Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (19)

Search Parameters:
Keywords = endolichenic

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7312 KiB  
Article
Comparative Antagonistic Activities of Endolichenic Fungi Isolated from the Fruticose Lichens Ramalina and Usnea
by Lloyd Christian Jamilano-Llames and Thomas Edison E. dela Cruz
J. Fungi 2025, 11(4), 302; https://doi.org/10.3390/jof11040302 - 10 Apr 2025
Viewed by 984
Abstract
Persistent fungal pathogens remain a threat to global food security as these pathogens continue to infect crops despite different mitigating strategies. Traditionally, synthetic fungicides are used to combat these threats, but their environmental and health impacts have spurred interest in a more sustainable, [...] Read more.
Persistent fungal pathogens remain a threat to global food security as these pathogens continue to infect crops despite different mitigating strategies. Traditionally, synthetic fungicides are used to combat these threats, but their environmental and health impacts have spurred interest in a more sustainable, eco-friendly approach. Endolichenic fungi (ELF) are a relatively underexplored group of microorganisms found thriving inside the lichen thalli. They are seen as promising alternatives for developing sustainable plant disease management strategies. Hence, in this study, a total of forty ELF isolates from two fruticose lichen hosts—Ramalina and Usnea, were tested and compared for their antagonistic activities against three economically important filamentous fungal pathogens—Colletotrichum gloeosporioides, Cladosporium cladosporioides, and Fusarium oxysporum. The results of the dual culture assay showed that all ELF isolates successfully reduced the growth of the three filamentous fungal pathogens with varying degrees, and with direct contact inhibition as the predominant trait among the endolichenic fungi. Comparing the antagonistic activities between the different endolichenic fungi from the two lichen hosts, ELF isolates from Ramalina generally demonstrated a higher percentage inhibition of growth of the test fungi as compared to ELF isolates from Usnea. This study underscores the importance of endolichenic fungi as an efficient biocontrol agent. Full article
(This article belongs to the Special Issue Plant Fungal Diseases and Crop Protection, 2nd Edition)
Show Figures

Figure 1

15 pages, 1133 KiB  
Article
Biopesticide Compounds from an Endolichenic Fungus Xylaria sp. Isolated from the Lichen Hypogymnia tubulosa
by Fotios A. Lyssaios, Azucena González-Coloma, María Fe Andrés and Carmen E. Díaz
Molecules 2025, 30(3), 470; https://doi.org/10.3390/molecules30030470 - 22 Jan 2025
Cited by 3 | Viewed by 1270
Abstract
Endolichenic fungi represent an important ecological group of microorganisms that form associations with photobionts in the lichen thallus. These endofungi that live in and coevolve with lichens are known for synthesizing secondary metabolites with novel structures and diverse chemical skeletons making them an [...] Read more.
Endolichenic fungi represent an important ecological group of microorganisms that form associations with photobionts in the lichen thallus. These endofungi that live in and coevolve with lichens are known for synthesizing secondary metabolites with novel structures and diverse chemical skeletons making them an unexplored microbial community of great interest. As part of our search for new phytoprotectants, in this work, we studied the endolichenic fungus Xylaria sp. isolated from the lichen Hypogymnia tubulosa, which grows as an epiphyte on the bark of the endemic Canarian tree Pinus canariensis. From the extract of the liquid fermentation, we isolated two unreported piliformic derivatives, (+)-9-hydroxypiliformic acid (1) and (+)-8-hydroxypiliformic acid (2), along with four previously reported compounds, (+)-piliformic acid (3), hexylaconitic acid A anhydride (4), 2-hydroxyphenylacetic acid (5), and 4-hydroxyphenylacetic acid (6). Their structures were elucidated based on NMR and HRESIMS data. The extract and the isolated compounds were tested for their insect antifeedant (Myzus persicae, Rhopalosiphum padi, and Spodoptera littoralis), antifungal (Alternaria alternata, Botrytis cinerea, and Fusarium oxysporum), nematicidal (Meloidogyne javanica), and phytotoxic effects on mono- and dicotyledonous plant models (Lolium perenne and Lactuca sativa). Compounds 4, 5, and 6 were effective antifeedants against M. persicae and 4 was also active against R. padi. Moreover, 3 and 4 showed antifungal activity against B. cinerea and 4 was the only nematicidal. The extract had a strong phytotoxic effect on L. sativa and L. perenne growth, with compounds 3, 4, and 5 identified as the phytotoxic agents, while at low concentrations compounds 3 and 4 stimulated L. sativa root growth. Full article
Show Figures

Graphical abstract

17 pages, 2880 KiB  
Article
In Vitro Antiproliferative Activity of Echinulin Derivatives from Endolichenic Fungus Aspergillus sp. against Colorectal Cancer
by Hind Makhloufi, Aline Pinon, Yves Champavier, Jennifer Saliba, Marion Millot, Ingrid Fruitier-Arnaudin, Bertrand Liagre, Guillaume Chemin and Lengo Mambu
Molecules 2024, 29(17), 4117; https://doi.org/10.3390/molecules29174117 - 30 Aug 2024
Cited by 1 | Viewed by 1500
Abstract
The endolichenic fungus Aspergillus sp. was isolated from the lichen Xanthoparmelia conspersa harvested in France. Aspergillus sp. was grown on a solid culture medium to ensure the large-scale production of the fungus with a sufficient mass of secondary metabolites. The molecular network analysis [...] Read more.
The endolichenic fungus Aspergillus sp. was isolated from the lichen Xanthoparmelia conspersa harvested in France. Aspergillus sp. was grown on a solid culture medium to ensure the large-scale production of the fungus with a sufficient mass of secondary metabolites. The molecular network analysis of extracts and subfractions enabled the annotation of 22 molecules, guiding the purification process. The EtOAc extract displayed an antiproliferative activity of 3.2 ± 0.4 µg/mL at 48 h against human colorectal cancer cells (HT-29) and no toxicity at 30 µg/mL against human triple-negative breast cancer (TNBC) cells (MDA-MB-231) and human embryonic kidney (HEK293) non-cancerous cells. Among the five prenylated compounds isolated, of which four are echinulin derivatives, compounds 1 and 2 showed the most important activity, with IC50 values of 1.73 µM and 8.8 µM, respectively, against HT-29 cells. Full article
(This article belongs to the Special Issue Advances in Natural Products and Their Biological Activities)
Show Figures

Figure 1

49 pages, 8781 KiB  
Review
Endolichenic Fungi: A Promising Medicinal Microbial Resource to Discover Bioactive Natural Molecules—An Update
by Wenge Zhang, Qian Ran, Hehe Li and Hongxiang Lou
J. Fungi 2024, 10(2), 99; https://doi.org/10.3390/jof10020099 - 25 Jan 2024
Cited by 7 | Viewed by 3335
Abstract
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, [...] Read more.
Lichens are some of the most unique fungi and are naturally encountered as symbiotic biological organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms (green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts, rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful and structurally novel secondary metabolites to resist external environmental stresses. The endofungi that live in and coevolve with lichens can also generate abundant secondary metabolites with novel structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with hosts, and they have been considered as strategically significant medicinal microresources for the discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great importance in the fundamental research field of natural product chemistry. In this work, we conducted a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic fungi regarding their origin, distribution, structural characteristics, and biological activity, as well as recent advances in their medicinal applications, by summarizing research achievements since 2015. Moreover, the current research status and future research trends regarding their chemical components are discussed and predicted. A systematic review covering the fundamental chemical research advances and pharmaceutical potential of the secondary metabolites from endolichenic fungi is urgently required to facilitate our better understanding, and this review could also serve as a critical reference to provide valuable insights for the future research and promotion of natural products from endolichenic fungi. Full article
(This article belongs to the Special Issue Diversity and Secondary Metabolites of Endophytic Fungi)
Show Figures

Graphical abstract

18 pages, 5127 KiB  
Article
Fungal Diversity Associated with Thirty-Eight Lichen Species Revealed a New Genus of Endolichenic Fungi, Intumescentia gen. nov. (Teratosphaeriaceae)
by Hongli Si, Yichen Wang, Yanyu Liu, Shiguo Li, Tanay Bose and Runlei Chang
J. Fungi 2023, 9(4), 423; https://doi.org/10.3390/jof9040423 - 29 Mar 2023
Cited by 7 | Viewed by 4222
Abstract
Fungi from the Teratosphaeriaceae (Mycosphaerellales; Dothideomycetes; Ascomycota) have a wide range of lifestyles. Among these are a few species that are endolichenic fungi. However, the known diversity of endolichenic fungi from Teratosphaeriaceae is far less understood compared to other lineages of Ascomycota. We [...] Read more.
Fungi from the Teratosphaeriaceae (Mycosphaerellales; Dothideomycetes; Ascomycota) have a wide range of lifestyles. Among these are a few species that are endolichenic fungi. However, the known diversity of endolichenic fungi from Teratosphaeriaceae is far less understood compared to other lineages of Ascomycota. We conducted five surveys from 2020 to 2021 in Yunnan Province of China, to explore the biodiversity of endolichenic fungi. During these surveys, we collected multiple samples of 38 lichen species. We recovered a total of 205 fungal isolates representing 127 species from the medullary tissues of these lichens. Most of these isolates were from Ascomycota (118 species), and the remaining were from Basidiomycota (8 species) and Mucoromycota (1 species). These endolichenic fungi represented a wide variety of guilds, including saprophytes, plant pathogens, human pathogens, as well as entomopathogenic, endolichenic, and symbiotic fungi. Morphological and molecular data indicated that 16 of the 206 fungal isolates belonged to the family Teratosphaeriaceae. Among these were six isolates that had a low sequence similarity with any of the previously described species of Teratosphaeriaceae. For these six isolates, we amplified additional gene regions and conducted phylogenetic analyses. In both single gene and multi-gene phylogenetic analyses using ITS, LSU, SSU, RPB2, TEF1, ACT, and CAL data, these six isolates emerged as a monophyletic lineage within the family Teratosphaeriaceae and sister to a clade that included fungi from the genera Acidiella and Xenopenidiella. The analyses also indicated that these six isolates represented four species. Therefore, we established a new genus, Intumescentia gen. nov., to describe these species as Intumescentia ceratinae, I. tinctorum, I. pseudolivetorum, and I. vitii. These four species are the first endolichenic fungi representing Teratosphaeriaceae from China. Full article
(This article belongs to the Special Issue Ecology and Evolution of Lichens and Associated Microorganisms)
Show Figures

Figure 1

24 pages, 6135 KiB  
Article
Libertellenone T, a Novel Compound Isolated from Endolichenic Fungus, Induces G2/M Phase Arrest, Apoptosis, and Autophagy by Activating the ROS/JNK Pathway in Colorectal Cancer Cells
by Chathurika D. B. Gamage, Jeong-Hyeon Kim, Yi Yang, İsa Taş, So-Yeon Park, Rui Zhou, Sultan Pulat, Mücahit Varlı, Jae-Seoun Hur, Sang-Jip Nam and Hangun Kim
Cancers 2023, 15(2), 489; https://doi.org/10.3390/cancers15020489 - 12 Jan 2023
Cited by 13 | Viewed by 3865
Abstract
Colorectal cancer (CRC) is the third most deadly type of cancer in the world and continuous investigations are required to discover novel therapeutics for CRC. Induction of apoptosis is one of the promising strategies to inhibit cancers. Here, we have identified a novel [...] Read more.
Colorectal cancer (CRC) is the third most deadly type of cancer in the world and continuous investigations are required to discover novel therapeutics for CRC. Induction of apoptosis is one of the promising strategies to inhibit cancers. Here, we have identified a novel compound, Libertellenone T (B), isolated from crude extracts of the endolichenic fungus from Pseudoplectania sp. (EL000327) and investigated the mechanism of action. CRC cells treated by B were subjected to apoptosis detection assays, immunofluorescence imaging, and molecular analyses such as immunoblotting and QRT-PCR. Our findings revealed that B induced CRC cell death via multiple mechanisms including G2/M phase arrest caused by microtubule stabilization and caspase-dependent apoptosis. Further studies revealed that B induced the generation of reactive oxygen species (ROS) attributed to activating the JNK signaling pathway by which apoptosis and autophagy was induced in Caco2 cells. Moreover, B exhibited good synergistic effects when combined with the well-known anticancer drug, 5-FU, and another cytotoxic novel compound D, which was isolated from the same crude extract of EL000327. Overall, Libertellenone T induces G2/M phase arrest, apoptosis, and autophagy via activating the ROS/JNK pathway in CRC. Thus, B may be a potential anticancer therapeutic against CRC that is suitable for clinical applications. Full article
Show Figures

Figure 1

20 pages, 2303 KiB  
Article
Access to Anti-Biofilm Compounds from Endolichenic Fungi Using a Bioguided Networking Screening
by Seinde Toure, Marion Millot, Lucie Ory, Catherine Roullier, Zineb Khaldi, Valentin Pichon, Marion Girardot, Christine Imbert and Lengo Mambu
J. Fungi 2022, 8(10), 1012; https://doi.org/10.3390/jof8101012 - 27 Sep 2022
Cited by 7 | Viewed by 2735
Abstract
Endolichenic microorganisms represent a new source of bioactive natural compounds. Lichens, resulting from a symbiotic association between algae or cyanobacteria and fungi, constitute an original ecological niche for these microorganisms. Endolichenic fungi inhabiting inside the lichen thallus have been isolated and characterized. By [...] Read more.
Endolichenic microorganisms represent a new source of bioactive natural compounds. Lichens, resulting from a symbiotic association between algae or cyanobacteria and fungi, constitute an original ecological niche for these microorganisms. Endolichenic fungi inhabiting inside the lichen thallus have been isolated and characterized. By cultivation on three different culture media, endolichenic fungi gave rise to a wide diversity of bioactive metabolites. A total of 38 extracts were screened for their anti-maturation effect on Candida albicans biofilms. The 10 most active ones, inducing at least 50% inhibition, were tested against 24 h preformed biofilms of C. albicans, using a reference strain and clinical isolates. The global molecular network was associated to bioactivity data in order to identify and priorize active natural product families. The MS-targeted isolation led to the identification of new oxygenated fatty acid in Preussia persica endowed with an interesting anti-biofilm activity against C. albicans yeasts. Full article
(This article belongs to the Special Issue Emerging Investigators in Bioactive Fungal Metabolites)
Show Figures

Figure 1

20 pages, 5687 KiB  
Article
Green Synthesis of Endolichenic Fungi Functionalized Silver Nanoparticles: The Role in Antimicrobial, Anti-Cancer, and Mosquitocidal Activities
by Yugal Kishore Mohanta, Debasis Nayak, Awdhesh Kumar Mishra, Ishani Chakrabartty, Manjit Kumar Ray, Tapan Kumar Mohanta, Kumananda Tayung, Rajapandian Rajaganesh, Murugan Vasanthakumaran, Saravanan Muthupandian, Kadarkarai Murugan, Gouridutta Sharma, Hans-Uwe Dahms and Jiang-Shiou Hwang
Int. J. Mol. Sci. 2022, 23(18), 10626; https://doi.org/10.3390/ijms231810626 - 13 Sep 2022
Cited by 24 | Viewed by 4291
Abstract
Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to [...] Read more.
Green nanotechnology is currently a very crucial and indispensable technology for handling diverse problems regarding the living planet. The concoction of reactive oxygen species (ROS) and biologically synthesized silver nanoparticles (AgNPs) has opened new insights in cancer therapy. The current investigation caters to the concept of the involvement of a novel eco-friendly avenue to produce AgNPs employing the wild endolichenic fungus Talaromyces funiculosus. The synthesized Talaromyces funiculosus–AgNPs were evaluated with the aid of UV visible spectroscopy, dynamic light scattering (DLS), Fourier infrared spectroscopy (ATR-FTIR), X-ray diffraction (XRD), scanning electron microscopy (SEM), and transmission electron microscopy (TEM). The synthesized Talaromyces funiculosus–AgNPs (TF-AgNPs) exhibited hemo-compatibility as evidenced by a hemolytic assay. Further, they were evaluated for their efficacy against foodborne pathogens Staphylococcus aureus, Streptococcus faecalis, Listeria innocua, and Micrococcus luteus and nosocomial Pseudomonas aeruginosa, Escherichia coli, Vibrio cholerae, and Bacillus subtilis bacterial strains. The synthesized TF-AgNPs displayed cytotoxicity in a dose-dependent manner against MDA-MB-231 breast carcinoma cells and eventually condensed the chromatin material observed through the Hoechst 33342 stain. Subsequent analysis using flow cytometry and fluorescence microscopy provided the inference of a possible role of intracellular ROS (OH, O, H2O2, and O2) radicals in the destruction of mitochondria, DNA machinery, the nucleus, and overall damage of the cellular machinery of breast cancerous cells. The combined effect of predation by the cyclopoid copepod Mesocyclops aspericornis and TF-AgNPS for the larval management of dengue vectors were provided. A promising larval control was evident after the conjunction of both predatory organisms and bio-fabricated nanoparticles. Thus, this study provides a novel, cost-effective, extracellular approach of TF-AgNPs production with hemo-compatible, antioxidant, and antimicrobial efficacy against both human and foodborne pathogens with cytotoxicity (dose dependent) towards MDA-MB-231 breast carcinoma. Full article
(This article belongs to the Special Issue Advances in Antimicrobial and Antiviral Nanoparticles )
Show Figures

Graphical abstract

13 pages, 1532 KiB  
Article
Nematicidal Activity of Grammicin Biosynthesis Pathway Intermediates in Xylaria grammica KCTC 13121BP against Meloidogyne incognita
by Yoon Jee Kim, Kalaiselvi Duraisamy, Min-Hye Jeong, Sook-Young Park, Soonok Kim, Yookyung Lee, Van Thi Nguyen, Nan Hee Yu, Ae Ran Park and Jin-Cheol Kim
Molecules 2021, 26(15), 4675; https://doi.org/10.3390/molecules26154675 - 2 Aug 2021
Cited by 8 | Viewed by 2995
Abstract
Grammicin, a polyketide metabolite produced by the endolichenic fungus Xylaria grammica KCTC 13121BP, shows strong nematicidal activity against Meloidogyne incognita. This study was performed to elucidate the grammicin biosynthesis pathway of X. grammica KCTC 13121BP and to examine the nematicidal activity of the [...] Read more.
Grammicin, a polyketide metabolite produced by the endolichenic fungus Xylaria grammica KCTC 13121BP, shows strong nematicidal activity against Meloidogyne incognita. This study was performed to elucidate the grammicin biosynthesis pathway of X. grammica KCTC 13121BP and to examine the nematicidal activity of the biosynthesis intermediates and derivatives against M. incognita. Two grammicin biosynthesis intermediates were isolated from a T-DNA insertion transformant (strain TR-74) of X. grammica KCTC 13121BP and identified as 2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione (compound 1) and 2,5-dihydroxybenzaldehyde (compound 2), which were also reported to be intermediates in the biosynthesis pathway of patulin, an isomer of grammicin. This indicates that the grammicin biosynthesis pathway overlaps almost with that of patulin, except for the last few steps. Among 13 grammicin biosynthesis intermediates and their derivatives (except grammicin), toluquinol caused the highest M. incognita J2 mortality, with an LC50/72 h value of 11.13 µg/mL, which is similar to grammicin with an LC50/72 h value of 15.95 µg/mL. In tomato pot experiments, the wettable powder type formulations (WP) of toluquinol (17.78 µg/mL) and grammicin (17.78 µg/mL) also effectively reduced gall formation on the roots of tomato plants with control values of 72.22% and 77.76%, respectively, which are much higher than abamectin (16.67%), but lower than fosthiazate (100%). The results suggest that toluquinol can be used directly as a biochemical nematicide or as a lead molecule for the development of new synthetic nematicides for the control of root-knot nematode diseases. Full article
Show Figures

Graphical abstract

24 pages, 1724 KiB  
Review
The Chemistry and Pharmacology of Fungal Genus Periconia: A Review
by Azmi Azhari and Unang Supratman
Sci. Pharm. 2021, 89(3), 34; https://doi.org/10.3390/scipharm89030034 - 29 Jul 2021
Cited by 27 | Viewed by 7771
Abstract
Periconia is filamentous fungi belonging to the Periconiaceae family, and over the last 50 years, the genus has shown interest in natural product exploration for pharmacological purposes. Therefore, this study aims to analyze the different species of Periconia containing natural products such as [...] Read more.
Periconia is filamentous fungi belonging to the Periconiaceae family, and over the last 50 years, the genus has shown interest in natural product exploration for pharmacological purposes. Therefore, this study aims to analyze the different species of Periconia containing natural products such as terpenoids, polyketides, cytochalasan, macrosphelides, cyclopentenes, aromatic compounds, and carbohydrates carbasugar derivates. The isolated compound of this kind, which was reported in 1969, consisted of polyketide derivatives and their structures and was determined by chemical reaction and spectroscopic methods. After some years, 77 compounds isolated from endophytic fungus Periconia were associated with eight plant species, 28 compounds from sea hare Aplysia kurodai, and ten from endolichenic fungi Parmelia sp. The potent pharmacological agents from this genus are periconicin A, which acts as an antimicrobial, pericochlorosin B as an anti-human immunodeficiency virus (HIV), peribysin D, and pericosine A as cytotoxic agents, and periconianone A as an anti-inflammatory agent. Furthermore, information about taxol and piperine from Periconia producing species was also provided. Therefore, this study supports discovering new drugs produced by the Periconia species and compares them for future drug development. Full article
Show Figures

Figure 1

17 pages, 2843 KiB  
Review
Antimicrobial Compounds Isolated from Endolichenic Fungi: A Review
by A. Nethma Wethalawe, Y. Vindula Alwis, Dinusha N. Udukala and Priyani A. Paranagama
Molecules 2021, 26(13), 3901; https://doi.org/10.3390/molecules26133901 - 25 Jun 2021
Cited by 24 | Viewed by 4580
Abstract
A lichen is a symbiotic relationship between a fungus and a photosynthetic organism, which is algae or cyanobacteria. Endolichenic fungi are a group of microfungi that resides asymptomatically within the thalli of lichens. Endolichenic fungi can be recognized as luxuriant metabolic artists that [...] Read more.
A lichen is a symbiotic relationship between a fungus and a photosynthetic organism, which is algae or cyanobacteria. Endolichenic fungi are a group of microfungi that resides asymptomatically within the thalli of lichens. Endolichenic fungi can be recognized as luxuriant metabolic artists that produce propitious bioactive secondary metabolites. More than any other time, there is a worldwide search for new antibiotics due to the alarming increase in microbial resistance against the currently available therapeutics. Even though a few antimicrobial compounds have been isolated from endolichenic fungi, most of them have moderate activities, implying the need for further structural optimizations. Recognizing this timely need and the significance of endolichenic fungi as a promising source of antimicrobial compounds, the activity, sources and the structures of 31 antibacterial compounds, 58 antifungal compounds, two antiviral compounds and one antiplasmodial (antimalarial) compound are summarized in this review. In addition, an overview of the common scaffolds and structural features leading to the corresponding antimicrobial properties is provided as an aid for future studies. The current challenges and major drawbacks of research related to endolichenic fungi and the remedies for them have been suggested. Full article
Show Figures

Figure 1

10 pages, 10706 KiB  
Article
In Vitro Observations of the Interactions between Pholiota carbonaria and Polytrichum commune and Its Potential Environmental Relevance
by Daniel B. Raudabaugh, Daniel G. Wells, Patrick B. Matheny, Karen W. Hughes, Malcolm Sargent, Teresa Iturriaga and Andrew N. Miller
Life 2021, 11(6), 518; https://doi.org/10.3390/life11060518 - 3 Jun 2021
Cited by 3 | Viewed by 2749
Abstract
Wildfires play a critical role in maintaining biodiversity and shaping ecosystem structure in fire-prone regions, and successional patterns involving numerous plant and fungal species in post-fire events have been elucidated. Evidence is growing to support the idea that some post-fire fungi can form [...] Read more.
Wildfires play a critical role in maintaining biodiversity and shaping ecosystem structure in fire-prone regions, and successional patterns involving numerous plant and fungal species in post-fire events have been elucidated. Evidence is growing to support the idea that some post-fire fungi can form endophytic/endolichenic relationships with plants and lichens. However, no direct observations of fire-associated fungal–moss interactions have been visualized to date. Therefore, physical interactions between a post-fire fungus, Pholiota carbonaria, and a moss, Polytrichum commune, were visually examined under laboratory conditions. Fungal appressoria were visualized on germinating spores and living protonemata within two weeks of inoculation in most growth chambers. Appressoria were pigmented, reddish gold to braun, and with a penetration peg. Pigmented, reddish gold to braun fungal hyphae were associated with living tissue, and numerous mature rhizoids contained fungal hyphae at six months. Inter-rhizoidal hyphae were pigmented and reddish gold to braun, but no structures were visualized on mature gametophyte leaf or stem tissues. Based on our visual evidence and previous work, we provide additional support for P. carbonaria having multiple strategies in how it obtains nutrients from the environment, and provide the first visual documentation of these structures in vitro. Full article
Show Figures

Figure 1

14 pages, 4206 KiB  
Article
Effect of Isolation Conditions on Diversity of Endolichenic Fungal Communities from a Foliose Lichen, Parmotrema tinctorum
by Ji Ho Yang, Seung-Yoon Oh, Wonyong Kim, Jung-Jae Woo, Hyeonjae Kim and Jae-Seoun Hur
J. Fungi 2021, 7(5), 335; https://doi.org/10.3390/jof7050335 - 26 Apr 2021
Cited by 15 | Viewed by 3919
Abstract
Endolichenic fungi (ELF) are emerging novel bioresources because their diverse secondary metabolites have a wide range of biological activities. Metagenomic analysis of lichen thalli demonstrated that the conventional isolation method of ELF covers a very limited range of ELF, and the development of [...] Read more.
Endolichenic fungi (ELF) are emerging novel bioresources because their diverse secondary metabolites have a wide range of biological activities. Metagenomic analysis of lichen thalli demonstrated that the conventional isolation method of ELF covers a very limited range of ELF, and the development of an advanced isolation method is needed. The influence of four variables were investigated in this study to determine the suitable conditions for the isolation of more diverse ELF from a radially growing foliose lichen, Parmotrema tinctorum. Four variables were tested: age of the thallus, severity of surface-sterilization of the thallus, size of a thallus fragment for the inoculation, and nutrient requirement. In total, 104 species (1885 strains) of ELF were isolated from the five individual thalli of P. tinctorum collected at five different places. Most of the ELF isolates belong to Sordariomycetes. Because each part of lichen thallus (of different age) has unique ELF species, the whole thallus of the foliose lichen is needed to isolate diverse ELF. Moderate sterilization is appropriate for the isolation of diverse ELF. Inoculation of small fragment (1 mm2) of lichen thallus resulted in the isolation of highest diversity of ELF species compared to larger fragments (100 and 25 mm2). Moreover, ELF species isolated from the small thallus fragments covered all ELF taxa detected from the medium and the large fragments in this study. The use of two media—Bold’s basal medium (nutrient poor) and potato dextrose agar (nutrient rich)—supported the isolation of diverse ELF. Among the tested variables, size of thallus fragment more significantly influenced the isolation of diverse ELF than other three factors. Species composition and richness of ELF communities from different lichen thalli differed from each other in this study. Full article
(This article belongs to the Special Issue Application of Lichen-Forming Fungi for Industrial Use)
Show Figures

Figure 1

18 pages, 2138 KiB  
Article
Biodiscovery of Potential Antibacterial Diagnostic Metabolites from the Endolichenic Fungus Xylaria venustula Using LC–MS-Based Metabolomics
by Krystle Angelique A. Santiago, RuAngelie Edrada-Ebel, Thomas Edison E. dela Cruz, Yuen Lin Cheow and Adeline Su Yien Ting
Biology 2021, 10(3), 191; https://doi.org/10.3390/biology10030191 - 4 Mar 2021
Cited by 27 | Viewed by 5584
Abstract
Three species of the lichen Usnea (U. baileyi (Stirt.) Zahlbr., U. bismolliuscula Zahlbr. and U. pectinata Stirt.) and nine associated endolichenic fungi (ELF) were evaluated using a metabolomics approach. All investigated lichen crude extracts afforded antibacterial activity against Staphylococcus aureus (minimum inhibitory [...] Read more.
Three species of the lichen Usnea (U. baileyi (Stirt.) Zahlbr., U. bismolliuscula Zahlbr. and U. pectinata Stirt.) and nine associated endolichenic fungi (ELF) were evaluated using a metabolomics approach. All investigated lichen crude extracts afforded antibacterial activity against Staphylococcus aureus (minimum inhibitory concentration (MIC): 0.0625 mg/mL), but none was observed against Escherichia coli, while the ELF extract Xylaria venustula was found to be the most active against S. aureus (MIC: 2.5 mg/mL) and E. coli (MIC: 5 mg/mL). X. venustula was fractionated and tested for to determine its antibacterial activity. Fractions XvFr1 to 5 displayed bioactivities against both test bacteria. Selected crude extracts and fractions were subjected to metabolomics analyses using high-resolution LC–MS. Multivariate analyses showed the presence of five secondary metabolites unique to bioactive fractions XvFr1 to 3, which were identified as responsible for the antibacterial activity of X. venustula. The p-values of these metabolites were at the margin of significance level, with methyl xylariate C (P_60) being the most significant. However, their high variable importance of projection (VIP) scores (>5) suggest these metabolites are potential diagnostic metabolites for X. venustula for “dual” bioactivity against S. aureus and E. coli. The statistical models also showed the distinctiveness of metabolites produced by lichens and ELF, thus supporting our hypotheses of ELF functionality similar to plant endophytes. Full article
(This article belongs to the Section Microbiology)
Show Figures

Graphical abstract

19 pages, 3350 KiB  
Article
Diversity and Distribution Patterns of Endolichenic Fungi in Jeju Island, South Korea
by Seung-Yoon Oh, Ji Ho Yang, Jung-Jae Woo, Soon-Ok Oh and Jae-Seoun Hur
Sustainability 2020, 12(9), 3769; https://doi.org/10.3390/su12093769 - 6 May 2020
Cited by 29 | Viewed by 6077
Abstract
Lichens are symbiotic organisms containing diverse microorganisms. Endolichenic fungi (ELF) are one of the inhabitants living in lichen thalli, and have potential ecological and industrial applications due to their various secondary metabolites. As the function of endophytic fungi on the plant ecology and [...] Read more.
Lichens are symbiotic organisms containing diverse microorganisms. Endolichenic fungi (ELF) are one of the inhabitants living in lichen thalli, and have potential ecological and industrial applications due to their various secondary metabolites. As the function of endophytic fungi on the plant ecology and ecosystem sustainability, ELF may have an influence on the lichen diversity and the ecosystem, functioning similarly to the influence of endophytic fungi on plant ecology and ecosystem sustainability, which suggests the importance of understanding the diversity and community pattern of ELF. In this study, we investigated the diversity and the factors influencing the community structure of ELF in Jeju Island, South Korea by analyzing 619 fungal isolates from 79 lichen samples in Jeju Island. A total of 112 ELF species was identified and the most common species belonged to Xylariales in Sordariomycetes. The richness and community structure of ELF were significantly influenced by the host taxonomy, together with the photobiont types and environmental factors. Our results suggest that various lichen species in more diverse environments need to be analyzed to expand our knowledge of the diversity and ecology of ELF. Full article
(This article belongs to the Special Issue Fungal Diversity and Sustainability)
Show Figures

Figure 1

Back to TopTop