; Srivastava, A.K.; Saxena, A.K. Entomopathogenic Fungi: A Potential Source for Biological Control of Insect Pests; Solanki, M., Kashyap, P., Kumari, B., Eds.; Springer: Singapore, 2020; ISBN 978-981-15-3150-7. [Google Scholar]
- Fang, W.; Leng, B.; Xiao, Y.; Jin, K.; Ma, J.; Fan, Y.; Feng, J.; Yang, X.; Zhang, Y.; Pei, Y. Cloning of Beauveria bassiana Chitinase Gene Bbchit1 and Its Application to Improve Fungal Strain Virulence. Appl. Environ. Microbiol. 2005, 71, 363–370. [Google Scholar] [CrossRef] [PubMed]
Fungal Species | Aphid Species | Mortality | Reproduction | Population Growth | Behavior | References |
---|---|---|---|---|---|---|
Direct | ||||||
Beauveria bassiana | Aphis gossypii | [38,85] | ||||
Acyrthosiphon pisum | [83] | |||||
Brevicoryne brassicae | [86] | |||||
Lipaphis erysimi | [86] | |||||
Megoura japonica | [67] | |||||
Myzus persicae | [85,87] | |||||
Rhopalosiphum padi | [86] | |||||
Schizaphis graminum | [86] | |||||
Cordyceps scarabaeicola | Aphis gossypii | [85] | ||||
Myzus persicae | [85] | |||||
Cordyceps sp. | Myzus persicae | [87] | ||||
Isaria spp. | Myzus persicae | [87] | ||||
Lecanicillium lecanii | Myzus persicae | [85] | ||||
Aphis gossypii | [38,85] | |||||
Lecanicillium spp. | Myzus persicae | [87] | ||||
Metarhizium anisopliae | Aphis gossypii | [85] | ||||
Myzus persicae | [85] | |||||
Metarhizium brunneum | Myzus persicae | [88] | ||||
Metarhizium majus | Myzus persicae | [88] | ||||
Metarhizium pinghaense | Myzus persicae | [88] | ||||
Metarhizium robertsii | Myzus persicae | [88] | ||||
Nomuraea rileyi | Aphis gossypii | [85] | ||||
Myzus persicae | [85] | |||||
Paecilomyces farinosus | Aphis gossypii | [85] | ||||
Myzus persicae | [85] | |||||
Pandora neoaphidis | Acyrthosiphon pisum | [83] | ||||
Verticillium lecanii | Acyrthosiphon pisum | [89] | ||||
Aphis gossypii | [89] | |||||
Megoura japonica | [67] | |||||
Myzus persicae | [89] | |||||
In planta (endophyte) | ||||||
Beauveria bassiana | Acyrthosiphon pisum | [84] | ||||
Aphis fabae | [84] | |||||
Aphis gossypii | [57,61,70] | |||||
Myzus persicae | [52,74,90] | |||||
Sitobion avenae | [91] | |||||
Epichloe festucae | Aploneura lentisci | [92] | ||||
Diuraphis noxia | [92] | |||||
Rhopalosiphum padi | [93] | |||||
Schizaphis graminum | [93] | |||||
Fusarium oxysporum | Acyrthosiphon pisum | [84] | ||||
Aphis gossypii | [94] | |||||
Gibberella moniliformis | Acyrthosiphon pisum | [84] | ||||
Aphis fabae | [84] | |||||
Hypocrea lixi | Acyrthosiphon pisum | [84] | ||||
Isaria fumosorosea | Myzus persicae | [52] | ||||
Lecanicillium lecanii | Aphis gossypii | [57] | ||||
Metarhizium anisioplaie | Acyrthosiphon pisum | [84] | ||||
Myzus persicae | [52] | |||||
Metarhizium brunneum | Aphis gossypii | [61] | ||||
Myzus persicae | [74] | |||||
Neotyphodium lolii | Metopolophium dirhodum | [95] | ||||
Rhopalosiphum padi | [95] | |||||
Not identified | Diuraphis noxia | [96] | ||||
Purpureocillium lilacinum | Aphis gossypii | [70] | ||||
Trichoderma asperellum | Acyrthosiphon pisum | [84] | ||||
Aphis fabae | [84] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Francis, F.; Fingu-Mabola, J.C.; Ben Fekih, I. Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review. Agriculture 2022, 12, 2081. https://doi.org/10.3390/agriculture12122081
Francis F, Fingu-Mabola JC, Ben Fekih I. Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review. Agriculture. 2022; 12(12):2081. https://doi.org/10.3390/agriculture12122081
Chicago/Turabian StyleFrancis, Frederic, Junior Corneille Fingu-Mabola, and Ibtissem Ben Fekih. 2022. "Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review" Agriculture 12, no. 12: 2081. https://doi.org/10.3390/agriculture12122081
APA StyleFrancis, F., Fingu-Mabola, J. C., & Ben Fekih, I. (2022). Direct and Endophytic Effects of Fungal Entomopathogens for Sustainable Aphid Control: A Review. Agriculture, 12(12), 2081. https://doi.org/10.3390/agriculture12122081