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Abstract: Lichens are some of the most unique fungi and are naturally encountered as symbiotic bio-
logical organisms that usually consist of fungal partners (mycobionts) and photosynthetic organisms
(green algae and cyanobacteria). Due to their distinctive growth environments, including hot deserts,
rocky coasts, Arctic tundra, toxic slag piles, etc., they produce a variety of biologically meaningful
and structurally novel secondary metabolites to resist external environmental stresses. The endofungi
that live in and coevolve with lichens can also generate abundant secondary metabolites with novel
structures, diverse skeletons, and intriguing bioactivities due to their mutualistic symbiosis with
hosts, and they have been considered as strategically significant medicinal microresources for the
discovery of pharmaceutical lead compounds in the medicinal industry. They are also of great impor-
tance in the fundamental research field of natural product chemistry. In this work, we conducted
a comprehensive review and systematic evaluation of the secondary metabolites of endolichenic
fungi regarding their origin, distribution, structural characteristics, and biological activity, as well
as recent advances in their medicinal applications, by summarizing research achievements since
2015. Moreover, the current research status and future research trends regarding their chemical
components are discussed and predicted. A systematic review covering the fundamental chemical
research advances and pharmaceutical potential of the secondary metabolites from endolichenic
fungi is urgently required to facilitate our better understanding, and this review could also serve
as a critical reference to provide valuable insights for the future research and promotion of natural
products from endolichenic fungi.

Keywords: lichens; endolichenic fungi; secondary metabolites; biological activity

1. Introduction

As one of the most critically important groups of unique fungi, lichens are broadly ac-
knowledged for their unique biological characteristics, lacking any obvious differentiation
of their roots, stems, and leaves. Lichens are naturally occurring, stable microorganisms,
and they are mutually beneficial organic complexes with a complex composition of fungal
and chlorophyll organisms [1,2]. Mutualistic symbiosis is the biologically distinctive char-
acteristic that allows lichens to be differentiated from other common plants [3]. Among
the symbiotic microorganisms existing in lichens, ascomycetes are the pivotal symbiotic
fungi that account for their fungi diversity. Basidiomycetes are also important members of
endolichenic microorganisms, and symbiotic partners are usually present as cyanobacteria
or green algae [4].

Lichens can survive in a variety of extreme living environments, such as during
nutrient shortages, under wet, cold, and dark conditions, in high temperatures. Notably,
they often grow on the surfaces of rocks or trees, without any typical nutrient requirements,
and they are widely distributed across almost all land surfaces on Earth, even when there
are no suitable loamy soils for the survival of other plants or animals. It is well known that
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lichens can be readily encountered in nature, ranging from the North and South Poles to
the equator, from mountains to plains, forests to deserts, and land to sea [5–9]. Due to their
complex environmental living conditions, they display an outstanding capacity to produce
numerous intriguing bioactive secondary metabolites to resist external habitat stresses [3].

Throughout the centuries-long use of traditional medicine to treat human health
conditions, lichens have been widely used in the pharmacopeias of different countries as
effective remedies for various diseases; thus, they have attracted attention from both phar-
maceutical and natural product chemists, who have investigated their bioactive chemical
compositions in recent decades [10,11]. The critical chemical constituents of lichens have
been consequently demonstrated, and they are usually exemplified by depsides and their
esters, depsidones, polysubstituted benzenes, anthraquinones, dibenzofurans, terpenoids,
and steroids, together with lichen polysaccharides [12]. These structurally diverse natural
products from lichens have been illustrated to show potent enzyme-inhibitory, antibacterial,
anti-fungal, anti-viral, anti-tumor, insecticidal, antioxidant, and other biological properties,
which closely correspond to their traditional medicinal applications and therapeutic effi-
cacy [4,13]. Notably, numerous excellent scientific efforts to elucidate the bioactive chemical
composition of lichens have disclosed that different species of lichens can produce various
types of bioactive natural compounds with different structural characteristics [14].

Fungi are well known as a promising strategic pharmaceutical bioresource for the
discovery of structurally intriguing and biologically significant medicinal lead compounds,
and they show great advantages with the pivotal characteristics of a short growth cycle,
easy fermentation, and readily operational cultivation. The number of natural products de-
rived from fungi and the proportion of active substances in all natural sources are sharply
increasing year by year, accompanied by technological innovations of natural product
chemistry towards compound separation and structure identification in recent decades.
Moreover, fungi play important roles in plants, terrestrial ecosystems, and other related
ecosystems. Fungi found in unique habitats have shown great potential in pharmaceutical
research and innovative drug development due to their unique metabolic and defense
systems under the influence of complex environmental factors, and the biologically mean-
ingful natural products derived from fungi material serve as an important source of drug
lead compounds in both the medicinal and medical industries.

As a plant group closely related to fungi, lichens are well known to be composed of a
variety of fungi, such as surface symbiosis fungi and endophytic fungi [15,16]. Endolichenic
fungi (ELF) are usually recognized as the fungi living inside healthy lichen tissues, and
they do not cause any directly or indirectly noticeable negative effects on the lichen thal-
lus [17]. Conventionally, lichens supply stable living environments and suitable nutrients
to meet the survival requirements of endolichenic fungi for normal growth. In turn, ELF
will produce abundant secondary metabolites for lichens to resist biotic stresses due to
extreme environments and accelerate their growth. ELF are similar to plant endophytic
fungi; they also show a potent ability to produce pharmacologically meaningful secondary
metabolites with novel structures and extensive biofunctions due to their unique living
environments. They are thus becoming a new research hotspot for the discovery of new
active compounds [17].

The first chemical research study on the secondary metabolite system of ELF can be
traced back to 2007 [18]. As a result, Paranagama successfully reported the isolation and
purification of two new heptaketides from ELF, and their cytotoxicity was also evaluated.
This excellent research effort was the first scientific report on the endophytic fungal metabo-
lites of lichens, and it marked the beginning of extensive chemical research in the field of
natural product chemistry using ELF. Since then, a growing number of pharmaceutical
and natural product chemists have carried out fundamental studies and innovative drug
developments on the metabolites of lichens and endophytic fungi. To date, thousands of sec-
ondary metabolites with different structural types, including alkaloids, steroids, xanthones,
benzopyranoids, peptides, and allycylic compounds, have been discovered from ELF [19].
Moreover, a huge number of these natural compounds from ELF have exhibited significant
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biological activity, such as antibacterial, antioxidant, cytotoxic, reversal resistance, and
enzyme inhibitory activities [20].

The chemical diversity and biological activity of the secondary metabolites of ELF
were comprehensively reviewed by Gao et al., covering the period up to 2015 [19]. Since
then, efforts towards the discovery and pharmacological investigation of the secondary
metabolites of ELF have rapidly increased. According to the literature statistics from
the database of Web of Science, there have been more than 90 articles on the chemistry
of the secondary metabolites of endolichenic fungi, and up to 34 species of endophytic
fungi in lichens have been studied since the first work on the secondary metabolites of
endolichenic fungi by Paranagama et al. In the previous reports on ELF, a total of 583 natural
products have been reported from endolichenic fungi. Among them, 370 compounds
are novel ones, including polyketides, polyphenyls, terpenoids, steroids, alkaloids, and
others. Notably, many more related studies have described new discoveries regarding
the secondary metabolites of ELF in other journals on natural product chemistry, thus
highlighting the relevance of ELF research.

The growing number of outstanding research works and rapid developments in the
field of bioactive natural products from ELF make them increasingly important in the
modern medicinal industry. Therefore, our present overview intends to provide relevant
scientific information covering the recent progress in the study of bioactive natural products
from ELF for readers from both the fundamental medicinal research and related industries.
Previous reviews of bioactive natural products from ELF have focused on their chemical
compositions and pharmacological effects, but they fail to provide an extensive discussion
and analysis of endolichenic fungi metabolites in terms of their research status and future
trends. In this review, the structural characteristics and composition types, biological activi-
ties, potential applications, strain distributions, and origins, as well as the research status
and future trends of the bioactive secondary metabolites from ELF are comprehensively
summarized, discussed, and analyzed, covering the period since 2015, in order to provide
a prospective view to address the increasing demand for ELF-related fundamental research
and drug innovation.

2. Different Types of Natural Products from Endolichenic Fungi

In recent years, chemical efforts devoted to the discovery of pharmacologically mean-
ingful secondary metabolites of ELF have emerged and seen massive growth. Since 2015, a
total of 519 natural products, excluding the repeatedly isolated ones, have been reported
from ELF. Among them, 266 are novel compounds, including polyketides, polyphenyls,
terpenoids, steroids, alkaloids, and others. According to a statistical analysis (Figure 1)
of the structural types of natural products and their numbers from ELF, it is found that
polyketides account for the largest proportion of structural types discovered from ELF
each year. Overall, polyketides are the most abundant members among the secondary
metabolites of ELF, followed by alkaloids, terpenes, steroids, and other types of natural
products. In addition, the total number of compounds discovered each year remained
stable, ranging from 40 to 80, with the exception of 2022.

2.1. Polyketides

Polyketide compounds account for the most critical family of secondary metabolites
of ELF. This intriguing result might be due to their specific biosynthetic gene clusters.
Polyketides are one of the most important groups of natural products, and they exhibit
a variety of biologically meaningful properties. There are a variety of natural products
belonging to polyketides, such as quinones, anthrones, chromogenones, isocoumarins,
and other small molecules. Since the first anthraquinones from endolichenic fungi were
reported by Paranagama et al. in 2007 [18], 419 members of the polyketide family have
been consequently reported so far, of which 258 natural polyketides have been reported
since 2015. In this review, the polyketides are further subdivided into simple aromatic
polyketides, complex aromatic polyketides, and non-aromatic polyketides. Their chem-
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ical structures and biological activities are also extensively summarized and discussed
as follows.
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Figure 1. The structural types and number of natural products reported annually in ELF.

2.1.1. Simple Aromatic Polyketides

Quinones are organic compounds characterized by a typical six-membered cyclic
diketone structure with two double bonds, which are formulated as a highly conjugated
scaffold. Among these quinone compounds, their chemical structure types can be divided
into benzoquinones, anthraquinones, perylene quinones, and quinone derivatives. Notably,
benzoquinones are the most abundant family, and they show fascinating structural diversity.
Quinones frequently occur in ELF and usually show potent biological activity. To date,
29 quinones (Figure 2) have been successfully discovered from ELF since 2015. In this part,
the structural characteristics and biological activities of the quinones reported since 2015
are summarized and discussed.

In 2016, endocrocin (1) was isolated from an EtOAc extract of the endolichenic fun-
gal strain Sporormiella irregularis 71-11-4-1 by Yang et al. [21]. In the same year, Zhou
et al. isolated 13 anthraquinone compounds from the endolichenic fungus Biatriospora sp.
8331C [22], and the new compounds biatriosporins G-L (2–7) were reported for the first time
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in nature. The other anthraquinones were identified as 6-O-demethyl-5-deoxyfusarubin (8),
pyranonaphthoquinone (9), 6-deoxy-7-O-demethyl-3,4-anhydrofusarubin (10), 6-deoxy-3,4-
anhydrofusarubin (11), ascomycone A (12), ZSU-H85 A (13), and 3-acetyl-2,8-dihydroxy-
6-methoxy anthraquinone (14). In 2017, Wang et al. reported two other anthraquinones,
which were 6-O-demethylbostrycin (15) and bostrycin (16) [23]. Notably, 16 exhibited
significant cytotoxicity against the L5178 murine lymphoma cell line with an IC50 value
of 1.7 µM.
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Moreover, thirteen benzoquinone derivatives (17–28) were isolated from the lichen
endophytic fungus Ulospora bilgramii 8344B in 2020 [24]. Among them, ulosporins A-G
(17–23b) were reported as new compounds for the first time. The other six benzoquinone
compounds, 2-acetonyl-3-methyl-5-hydroxy-7-methoxynaphthazarin (24), 6-deoxy-3,4-
anhydrofusarubin (25), ascomycone A (26), ascomycone B (27), and 6-deoxybostrycoidin
(28) were revealed as known compounds. A bioactivity assay test showed that ulosporin G
(23) significantly inhibited the growth of the human cancer cell lines A549, MCF-7, and KB
tumor cells, with IC50 values of 1.3, 1.3, and 3.0 µM, respectively. Furthermore, compound
23 caused apoptosis in A549 cells by arresting the G0/G1 cell cycle and inducing DNA
damage. In 2023, Varlı et al. isolated an anthraquinone, 1′-O-methyl-averantin (29), from
the endolichenic fungus Jackrogersella sp. EL001672 via the bioactivity-guided fractionation
method [25]. Similarly, compound 29 displayed weak antioxidant activity but significant
cytotoxicity against the CSC221, CaCo2, DLD1, and HCT116 cancer cell lines, with IC50
values ranging from 18.35 to 22.78 µg/mL. An anticancer mechanism study demonstrated
that compound 29 suppressed cancer stemness via Sonic hedgehog and Notch signaling.

Xanthones are also a very important type of natural product of ELF. A total of
54 xanthones have been reported from ELF, and 14 of them (Figure 3) were discovered after
2015. In the molecular structure of xanthones, a ketone group is located at the edge of
an anthracene ring. This unique structure gives xanthone unique chemical and physical
properties, as well as various types of biological activities, including antihypertensive,
anticonvulsive, antithrombotic, and antitumor activities. In the endolichenic fungal strain
Sporormiella irregularis No. 71-11-4-1, Yang et al. also obtained a new xanthone glycoside,
sporormielloside (30), and a known xanthone (31) in 2016 [21]. In 2017, six xanthone deriva-
tives, including the new 8-hydroxy-3-hydroxymethyl-9-oxo-9H-xanthene-1-carboxylic acid
methyl ethe (32) and the known xanthones 8-hydroxy-3-methyl-9-oxo-9H-xan-thene-1-
carboxylic acid methyl ether (33), norlichexanthone (34), anomalin A (35), anomalin B (36),
and sydowinin B (37) were reported by Zhou et al. [22].
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Padhi et al. reported the isolation and identification of three xanthones, funiculosone
(38), mangrovamide J (39), and ravenilin (40), from a crude extract of the endolichenic
fungus Talaromyces funiculosus in 2019 [26]. Among them, compound 38 was reported as an
undescribed substituted dihydroxanthene-1,9-dione that showed moderate antibacterial
activity, with MIC values ranging from 23 to 58 µg/mL towards E. coli and Staphylococcus
aureus. Moreover, 38 displayed significant inhibitory activity against Candida albicans, with
an MIC value of 35 µg/mL. The daldipyrones A–C (41–43) were identified from an en-
dolicanic fungus, Daldinia pyrenaica 047188, by Lee et al. in 2023 [27]. Notably, the structures
of daldipyrones A–C (41–43) were determined to share an unprecedented caged xanthone
[6,6,6,6,6] polyketide future with a spiro-azaphilone unit using a spectroscopic analysis
and chemical derivatization. Interestingly, the biological evaluation results illustrated that
daldipyrenone A (41) displayed conspicuous antimelanogenic activity with an EC50 value
lower than that of the positive control as well as moderate adiponectin-secretion-promoting
activity.

According to the structural characteristics of these simple aromatic polyketide com-
pounds, their possible biosynthetic pathways were proposed, as shown in Scheme 1 [21].
The simple aromatic polyketides from ELF were considered to be genenrated from a com-
mutual precusor, C16-octaketide. Firstly, C16-octaketide was catalyzed by non-reducing
polyketide synthase to undergo aldol condensation and cyclization to yield the inter-
mediate atrochryone carboxylic acid, which can be further oxidized and dehydrated to
generate endocrocin (1) or subjected to a series of chemical transformations involving de-
hydration/decarboxylation/spontaneous oxidation to offer the critical compound emodin.
Emodin can be transformed into intermediate a through the enzymatically catalyzed ox-
idative ring-opening reaction with a carbon reduction between C-4 and C-5. Moreover,
emodin can also be subsequently dehydrated to generate the intermediate b. Compound
31 is derived from intermediate b via methylation. Intermediate b can transform into
intermediate c though decarboxylation and oxidation reactions, whereas methylation and
glycosylation can attain compound 30 from intermediate c.
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In addition, chromones and isocoumarins are also widely observed and recognized
as very common secondary metabolites (Figure 4) in endolichenic fungi. Since 2015,
25 chromogenic ketones together with 22 isocoumarins have been reported. For example,
Kim et al. isolated two new chromones, phomalichenones C-D (44–45), and three known
chromone derivatives (46–48) from the endolichenic fungus Phoma sp. in 2018 [28]. In
2019, a phomalone derivative, (7-hydroxy-8-[2-hydroxyethyl]-5-methoxy-2-methylchro-
man-4-one (58), was isolated from the endolichenic fungus Cochliobolus kusanoi [29]. In the
same year, two other new chromone derivatives, ophiochromanone (49) and ophiolactone
(50), were isolated and identified from the EtOAc extract of Ophiosphaerella korrae by Li
et al. [30]. Furthermore, the chromones spororrminone A (51) and 2-epi-spororrminone A
(52) were also isolated as two new compounds from the crude extract of the endolichenic
fungus Sporormiella irregularis; they represent the first examples of 2-(5-oxotetrahydrofuran-
2-yl)chromone with a 7-carboxylic functional group [31]. However, neither of these two
new compounds showed obvious antimicrobial activity or cytotoxicity.
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In 2020, an investigation of the endolichenic fungus Daldinia eschscholzii successfully
led to the discovery of one known polyketide, 5-hydroxy-2-methylchroman-4-one(53) [32].
In 2021, Zhang et al. isolated two new chromone derivatives, (5R,7R)-5,7-dihydroxy-
2-methyl-5,6,7,8-tetrahydro-4H-chromen-4-one (54) and (5R,7R)-5,7-dihydroxy-2-propyl-
5,6,7,8-tetrahydro-4H-chromen-4-one (55), together with two known chromone compounds,
(5R,7S)-5,7-dihydroxy-2-methyl-5,6,7,8-tetrahydro-4H-chromen-4-one (56) and (5R,7S)-5,7-
dihydroxy-2-propyl-5,6,7,8-tetrahydro-4H-chromen-4-one (57), from the endolichenic fun-
gus Daldinia sp. CPCC 400770 [33]. Their bioactivity tests indicated that compounds 54 and
56 displayed obvious anti-influenza A virus (IAV) activity, with IC50 values of 16.1 and
9.0 mM, respectively.
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Zhou et al. obtained a series of ramulosin derivatives (Figure 5), including bia-
triosporin M (59), 5-hydroxymellein (60), 4-hydroxymellein (61), 3,4-dihydro-4,5,8-trihydroxy-
3-methylisocoumarin (62), and 5-hydroxyramulosin (63), from the endolichenic fungus
Biatriospora sp. 8331C in 2016 [22]. In 2017, six isocoumarins, decarboxycitrinone (64),
6,8-dihydroxy-4-hydroxymethyl-3,5-dimethyl-isochro-men-1-one (65), decarboxyhydrox-
ycitrinone (66), acremonone G (67), O-methylmellein (68), and trans-4-hydroxymellein
(69), were isolated by Wang et al. from the endolichenic fungus Apiospora montagnei [23].
Among them, compound 67 exhibited significant cytotoxicity against the L5178 murine
lymphoma cell line, with an IC50 value of 2.7 µM. The isocoumarins (3R,8S)-dihydroxy-
3-hydroxymethyl-6-methoxy-4,5-dimethylisochroman-1-one (70), ophioisocoumarin (71),
and (R)-3,4-dihydro-4,8-dihydroxy-6-methoxy-4,5-dimethyl-3-methyleneisochromen-1-one
(72) were also isolated from the endolichenic fungus O. korrae [30].
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Shevkar et al. obtained a new compound, peniazaphilin B (73), from the endolichenic
fungus Talaromyces pinophilu in 2022 [34]. In the same year, Yuan et al. isolated two
new 3,4-dihydroisocoumarin derivatives with a novel dihydrothiophene skeleton from
Talaromyces sp. and named them as talarolactone A (74) and talarolactone A (74a) [35]. More-
over, a plausible biosynthetic pathway for 74 has been proposed, as shown in Scheme 2.
The isocoumarin skeleton is speculated to be formed through the polyketide synthetase
(PKS) pathway, whereas the dihydrothiophene scaffold might be biosynthetically con-
structed by a cascade reaction of sulfhydrylation and cyclodehydration. In 2023, three new
isocoumarin analogues, aspermarolides A–C (75–77), coupled with two known related
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analogues, 8-methoxyldiaporthin (78) and diaporthin (79), were isolated from a culture
extract of Aspergillus flavus CPCC 400810 [36]. However, none of these showed notable
cytotoxic activity against the HepG2 and Hela cell lines.
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In addition to the aforementioned classical aromatic polyketide compounds, there are
many other related aromatic polyketides that have been revealed to exist in ELF (Figure 6).
For example, Samanthi et al. reported a new macrocyclic ketone, 5-methoxy-4,8,15-trimethyl-
3,7-dioxo-1,3,7,8,9,10,11,12,13,14,15,15α-dodecahydrocyclododeca[de]isochromene-15-carboxylic
acid (80), in an endolichenic fungus, Curvularia trifolii, in 2015 [37]. The bioactivity screening
of 80 was performed using a DPPH antioxidant assay, which thus showed that 80 exhibited
radical scavenging activity with an IC50 value of 1.3 ± 0.2 mg/mL. Moreover, 80 showed
significant anti-inflammatory activity comparable to that of the standard anti-inflammatory
drug aspirin. In 2016, Yuan et al. obtained two new polyketides, myxotritones B–C (81–82),
from the endolichenic fungus Myxotrichum sp., using the OMSAC (one strain, many com-
pounds) method [38]. Moreover, the glycine N-(2,3-dihydroxybenzoyl)-methyl (83) was
disclosed from an endolichenic fungus, Tolypocladium sp. 4259a, in 2017 by Hu et al. [39].

In 2018, Kim et al. isolated four new phomalone derivatives, phomalichenones A–B
(84–85), and four known compounds, (2,4-dihydroxy-3-(2-hydroxyethyl)-6-methoxyphenyl)-
3-hydro-xybutan-1-one (86), (E)-1-(2,4-dihydroxy-3-(2-hydroxyethyl)-6-methoxyphenyl)but-
2-en-1-one (87), phomalone (88), and deoxyphomalone (89), from the endolichenic fungus
Phoma sp. [28] The cytotoxic and anti-inflammatory activities of all the compounds were de-
termined, and it was found that compounds 84 and 87 showed significant anti-inflammatory
activity, with IC50 values of 9.4 ± 0.5 and 7.4 ± 2.8 µM, respectively. Moreover, the au-
thors speculated that the presence of a double bond on the side chain in these phomalone
derivatives may be essential for their inhibitory effect against NO production.



J. Fungi 2024, 10, 99 11 of 49J. Fungi 2024, 10, x FOR PEER REVIEW 11 of 49 
 

 

 
Figure 6. Chemical structures of polyketides 80–122 from ELF. 

In 2019, two known compounds, (R)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-
3,4-dime-thylisobenzofuran-1(3H)-one (90) and clearanol E (91), were isolated from the 
EtOAc extract of O. korrae by Li et al. [30]. In the same year, Yang et al. reported two 

Figure 6. Chemical structures of polyketides 80–122 from ELF.



J. Fungi 2024, 10, 99 12 of 49

In 2019, two known compounds, (R)-7-hydroxy-3-((S)-1-hydroxyethyl)-5-methoxy-3,4-
dime-thylisobenzofuran-1(3H)-one (90) and clearanol E (91), were isolated from the EtOAc
extract of O. korrae by Li et al. [30]. In the same year, Yang et al. reported two phomalone
derivatives, 1-(2,4-dihydroxy-3-[2-hydroxyethyl]-6-methoxyphenyl)butan-1-one (92) and
1-(2,4-dihydroxy-3-[2-hydroxyethyl]-6-methoxyphenyl)-3-hydroxybutan-1-one (93), which
were isolated from the endolichenic fungus Cochliobolus kusanoi [29]. Compound 92 was a
new compound, but it was easily shown that compounds 92–93 and 58 can be converted
into one another under suitable reaction conditions. For example, 92 is hydroxylated at the
C-3 position through a Michael addition reaction with a molecule of water to contribute
to compound 93. Similarly, compound 58 might also be formed by the dehydration of the
hydroxyl groups of 93 between the C-3 and C-2′ enablers.

In 2020, Padhi et al. isolated a new 6-benzyl-c-pyrone, aspergyllone (94), and a
known 6-benzyl-c-pyrone, carbonarone A (95), from the secondary metabolites of the
endolichenic fungus Aspergillus niger [40]. The bioactive tests suggested that 94 displayed
strong antimicrobial activity, with IC50 values ranging from 35 to 97 µg/mL. Interestingly,
94 showed strong selective antifungal activity against Candida parapsilosis (Ashford), with
an IC50 value of 52 µg/mL. In the same year, a chemical investigation of the endolichenic
fungus D. eschscholzii led to the discovery of one known polyketide, 8-methoxynaphthalen-
1-ol (96) [32]. Compound 96 showed strong radical scavenging ability in a DPPH assay,
with an IC50 value of 10.2 ± 5.8 µg/mL, which was much higher than that of the standard
drug butylated hydroxy toluene (BHT). Another excellent investigation of the T-DNA
insertion transformant (strain TR-74) of X. grammica KCTC 13121BP led to the discovery
of a novel benzoquinone, 2-(hydroxymethyl)cyclohexa-2,5-diene-1,4-dione (112), and its
derivative, 2,5-dihydroxybenzaldehyde (113) [41].

In 2021, Zhang et al. isolated three new phenolic compounds, daldispols A-C (97–99),
and five known phenolic compounds, 2-phenylethyl-β-D-glucopyranoside (100), stachyline
C (101), 3-methoxy-4-hydroxy-phenylethanol (102), 3-hydroxy-4-methoxy-phenylethanol
(103), and p-hydroxyphenethyl alcohol (104), from the endolichenic fungus Daldinia sp.
CPCC 400770 [33]. Their bioactivity experiments indicated that compounds 97, 98, and
100 displayed obvious anti-influenza A virus (IAV) activity, with IC50 values of 12.7, 6.4,
and 12.5 µM, respectively. Moreover, compound 104 exhibited anti-ZIKV activity, with
an inhibitory ratio of 42.7% at 10 µM. In the same year, the chemical investigation of an
endolichenic Aspergillus chevalieri led to the discovery of seven C7-alkylated salicylaldehyde
derivatives, asperglaucins A-B (105–106), tetrahydroauroglaucin (107), flavoglaucin (108),
2-(1′,5′-heptadienyl)-3,6-dihydroxy-5-(3′′-methyl-2′′-butenyl)benzaldehyde (109), isodihy-
droauroglaucin (110), and 2-(E-3-heptenyl)-3,6-dihydroxy-5-(3-methyl-2-butenyl)-benzalde-
hyde (111) [42]. It should be noted that asperglaucins A–B (105–106) were new compounds
reported in nature for the first time, and they displayed significant antibacterial activity
against Pseudomonas syringae pv actinidae (Psa) and Bacillus cereus, with an MIC value of
6.25 µM. The antibacterial mechanism study revealed that 105–106 played an antibacterial
role by changing the external structures of B. cereus and Psa, which thus caused the rup-
ture or deformation of the cell membrane to kill bacterial cells. Furthermore, phenolics
107–109 were shown to display obvious antioxidative effects.

In 2023, Gamage et al. found that the strain Arthrinium sp. EL000127 could produce
phthalide derivatives, such as the known compound 3-O-methylcyclopolic acid (114) and
two new analogues, 3-O-phenylethylcyclopolic acid (115) and 3-O-p-hydroxyphenylethylcy-
clopolic acid (116) [43]. The compounds 114–116 exhibited very weak cytotoxicity against
HUVECs, with IC50 values of 215.6, 43.8, and 1.8 mM, respectively. Moreover, compound
116 exhibited antiangiogenic activity by inhibiting the mRNA expression of genes to
regulate epithelial cell survival and motility, suggesting that compound 116 is a potent
antiangiogenic agent with promising potential as a lead compound for the development of
novel cancer therapeutic agents.

In the same year, a novel compound, neurosporalol L (117), was obtained from the
endolichenic fungus Neurospora ugadawe, which was isolated from the lichen host Graphis
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tsunodae Zahlbr [44]. The active results showed that 117 displayed obvious antioxidant
activity. Notably, the antioxidant activity of 117 was stronger than that of the positive
control BHT, and its IC50 value was low: 3.48 ± 0.33 µg/mL. In 2022, the compound 4,6-
dihydroxy-5-methylphthalide (118) was isolated from the endolichenic fungus Talaromyces
sp., associated with Xanthoparmelia angustiphylla, by Yuan et al. [35]. Kim et al. developed
an efficient methodology using a feature-based MS/MS molecular networking analysis
to discover the novel secondary metabolites from the reported endolichenic fungus, and
this successfully resulted in the isolation of four compounds, 1,8-dimethoxy naphthalene
(119), 8-methoxy-1-naphthol (120), 1-(2,6-dihydroxyphenyl)butan-1-one (121), and 2,6-
dihydroxya-cetophenone (122), from Daldinia childae in 2023 [45].

2.1.2. Simple Nonaromatic Polyketides

Generally, nonaromatic polyketides are recognized as polyketides without unam-
biguous aromatic ring systems or aromatic substituents. As summarized in the review,
the nonaromatic polyketides isolated from endolichenic fungi since 2015 include fura-
nones, cyclopentanones (Figure 7), pyranones (Figure 8), cyclohexanones, and heptenones
(Figure 9). For example, Wijeratne isolated four new spirodecane compounds, oxaspirols
A–D (123–126), from the endolichenic fungus Parmotrema tinctorum in 2016, which con-
tained an intriguing furanone fragment with the formation of a spiro skeleton [46]. The
furanone spirodecane oxaspirol B (124) exhibited inhibitory effects on p97 mutants and
other ATP-related enzymes. In 2017, Kim et al. [47]. obtained two new furanones, gram-
micin (127) and patuli (128), from the endolichenic fungus Xylaria grammica. Compound
127 showed strong second-stage juvenile killing and egg-hatching-inhibitory effects, while
128 was strongly active towards various phytopathogenic bacteria in vitro.

In 2018, Ma et al. reported the isolation of six new 2-hydroxy-2-(1-hydroxyethyl)-
2,3-dihydro-3(2H)-furanones, actinofuranones D–I (129–134), together with three known
compounds, JBIR-108 (135), E-975 (136), and E-492 (137), from the endolichenic fungus
Streptomyces gramineus [48]. Their anti-inflammatory activity tests proved that compounds
132, 133, 136, and 137 could reduce NO production in a dose-dependent manner at vary-
ing concentrations of 15, 30, and 60 µM. In addition, compounds 132, 133, 136, and 137
inhibited the LPS-induced release of proinflammatory cytokines interleukin-6 (IL-6) and
tumor necrosis factor-α (TNF-α). Moreover, two new isobenzofuran-1(3H)-one derivatives,
hypoxyolide A (138) and hypoxyolide B (139), were isolated from the endolichenic fungus
Hypoxylon fuscum by Basnet et al. in 2019 [49], and hypoxyolide A (138) and hypoxyolide
B (139) were firstly reported as new compounds. Interestingly, compound 138 showed
moderate cytotoxic activity against the K562, SW480, and HEPG2 cell lines, with IC50
values ranging from 12.0 to 32.7 µM.

In 2015, Li et al. reported the isolation of two cyclopentenones, ophiosphaerekorrins
A–B (140–141), from the crude extract of the endolichenic fungus O. korrae. Structurally,
compounds 140–141 represented a naturally unprecedented chemical scaffold with a fas-
cinating oxaspiro[4.4]nonenone substructure [50]. There were also five novel polyketides
containing furanone fragments named javanicols A–E (142–146), together with two known
compounds, (+)-terrein (147) and (−)-isoterrein (148), which were isolated from the fer-
mentation broth of Eupenicillium javanicum in 2020 [51]. Further anti-inflammatory activity
screening showed that javanicol E 146 and (+)-terrein 147 displayed moderate inhibitory
effects on NO production, with IC50 values of 17.00 and 13.46 µM, respectively. In the
same year, two closely related enantiomers with a novel 5/6-5 spiro skeleton from the
endolichenic fungus U. bilgramii were discovered by Luan et al. and named (R)-ulodione A
(149a) and (S)-ulodione A (149b) [52]. Their bioactivity evaluation demonstrated that these
two compounds exhibited evident butyrylcholinesterase (BuChE)-inhibitory activity, with
IC50 values of 9.0 ± 0.1 and 9.3 ± 0.2 µM, respectively.

In 2015, Zhao et al. isolated four new α-pyrone derivatives, nodulisporipyrones A–D
(150–153), from an extract of Nodulisporium sp. [53]. In the same year, 11 α-pyrone deriva-
tives, necpyrones A–E (154–159), PC-2 (160), (6S,10S)-LL-P880a (161), (6S,10S,20R)-LL-
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P880b (162), (1S,2R)-1-hydroxy-1-((S)-4-methoxy-6-oxo-3,6-dihydro-2H-pyran-2-yl)-pentan-
2-yl acetate (163), and (S)-4-methoxy-6-pentanoyl-5,6-dihydro-2H-pyran-2-one (164), were
obtained from the extract of the endolichenic fungus Nectria sp. by Li et al. [54]. Moreover,
three similar α-pyrone derivatives named tolypocladones A–B (165–166) and 2H-pyran-2-
one,4-methoxy-6-(1,3-pentadienyl) (167) were also discovered from the endolichenic fungus
Tolypocladium sp. in 2017, as reported by Hu et al. [39]. Among them, compounds 165–166
were firstly reported as new α-pyrone derivatives.
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Kim et al. discovered two naturally occurring novel α-pyrones, dothideopyrones
E–F (168–169), from a culture of the endolichenic fungus Dothideomycetes sp. EL003334 in
2018 [55], and dothideopyrone F (169) had a considerable anti-inflammatory effect, with
an IC50 value of 15.0 ± 2.8 µM, by inhibiting the expression of the iNOS and COX-2 pro-
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teins. Moreover, the first total syntheses of 168 and 169 were achieved by Aursnes et al.
in 2022 [56]. In the same year, two new δ-lactones, talaromycin A (170) and clearanol A
(171), were isolated from Talaromyces sp. [57]. Both of these compounds exhibited selective
cytotoxicity against MDA-MB-231, with IC50 values of 24.6 ± 1.3 and 19.1 ± 1.2 µg/mL,
respectively. Five naturally occurring α-pyrones, including the two new compounds, 5-
epi-citreoviridin (172) and 5-epi-isocitreoviridin (173), together with three known α-pyrone
derivatives, citreoviridin (174), isocitreoviridin (175), and aur-overtin U (176), were isolated
from the fermentation broth of E. javanicum in 2020 [51]. In 2019, two new polyketides shar-
ing an unusual furopyran-3,4-dione-fused heterocyclic skeleton and named ophiofuranones
A–B (177–178) were isolated from the EtOAc extract of O. korrae by Li et al. [30].
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In 2017, Yuan et al. reported the isolation and identification of five new polyketide–
terpene hybrid metabolites (179–183) with highly functionalized groups, together with six
known derivatives (184–189), from the endolichenic fungus Pestalotiopsis sp. [58]. After
biological tests, compounds 179 and 183 were evidenced to exhibit pronounced antibacterial
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effects against Fusarium oxysporum, with an MIC value of 8 µg/mL. The biosynthetic
pathway of compounds 179–189 was chemically postulated for the first time, which might
pave the way for further biosynthesis research [58]. New polyketides, myxotritone C
(190) and 7,8-dihydro-7R,8S-dihydroxy-3,7-dimethyl-2-benzopyran-6-one (191), were also
isolated from the endolichenic fungus Myxotrichum sp. in 2016 by Yuan et al. [38], but
neither of them showed any notable bioactivity.

Li et al. isolated and identified nine polyketide-derived compounds from the crude
extract of O. korrae and assigned them with the trivial names of ophiosphaerellins A–I
textls[-25](192–200), this lichen endophytic fungus was isolated from Physcia sp. [50].
Ophiosphaerellins A–I (192–200) shared a novel type of unprecedented scaffold with
a bicyclo[4.1.0]heptenone backbone. In addition, the stereochemistry of C-1 in the bicy-
clo[4.1.0]heptenone ring system of ophiosphaerellins A-I (192–200) had been innovatively
determined by considering the CEs at 210–240 nm as referring to π → π* transitions.
Moreover, ophiosphaerellin C (194) exhibited obvious anti-ACH activity, with minimum
inhibitory quantities of 1.25 µg/mL, which was weaker than that of galantamine (the
positive control, 0.006 µg/mL).

Two polyketene compounds bearing a 10-member lactone micro-ring skeleton, named
phomol (201) and 5,6-epoxy-phomol (202), were separated from the endolichenic fungus
H. fuscum by Basnet et al. in 2019 [49]. Both compounds showed moderate cytotoxic
activity against the K562, SW480, and HEPG2 cell lines, with IC50 values ranging from
12.0 to 32.7 µM. Moreover, phomol (201) displayed weak antibacterial activity against
S. aureus, with an MIC value of 51.2 µM. In 2015, Samanthi et al. discovered a new
microlide polyketide, 1,14-dihydroxy-6-methyl-6,7,8,9,10,10α,14,14α-octahydro-1H-benzo
[f]oxacyclododecin-4(13H)-one (203), from the endolichenic fungus C. trifolii [37], and the
biological evaluation of compound 203 found that it showed obvious radical scavenging
activity, with an IC50 value of 4.0 ± 2.6 mg/mL, and exhibited a >90% inhibitory effect at
5 µg/mL towards the following five cancer cell lines: NCI-H460, MCF-7, SF-268, PC-3M,
and MIA Pa Ca-2.

In 2018, two new macrolides, myxotrilactone A (204) and cladospolide B (205), were
isolated from the extract of a solid-substrate culture of the endolichenic fungus Myxotrichum
sp. by Yuan et al. [59]. Compound 204 displayed potent inhibitory activity on the root
elongation of Arabidopsis thaliana, with more than a 75% inhibition rate at a concentration
of 32 µg/mL. Similarly, compound 205 also displayed excellent inhibitory activity on the
root elongation of A. thaliana, with a 69% inhibition rate at a concentration of 32 µg/mL.
The aforementioned informative results collectively indicated that the endolichenic fungus
Myxotrichum sp. might contribute to the defense capability of host lichens by producing
phytotoxic secondary metabolites, which might also serve as ecologically beneficial and
environmentally friendly mycoherbicides. Madyranga et al. also reported the isolation of a
novel microlide compound, neurosporalol 206, from the endolichenic fungus N. ugadawe in
2021, which was isolated from the lichen host G. tsunodae [44]. Neurosporalol 206 showed
antioxidant activity, with an IC50 value of 5.03 ± 0.15 µg/mL, comparable to that of the
positive control, BHT.

2.1.3. Complex Aromatic Polyketides

Complex aromatic polyketides are usually constructed from two or more aromatic
polyketide fragments. These types of natural products from endolichenic fungi are ex-
emplified by naphthol polymers, xanthone dimers, perylenequinonoids, and spiciferone-
derived dimers. Among them, naphthol polymers account for the largest proportion
of the complex aromatic polyketides from endolichenic fungi, and the spirodioxynaph-
thalenes are well recognized as the typical structural types. The spirodioxynaphthalenes
contain two 1,8-dihydroxynaphthalene-derived units with the formation of an interest-
ing 6/6-6-6/6 spiroketal ring skeleton bridging through a typical spiroketal linkage, and
most of them have been revealed to display a variety of biologically significant proper-
ties [60]. The main types of dinaphthalene compounds reported so far include spirodi-
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oxynaphthalenes with two oxygen bridges, dioxynaphthalenes with one oxygen bridge,
spiromonoxynaphthalenes with a furan-sipro skeleton through one oxygen bridge and one
C-C bridge, and fusodioxynaphthalenes with a new fuso-nonadiene skeleton.

Since 2015, 19 dimeric naphthalenes (Figure 10) have been discovered in endolichenic
fungi. Among them, the main types include spirodioxynaphthalenes, dioxynaphthalenes,
spiromonoxynaphthalenes, and fusodioxynaphthalenes. For example, Xie et al. reported
four spirodioxynaphthalenes, palmarumycins P1–P4 (207–210), and three dioxynaph-
thalenes, juglanones C–E (211–213), from the endolichenic fungus Phialocephala fortinii
for the first time in 2016 [61]. Among them, palmarumycin P3 (209) showed significant
antifungal activity to reverse drug resistance, as well as weak cytotoxic activity against
EC109 cells, with an IC50 value of 24.5 µM.
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In 2019, three novel, uncommon types of spiromonoxynaphthalenes were observed
to link the two naphthalene units together by one oxygen bridge (C4′-O-C4) and one C-C
bridge (C4′–C6), and were named sacrosomycins A–C (214–216), which were obtained from
the endolichenic fungus CGMCC3.15192 [62]. Besides these three novel spiromonoxynaph-
thalenes, there were three other known spiromonoxynaphthalene analogues, named urnu-
cratin C (217), plecmillin A (218), and plecmillin C (219), which were also obtained from this
endolichenic fungus. The anticancer effect tests showed that plecmillin A (218) exhibited
the strongest cytotoxicity against HCT116, with an IC50 value of 2.1 µM. In 2022, Song et al.
identified five undescribed perylenequinone fusodioxynaphthalenes, phialoce-phalarins
H–L (220–224), together with two known fusodioxynaphthalenes, phialoce-phalarins A–B
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(225–226), from the endolichenic fungus P. fortinii [63]. Compounds 220, 221, and 225
showed weak cytotoxic activity against EC109 cells, with IC50 values ranging from 24.5 to
33.3 µM.

In addition, aromatic naphthalene dimers, trimers, and tetramers (Figure 11) have
been found in the secondary metabolites of endolichenic fungi. Kim et al. obtained
fourteen daldinol polyketides, including naphthol dimers, trimers, and tetramers, from
Daldinia childae 047,219 by using a feature-based MS/MS molecular networking analysis
in 2023 [45]. These aromatic polynaphthalenes mainly include six previously unreported
naphthol tetramers: 1,1′,3′,3′′,1′′,1′′′-quaternaphthalene-5,5′,5′′,5′′′-tetramethoxy-4,4′,4′′4′′′-
tetraol (227), 1,1′,3′,1′′,3′′,3′′′-quaternaphthalene-5,5′,5′′,5′′′-tetramethoxy-4,4′,4′′4′′′-tetraol
(228), 3,3′,1′,1′′,3′′,3′′′-quaternaphthalene-5,5′,5′′,5′′′-tetramethoxy-4,4′,4′′4′′′-tetraol (229),
1,1′,3′,3′′,1′′,3′′′-quaternaphthalene-5,5′,5′′,5′′′-tetramethoxy-4,4′,4′′4′′′-tetraol (230), 3,1′,3′,
1′′,3′′,3′′′-quaternaphthalene-5,5′,5′′,5′′′-tetramethoxy-4,4′,4′′4′′′-tetraol (231), and 3,1′,3′,3′′,
1′′,3′′′-quaternaphthalene-5,5′,5′′,5′′′-tetramethoxy-4,4′,4′′4′′′-tetraol (232), and 8 known
polyketides, daldinol (233), nodulisporin E (234), nodulisporin A (235), nodulisporin B (236),
1,1′,3′,3′′-ternaphthalene-5,5′,5′′-trimethoxy-4,4′,4′′-triol (237), 3,1′,3′,3′′-ternaphthalene-
5,5′,5′′-trimethoxy-4,4′,4′′-triol (238), 1,1′,3′,1′′-ternaphthalene-5,5′,5′′-trimethoxy-4,4′,4′′-
triol (239), and 3,1′,3′,1′′-ternaphthalene-5,5′,5′′-trimethoxy-4,4′,4′′-triol (240). These new
naphthol tetramers are composed of four 5-methoxy-4-naphthol units, each connected to
one another through a C-C single bond in various positions. Notably, compounds 235–237
demonstrated obvious anti-inflammatory activity.
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In addition, 18 other complex aromatic polyketides (Figure 12) have been reported
since 2015, and they include three xanthone dimers, six perylenequinonoids, and eight
spiciferone-derived dimers. In 2019, Padhi et al. isolated four known secondary metabolites
and identified them as aurasperone A (241), aurasperone D (242), asperpyrone A (243),
and fonsecinone A (244), which were obtained from the culture of the endolichenic fungus
Aspergillus niger [40]. In the same year, five perylenequinones identified as hypocrellin
A (245), elsinochromes A–C (246–248), and phaeosphaerin C (249) were also isolated
from the EtOAc extract of endolichenic fungus O. korrae by Li et al. [30]. The complex
aromatic polyketide ES-242-3 (250) was also discovered from the endolichenic fungus
Talaromyces pinophilus in 2022 by Shevkar et al. [34], and compound 250 showed strong
antitumor activity on the MCF-7 and HeLa cell lines, with IC50 values of 14.08 ± 0.2 and
4.46 ± 0.05 µM, respectively.
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In 2023, six spiciferone-derived dimers with an unprecedented skeleton, named
phaeosphaerones A–F (251–256), were reported and isolated from the endolichenic fungus
Phaeosphaeria sp. [64], and most of them were composed of a novel 4H-chromene-4,7(8H)-
dione scaffold and an α-pyrone unit, forming fascinating dimeric compounds. Among
them, compounds 251 and 253–256 possessed unconventional carbon skeletons featuring
an ethylidene bridge, whereas compound 252 was a structurally interesting homodimer of
spiciferone, which might be furnished by an unusual Rauhut–Currier reaction. Moreover,
compounds 251–253 showed significant inhibitory effects towards the growth of dicot
Arabidopsis thaliana at 100 µM. In addition, two biosynthetically related known secondary
metabolites, lecanicillone A (257) and lecanicillolide (258), were also reported, and both
showed very strong inhibitory effects on the fresh weight and root elongation of Arabidopsis
thaliana, with IC50 values of 32.04 and 26.78 µM, respectively.

2.2. Polyphenyls

Polyphenyl derivatives are also commonly encountered in the secondary metabolites
of endolichenic fungi, and most of them are terphenyls. Terphenyls are aromatic hydrocar-
bons consisting of one phenol core and two benzyl substituents. The terphenyl derivatives
include p-terphenyls, m-terphenyls, and o-terphenyls, all of which usually show a wide
range of biological activities. Among them, p-terphenyl derivatives are the most common
natural terphenyls, in which two terminal benzene rings connect to the phenol mother ring
at the p-position.

In recent years, more and more p-terphenyls have been found from endolichenic fungi
(Figure 13). For example, Li et al. isolated ten new p-terphenyl derivatives, floricolins A–J
(259–268), together with six known compounds, betulinan C (269), BTH-II0204-207 A (270),
betulinan A (271), terphenyl 2 (272), 2-phenyl-[1H-2-benzopyran][4,3-e][p]-benzoquinone
(273), and betulinan B (274), from the extract of the endolichenic fungus Floricola striata
in 2016 [65]. Their biological activity assays showed that floricolins A–C (259–261) dis-
played moderate antifungal activity against Candida albicans, with MICs of 16, 8, and
8 µg/mL, respectively. Further antifungal mechanistic investigations revealed that the
most active compound, compound 261, exerted fungicidal action through the destruction
of the cell membrane.

In 2018, Xu et al. disclosed the isolation and purification of eleven new p-terphenyls,
floricolins K–U (275–285), and six biosynthetically related known terphenyl compounds
(286–291) from the endolichenic fungus F. striata: kehokorin D (286), 3,5-diarylbenzoquinone
(287), 2,4-dimethoxy-3,6-di(p-methoxyphenyl)phenol (288), 2′,3′,5′-trimethoxy-p-terphenyl
(289), pentamethoxy-p-terphenyl (290), and terphenyl 3 (291) [66]. The cytotoxic activity
results showed that compounds 279 and 280 exhibited significant cytotoxic activity against
the A2780 cell line, with IC50 values of 3.4 and 8.6 µM, respectively. In the same year,
two biphenyl compounds, 6′-methyl-[1,1′-biphenyl]-3,3′,4′,5-tetraol (292) and desmethylal-
tenusin (293), were isolated from Talaromyces sp. [57], and these two phenolic compounds
displayed significant antioxidant activity, with an IC50 value equivalent to that of ascorbic
acid. Two years later, Xie et al. isolated a diphenyl compound, ulophenol (294), from the
endolichenic fungus U. bilgramii [24].

The biosynthetic pathway of terphenyl compounds originates from L-tyrosine, which
undergoes an enzymatic amino transformation reaction to provide 4-hydroxylpheylpyruvic
acid. The biosynthetic pathway of terphenylquinone is related to the critical precursor
4-hydroxyphenylpyruvic acid through the Claisen-type condensation reaction, and this
conclusion was experimentally confirmed by 13C and 14C isotope labeling experiments.
The biosynthesis of atromentin further demonstrated that the L-tyrosine was deaminated
to 4-hydroxyphenylpyruvic acid by the PLP-dependent transaminase AtrD, which can
transform the amino group into 2-oxoglutaric acid (2-OG). The further Claisen-type con-
densation of two molecules of 4-hydroxyphenylpyruvic acid to atromentin was catalyzed
by the quinone synthetase AtrA (Scheme 3) [67,68].
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2.3. Terpenoids

Terpenoids are a series of structurally specific polymers constructed by isoprene units
with different amounts and their structurally modified derivatives; their general formula
can be theoretically considered as (C5H8)n. Terpenoids are broadly distributed in various
plants, and they can also be frequently found in the secondary metabolites of microorgan-
isms. Terpenoids are also commonly discovered in lichens’ endophytic fungi as one of their
most major bioactive chemical constituents, and they show outstanding structural diversity,
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mainly composed of sesquiterpenoids, diterpenoids, and triterpenoids. The terpenoids
isolated from lichens’ endophytic fungi usually exhibit a wide range of pharmaceutically
significant bioactivities, with especially potent cytotoxic and antibacterial activity. More-
over, the terpenoids from endolichenic fungi can be further combined with sugar molecules
to exist as glycosides. In this review, a total of 42 terpenoids obtained from endolichenic
fungi since 2015 were collected and summarized, including 17 sesquiterpenes, 13 diterpenes
(Figure 14), and 12 triterpenes together with three diterpene glycosides (Figure 15).
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In 2015, Wu et al. [69] reported the isolation of a new cadinane-type sesquiterpene with
the name of pericoterpenoid A (295) from the endolichenic fungal strain Periconia sp. No.
19-4-2-1. Compound 295 showed moderate antimicrobial activity against A. niger and weak
activity against C. albicans. A new brasilane-type sesquiterpenoid glycoside named hypoxy-
side A (296) was also disclosed as a critical secondary metabolite in another endolichenic
fungus in 2019 by Basnet et al. [49], and it showed obvious cytotoxic activity against K562,
with an IC50 value of 18.7 µM. The sesquiterpene rel-(1S,4S,5R,7R,10R)-10-desmethyl-1-
methyl-11-eudesmene (297) was also isolated from the endolichenic fungus Daldinia childiae
for the first time as a new compound by Zhou et al. in 2020 [70] and exhibited notable
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α-amylase inhibitory activity. The sesquiterpenoid ophiokorrin (298) was first isolated and
identified from the EtOAc extract of O. korrae by Li et al. in 2019 [30], and further phytotoxic-
ity studies showed that ophiokorrin (298) could inhibit root elongation during germination,
with an IC50 value of 18.06 µg/mL. In 2021, three novel sesquiterpenoids, sterpurol D (299),
sterpurol E (300), and cryptomaraone (301), along with four known compounds, sterpurol
A (302), sterpurol B (303), paneolilludinic acid (304), and murolane-2α,9β-diol-3-ene (305),
were isolated from the lichen endophyte Cryptomarasmius aucubae [71]. Notably, compounds
299, 300, and 302–304 presented remarkable anti-inflammatory activity, with IC50 values
ranging from 9.06 to 14.81 µM.

J. Fungi 2024, 10, x FOR PEER REVIEW 25 of 49 
 

 

 
Figure 15. Chemical structures of terpenoids 325–336 from ELF. 

In 2022, Varlı et al. isolated three known diterpenoids, radianspenes C–D (321–322), 
and dahliane D (323), from the crude extract of Nemania sp. EL006872 ELF [75], and the 
three diterpenoids showed promising potential for innovative drug development for im-
mune- and immuno-tumor therapies. Moreover, a previous pharmacological study re-
vealed that radianspene C (321) had a significant cytotoxic effect on MDA-MB-435, with 
an IC50 value of 0.91 µM [76]. In 2023, Libertellenone T (324) was isolated also as a novel 
diterpenoid from the endolichenic fungus Pseudoplectania sp. (EL000327), and it exerted 
strong cytotoxicity towards the human CRC cell lines of Caco2, HCT116, DLD1, and HT29, 
with IC50 values of 17.5, 28, 36.6, and 28 µg/mL, respectively [77]. The investigation into 
its pharmacological mechanism confirmed that 324 could cause G2/M phase arrest and 
ROS/JNK signaling activation to induce the apoptosis of Caco2 cells. Moreover, 324 exhib-
ited perfect synergistic effects in combination with various known and novel anticancer 
clinical agents. 

In 2015, Li et al. isolated the tetracyclic triterpene helvolic acid (325) from the extract 
of endolichenic fungus Nectria sp. [54]. Moreover, six novel sesterterpenoids, asper-
unguisins A–F (326–331), and one closely related sesterterpenoid analogue, aspergilloxide 
(332), were isolated from the endolichenic fungus Aspergillus unguis (20141257a) in 2019 
[78]. It should be noted that asperunguisins A–F (326–331) all featured a unique hydrox-
ylated 7/6/6/5 tetracyclic system, and they are rarely occurring asperane-type sesterterpe-
noids. Biological assay tests showed that these sesterterpenoids displayed obvious cyto-
toxic activity. Among them, asperunguisin C (330) showed significant inhibitory activity 
towards A549, with an IC50 value of 6.2 µM. Further comprehensive studies of the relevant 
pharmacological mechanisms showed that 328 could cause DNA damage and induce 
G0/G1 phase arrest in tumor cells, thus leading to cancer cell apoptosis. In 2019, the chem-
ical composition investigation of the endolichenic fungus M. inundatum also contributed 
to four new arborinane-type triterpenes and their related glycosides [74], including 

Figure 15. Chemical structures of terpenoids 325–336 from ELF.

Xylaria hypoxylon is a lichen-associated fungus that was also found to have an outstand-
ing capacity to produce novel secondary metabolites, and there were seven new bioactive
eremophilane sesquiterpenes, eremoxylarins D–J (306–312), isolated from this fungus in
2023 [72]. The antimicrobial activity of eremoxylarins D–J (306–312) was evaluated, and the
biological results showed that eremoxylarins D (306), F (308), G (309), and I (311) exhibited
potent antibacterial activity against a series of Gram-positive bacteria (S. aureus, methicillin-
resistant S. aureus (MRSA), and S. epidermidis), showing minimum inhibitory concentration
(MIC) values ranging from 0.39 to 12.5 µg/mL. Among them, eremoxylarin I (311) was the
most antibacterially active sesquiterpene, and it showed MIC values of 0.39–1.56 µg/mL,
which were much greater than or similar to those of the positive control drug. Moreover,
eremoxylarin I (311) was also biologically active against HCoV-229E, with an IC50 value
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of 18.1 µM, which was the concentration obtained without any noticeable toxicity to the
hepatoma Huh-7 cell line.

In addition, pimarane diterpenoids have been broadly found in the secondary metabo-
lites of endolichenic fungi, which can lead to a series of structurally diverse derivatives
from the original core through enzymatic reactions, such as substitution, hydroxylation,
acetylation, rearrangement, bromination, and ring expansion. In 2019, Hou et al. obtained
three highly oxygenated pimarane diterpenoids, sarcosenones A–C (313–315), together
with a known pimarane diterpenoid, 9α-hydroxy-1,8(14),15-isopimaratrien-3,7,11-trione
(316), from cultures of Sarcosomataceae sp. [73], which is an endolichenic fungus found in the
lichen Everniastrum sp. (Parmeliaceae). Furthermore, their biological evaluation illustrated
that sarcosenone A (313) showed moderate cytotoxic activity towards a few cancer cell lines,
with IC50 values of 7.5–26.4 µM. Moreover, Basnet et al. isolated two known diterpenoids,
phaeropsidin A (317) and hymatoxin L (318), together with two reported diterpenoid
glycosides, loxyisopimar-7-en-19-oic acid (319) and 16-α-D-glucopyrano-syloxyisopimar-
7-en-19-oic acid (320), from the endolichenic fungus Myrothecium inundatum [74]. These
diterpenoid compounds were found to exhibit cytotoxicity against the K562 and RKO hu-
man cancer cell lines, with IC50 values of 31.7–72.6 and 7.6–36.2 µM, respectively. Moreover,
Basnet et al. discovered that the known isopimarane diterpene glycoside compound 319
displayed weak antibacterial activity against S. aureus, with an MIC value of 96.5 µM [49].

In 2022, Varlı et al. isolated three known diterpenoids, radianspenes C–D (321–322),
and dahliane D (323), from the crude extract of Nemania sp. EL006872 ELF [75], and the three
diterpenoids showed promising potential for innovative drug development for immune-
and immuno-tumor therapies. Moreover, a previous pharmacological study revealed that
radianspene C (321) had a significant cytotoxic effect on MDA-MB-435, with an IC50 value
of 0.91 µM [76]. In 2023, Libertellenone T (324) was isolated also as a novel diterpenoid from
the endolichenic fungus Pseudoplectania sp. (EL000327), and it exerted strong cytotoxicity
towards the human CRC cell lines of Caco2, HCT116, DLD1, and HT29, with IC50 values of
17.5, 28, 36.6, and 28 µg/mL, respectively [77]. The investigation into its pharmacological
mechanism confirmed that 324 could cause G2/M phase arrest and ROS/JNK signaling
activation to induce the apoptosis of Caco2 cells. Moreover, 324 exhibited perfect synergistic
effects in combination with various known and novel anticancer clinical agents.

In 2015, Li et al. isolated the tetracyclic triterpene helvolic acid (325) from the extract
of endolichenic fungus Nectria sp. [54]. Moreover, six novel sesterterpenoids, asperun-
guisins A–F (326–331), and one closely related sesterterpenoid analogue, aspergilloxide
(332), were isolated from the endolichenic fungus Aspergillus unguis (20141257a) in 2019 [78].
It should be noted that asperunguisins A–F (326–331) all featured a unique hydroxylated
7/6/6/5 tetracyclic system, and they are rarely occurring asperane-type sesterterpenoids.
Biological assay tests showed that these sesterterpenoids displayed obvious cytotoxic ac-
tivity. Among them, asperunguisin C (330) showed significant inhibitory activity towards
A549, with an IC50 value of 6.2 µM. Further comprehensive studies of the relevant phar-
macological mechanisms showed that 328 could cause DNA damage and induce G0/G1
phase arrest in tumor cells, thus leading to cancer cell apoptosis. In 2019, the chemical
composition investigation of the endolichenic fungus M. inundatum also contributed to four
new arborinane-type triterpenes and their related glycosides [74], including myrotheols
A–B (333–334), together with the first two examples of natural 4-O-methyl-α-D-mannosides,
myrothesides C–D (335–336). A biological activity evaluation showed that these com-
pounds exhibited cytotoxicity against the K562 and RKO human cancer cell lines, with IC50
values of 28.6–63.9 and 51.0–68.8 µM, respectively.

2.4. Alkaloids and Their Biological Activities

Alkaloid compounds, with various unique structures or skeletons, are a group of
basic organic compounds containing nitrogen atoms that widely exist in nature. Most
of these compounds possess complex fused or bridged ring scaffolds, with the nitrogen
atoms generally existing in the ring system. Numerous excellent medicinal research efforts
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have revealed that alkaloid compounds play significant and extensive roles in various
biological processes, and they are recognized as an important research focus in the natural
product, synthesis, biosynthesis, and medicine biochemical fields. Since 2015, a total of
52 alkaloids with nine cyclic peptide compounds have been found in the secondary metabo-
lites of endolichenic fungi, and many of them have shown biologically meaningful activity
(Figure 16). For example, Lee et al. successfully isolated three new diketopiperazines,
cyclo(L-Pro-D-trans-Hyp) (337), cyclo(L-Pro-D-Glu) (338), and cyclo(D-Pro-D-Glu) (339),
together with five known diketopiperazines, cyclo(L-Pro-D-allo-Thr) (340), cyclo(L-Pro-L-
Asp)(341), cyclo(D-Pro-Gly) (342), cyclo(L-Pro-L-Ala) (343), and cyclo(L-Pro-D-Ala) (344),
from the endolichenic fungus Colpoma sp. CR1465A in 2016 [79].
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In 2019, a chlorinated isocoumarin and indole alkaloid hybrid metabolite named iso-
coumarindole A (345) was obtained from the endolichenic fungus Aspergillus sp. CPCC400810
by Chen et al. [80]. The novel alkaloid isocoumarindole A (345) was constructed with a chlo-
rinated isocoumarin and an indoledione piperazine unit by the linkage of a carbon–carbon
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bond to form an unprecedented dimeric skeleton. The subsequent bioactivity test showed
that isocoumarindole A (345) exhibited considerable cytotoxicity against the cancer cell
lines of BT-549 and RKO, with IC50 values of 1.63 and 5.53 µM, respectively. In 2020, Padhi
et al. isolated and identified a novel pyro-alkaloid, pyrophen (346), from the secondary
metabolites of an endolichenic fungus, Aspergillus niger [40], which showed moderate
antimicrobial activity, with an IC50 ranging from 35 to 97 mg/mL, against a broad spectrum
of bacteria.

In the same year, a chemical investigation of the endophytic fungus Xylaria psidii from
the lichen Amandinea medusulina led to the discovery of one new alkaloid compound, which
was identified as (Z)-3-{(3-acetyl-2-hydroxyphenyl)diazenyl}-2,4-dihydroxybenzaldehyde
(347) [50]. The bioactivity test showed that 347 had moderate cytotoxicity towards human
lung cancer cells, with an IC50 value of 27.2 µg/mL. In 2021, Xu et al. reported the isolation
of two pairs of diastereoisomeric isoindoline alkaloids, xylarins A–D (348–351), from the
endolichenic fungus Xylaria sp., which was obtained from the lichen of Parmelia sp. [81].
Among them, compounds 348 and 349 possess an unprecedented skeleton comprising a
complex 5/6/5-5/6 polycyclic ring system and exist as a pair of diastereoisomers, while
another pair of diastereoisomers, diastereoisomers 350 and 351, contain an additional
N,N-dimethylaniline moiety at the C-3′ position. Interestingly, compound 351 exhibited
obvious antithrombotic activity.

In addition to the new C7-alkylated salicylaldehyde derivatives, Lin et al. isolated
nine known prenylated indole alkaloids, which were neoechinulin F (352), neoechinulin
(353), neoechinulin C (354), tardioxopiperazine B (355), variecolorine O (356), cristatumin A
(357), cryptoechinulin C (358), neoechinulin B (359), and 2-(2-methyl-3-en-2-yl)-1H-indole-
3carbaldehyde (360), from the endolichenic fungus A chevalieri SQ-8 [42]. Among them,
neoechinulin F (352) was firstly reported as a new compound. Moreover, the alkaloid
neoechinulin C (354) had a significant anti-inflammatory effect in inhibiting nitric oxide
production, with an IC50 value of 12 µM, and its possible anti-inflammatory mechanism
was also studied via molecular docking. In 2022, Yuan et al. also isolated a diketopiperazine
alkaloid, terreusinone (361), from Talaromyces sp., associated with X. angustiphylla [35].

Cyclopeptides are another type of important alkaloid existing in the endophytic fungi
of lichens, and a few of them have been discovered and consequently reported in recent
years. Since 2011, Wu has isolated two cyclic peptide alkaloids, cyclo(N-methyl-L-Phe-L-
Val-D-Ile-L-Leu-L-Pro) and cyclo(L-Val-D-Ile-L-Leu-L-Pro-D-Leu), from the endolichenic
fungus Xylaria sp. [82]. There were no cyclic peptides reported in the endophytic fungi of
lichens for many years, but 10 cyclopeptides have been identified since 2015 (Figure 17).
In 2021, seven new 3-hydroxy-4-methyldecanoic acid-containing cyclotetradepsipeptides,
beauveamides A–G (363–369), and the known compound beauverolide Ka (362) were
isolated from the endolichenic fungus Beauveria sp. by Zhou et al. [83]. Interestingly, all of
them incorporate a 3-hydroxy-4-methyldecanoic acid (HMDA) moiety in their structures.
Moreover, compounds 362–363 were disclosed to exhibit excellent protective effects on
HEI-OC1 cells at 10 µM. While compounds 362, 365, and 366 could stimulate glucose
uptake in cultured rat L6 myoblasts at 50 µM, compound 362 showed dose-dependent
activity in both L6 myoblasts and myotubes. In 2022, Luo et al. also obtained a cyclic
depsipeptide, xylaroamide A (370), from an endolicanic fungus Xylaria sp., via LC-MS-
guided isolation [84]. Compound 370 showed significant cytotoxic activity on cell lines
BT-549 and RKO, with IC50 values of 2.5 and 9.5 µM, respectively.

2.5. Steroids

Steroids are well known as one of the most critical chemical constituents participating
in the construction of the cell membrane for various fungi, and they are also a group of nat-
ural compounds widely adopted as novel lead compounds in the medicinal industry. The
structural types of steroids include phytosterols, bile acids, C21 steroids, cardiac glycosides,
steroid saponins, and so on. Most steroid compounds share the basic skeletal structure of
cyclopentanophenanthrene. In addition, there are usually two angularmethylgroups (C-10,
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C-13) and a side chain with different carbon atoms or oxygen-containing groups, such as
hydroxyl and carbonyl groups (C-17), on the parent nucleus of cyclopentanophenanthrene.
However, the number of steroids discovered from endolichenic fungi is very limited, as
there are only 25 types of steroid compounds reported to date, with a total of 12 discovered
since 2015 (Figure 18).
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For example, Yuan et al. isolated two steroids, ergone (389) and ergosterol (390), from
Talaromyces sp. associated with X. angustiphylla in 2018 [57]. Zhao et al. isolated eight new
viridins, nodulisporiviridins A–H (371–378), from the extract of the endolichenic fungus
Nodulisporium sp. in 2015 [85]. Among them, compounds 371–374 are a series of novel
viridins with a unique ring-opened skeleton. Furthermore, the authors disclosed that
nodulisporiviridin G (377) displayed potent Aβ42 aggregation-inhibitory activity, with
an IC50 value of 1.2 µM, which then led to the discovery that 377 showed an outstanding
capacity to significantly improve short-term memory, via a biological assay in an Aβ
transgenic drosophila model for Alzheimer’s disease.

In the same year, they found another rare class of steroids (4-methyl-pro-gesteroids)
in this fungus (N. sp.) via the OSMAC (one strain, many compounds) approach [86],
and they named these ten new 4-methyl-progesteroid derivatives as nodulisporisteroids
C–L (379–388). Interestingly, their biogenic synthesis (Scheme 4) has also been chemically
proposed. In the proposed biosynthetic pathway of compounds 379–390, all of the fungal
steroids are generally derived from lanosterol [87], and the demethylation of C-14 of
lanosterol results in 4a-methyl-zymosterol, which is the critical precursor of compound
388. Compound 381 can be generated by the Baeyer–Villiger oxidation of 4-methyl-8-en-
pregnan-3,20-dione between the C-3 and C-4 positions, whereas compounds 382–387 are
considered to be transformed from the intermediates 379 or 380 via chain opening and
oxidative demethylation.

2.6. Others

In addition, there are a few other types (Figure 19) of bioactive secondary metabolites
that have been discovered from endolichenic fungi, such as fatty acids, chain alcohols, etc.
Wang et al. isolated two small molecules of (E,E)-4-hydroxymethyl-4,6-octadien-2,3-diol
(391) and lachnellin B (392) from the endolichenic fungus A. montagnei in 2017 [23]. In
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2019, a new polyacetylene glycoside, fuscuyne (393), was isolated from the solid culture of
the endolichenic fungus H. fuscum by Basnet et al. [49]. Zhou et al. also discovered two
new alkanols, 2,4,5-heptanetriol (394) and 6-heptene-2,4,5-triol (395), from the endolichenic
fungus Daldinia childiae in 2020 [70]. In the same year, Tan et al. obtained acetyl tributyl
citrate (396) from the ethyl acetate extract of Fusarium proliferatum [88], and biological
activity tests showed that 396 exhibited significant antibacterial activity against Klebsiella
pneumoniae, Pseudomonas aeruginosa, and S. aureus, with IC50 values of 3.11, 0.19, and
0.78 µM, respectively.

J. Fungi 2024, 10, x FOR PEER REVIEW 29 of 49 
 

 

 
Figure 18. Chemical structures of steroids 371–390 from ELF. 

In the same year, they found another rare class of steroids (4-methyl-pro-gesteroids) 
in this fungus (N. sp.) via the OSMAC (one strain, many compounds ) approach [86], and 
they named these ten new 4-methyl-progesteroid derivatives as nodulisporisteroids C–L 
(379–388). Interestingly, their biogenic synthesis (Scheme 4) has also been chemically pro-
posed. In the proposed biosynthetic pathway of compounds 379–390, all of the fungal 
steroids are generally derived from lanosterol [87], and the demethylation of C-14 of 
lanosterol results in 4a-methyl-zymosterol, which is the critical precursor of compound 
388. Compound 381 can be generated by the Baeyer–Villiger oxidation of 4-methyl-8-en-
pregnan-3,20-dione between the C-3 and C-4 positions, whereas compounds 382–387 are 
considered to be transformed from the intermediates 379 or 380 via chain opening and 
oxidative demethylation. 

Figure 18. Chemical structures of steroids 371–390 from ELF.



J. Fungi 2024, 10, 99 30 of 49J. Fungi 2024, 10, x FOR PEER REVIEW 30 of 49 
 

 

 
Scheme 4. The plausible biosynthetic pathway of steroids 379–388. 

2.6. Others 
In addition, there are a few other types (Figure 19) of bioactive secondary metabolites 

that have been discovered from endolichenic fungi, such as fatty acids, chain alcohols, etc. 
Wang et al. isolated two small molecules of (E,E)-4-hydroxymethyl-4,6-octadien-2,3-diol 
(391) and lachnellin B (392) from the endolichenic fungus A. montagnei in 2017 [23]. In 
2019, a new polyacetylene glycoside, fuscuyne (393), was isolated from the solid culture 
of the endolichenic fungus H. fuscum by Basnet et al. [49]. Zhou et al. also discovered two 
new alkanols, 2,4,5-heptanetriol (394) and 6-heptene-2,4,5-triol (395), from the en-
dolichenic fungus Daldinia childiae in 2020 [70]. In the same year, Tan et al. obtained acetyl 
tributyl citrate (396) from the ethyl acetate extract of Fusarium proliferatum [88], and bio-
logical activity tests showed that 396 exhibited significant antibacterial activity against 
Klebsiella pneumoniae, Pseudomonas aeruginosa, and S. aureus, with IC50 values of 3.11, 0.19, 
and 0.78 µM, respectively. 

In 2021, (–)-10,11-dihydroxyfarnesol (397), which showed significant anti-inflamma-
tory activity with an IC50 value of 9.06 µM, was isolated from the lichen endophyte C. 
aucubae [71]. The novel oxygenated fatty acid (8Z)-5,6-epoxy-4-hydroxy-octadec-8-enoic 
acid (398), with anti-Candida albicans biofilm activity, was also isolated from the crude ex-
tract of Preussia persica by Toure et al. in 2022 [89]. Moreover, in 2023, Varlı et al. found 
that the fatty acid subfractions of the endolichenic fungus Phoma sp. EL006848 could effi-
ciently suppress multiple immune checkpoints via the inhibition of the benzo[a]pyrene-
induced (an AhR ligand) expression of PD-L1 [90], and a further extensive phytochemical 
investigation successfully led to the isolation and identification of palmitic acid (399), stea-
ric acid (400), and oleic acid (401), thus unambiguously verifying that the fatty acids from 
the endolichenic fungi Phoma sp. possessed strong potential for immunotherapy. 

Scheme 4. The plausible biosynthetic pathway of steroids 379–388.

In 2021, (–)-10,11-dihydroxyfarnesol (397), which showed significant anti-inflammatory
activity with an IC50 value of 9.06 µM, was isolated from the lichen endophyte C. au-
cubae [71]. The novel oxygenated fatty acid (8Z)-5,6-epoxy-4-hydroxy-octadec-8-enoic acid
(398), with anti-Candida albicans biofilm activity, was also isolated from the crude extract of
Preussia persica by Toure et al. in 2022 [89]. Moreover, in 2023, Varlı et al. found that the
fatty acid subfractions of the endolichenic fungus Phoma sp. EL006848 could efficiently
suppress multiple immune checkpoints via the inhibition of the benzo[a]pyrene-induced
(an AhR ligand) expression of PD-L1 [90], and a further extensive phytochemical inves-
tigation successfully led to the isolation and identification of palmitic acid (399), stearic
acid (400), and oleic acid (401), thus unambiguously verifying that the fatty acids from the
endolichenic fungi Phoma sp. possessed strong potential for immunotherapy.
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3. A Meta-Analysis of Research Progress and Status of Endolichenic Fungi
3.1. The Main Research Groups Engaged in the Study of Endolichenic Fungi

During the summary of chemical composition and biological activity, a comprehensive
analysis of the research on the secondary metabolites of endolichenic fungi from 2015 to the
present was conducted, as shown in Figure 20. It unambiguously shows that the number of
published articles worldwide is very stable and is maintained at approximately 10 articles
per year. Meanwhile, the total number of compounds reported annually fluctuates slightly,
usually maintained at a rate of between 40 and 80 compounds for each year. In particular,
20–40 new compounds have been discovered in the field of natural product chemistry
every year since 2015.

Based on the research articles published in internationally renowned journals on the
secondary metabolites of lichen endophytic fungi since 2015, the main research groups con-
tributing to the natural product chemistry of lichen endophytic fungi are also preliminarily
summarized. As shown in Figure 21, it can be found that the most active research groups
related to lichen endophytic fungi are those of Hongxiang Lou, Hanggun Kim, Hao Gao,
and Priyani A. Parargama. These four research groups have contributed more than a half
of all published research articles from 2015 to the present.

Moreover, the total number of isolated compounds and new ones discovered from
endolichenic fungi by the aforementioned main research groups are tentatively analyzed
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(Figure 22). Hongxiang Lou’s research group has made a major contribution to the discovery
of secondary metabolites from endophytic fungi in lichen. As illustrated in Figure 22, a total
of 215 natural products have been reported by this group, and there are 124 natural products
that have been reported as new compounds. Interestingly, the total number of natural
products and new compounds reported by Hongxiang Lou’s research group accounts for
more than a half of all the secondary metabolites isolated from endolichenic fungi.

J. Fungi 2024, 10, x FOR PEER REVIEW 32 of 49 
 

 

 
Figure 20. Research progress on endolichenic fungi since 2015. 

 
Figure 21. The published SCI papers since 2015 by famous research groups on the secondary me-
tabolites of endolichenic fungi. 

Moreover, the total number of isolated compounds and new ones discovered from 
endolichenic fungi by the aforementioned main research groups are tentatively analyzed 
(Figure 22). Hongxiang Lou’s research group has made a major contribution to the dis-
covery of secondary metabolites from endophytic fungi in lichen. As illustrated in Figure 
22, a total of 215 natural products have been reported by this group, and there are 124 
natural products that have been reported as new compounds. Interestingly, the total num-
ber of natural products and new compounds reported by Hongxiang Lou’s research 
group accounts for more than a half of all the secondary metabolites isolated from en-
dolichenic fungi. 

0

10

20

30

40

50

60

70

80

90

2015 2016 2017 2018 2019 2020 2021 2022 2023

Novel compounds Total compounds References

Hongxiang Lou, 18, 
35%

Hao Gao, 6, 
11%

Priyani A. 
Paranagama, 4, 8%Hanggun Kim, 5, 10%

Sang Hee Shim, 
2, 4%

Jong Seog Ahn, 
2, 4%

Gang Ding, 3, 
6%

Jinming Gao, 
3, 6%

Jin-Cheol Kim, 2, 
4%

Hongwei Liu, 2, 
4%

Shuyi Si, 2, 4% Antonio Evidence, 
2, 4% SCI

Figure 20. Research progress on endolichenic fungi since 2015.

J. Fungi 2024, 10, x FOR PEER REVIEW 32 of 49 
 

 

 
Figure 20. Research progress on endolichenic fungi since 2015. 

 
Figure 21. The published SCI papers since 2015 by famous research groups on the secondary me-
tabolites of endolichenic fungi. 

Moreover, the total number of isolated compounds and new ones discovered from 
endolichenic fungi by the aforementioned main research groups are tentatively analyzed 
(Figure 22). Hongxiang Lou’s research group has made a major contribution to the dis-
covery of secondary metabolites from endophytic fungi in lichen. As illustrated in Figure 
22, a total of 215 natural products have been reported by this group, and there are 124 
natural products that have been reported as new compounds. Interestingly, the total num-
ber of natural products and new compounds reported by Hongxiang Lou’s research 
group accounts for more than a half of all the secondary metabolites isolated from en-
dolichenic fungi. 

0

10

20

30

40

50

60

70

80

90

2015 2016 2017 2018 2019 2020 2021 2022 2023

Novel compounds Total compounds References

Hongxiang Lou, 18, 
35%

Hao Gao, 6, 
11%

Priyani A. 
Paranagama, 4, 8%Hanggun Kim, 5, 10%

Sang Hee Shim, 
2, 4%

Jong Seog Ahn, 
2, 4%

Gang Ding, 3, 
6%

Jinming Gao, 
3, 6%

Jin-Cheol Kim, 2, 
4%

Hongwei Liu, 2, 
4%

Shuyi Si, 2, 4% Antonio Evidence, 
2, 4% SCI

Figure 21. The published SCI papers since 2015 by famous research groups on the secondary
metabolites of endolichenic fungi.

At the same time, according to the research articles on the secondary metabolites of
lichen endophytic fungi published in internationally renowned journals since 2015, the
main research area distribution of natural products of lichen endophytic fungi is further
summarized. As shown in Figure 23, it can be found that research related to endolichenic
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fungi is mainly distributed in Asia, with a slight level of engagement in Europe and North
America. Since 2015, China has contributed more than half of the research papers on
endophytic fungi in lichens, followed by South Korea with 18%. Therefore, it is not difficult
to find that the research of endophytic fungi in lichen is mainly concentrated in Asia, while
there is less research being conducted in other continents, which also indicates that a large
number of endophytic fungi in lichen need to be explored.
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3.2. The Fungal Sources and Structural Characteristics of the Isolated Secondary Metabolites

The endolichenic fungi obtained from lichens are strategically important bioresources
for the microbial and medicinal industries. Thus, the origination and species of endolichenic
fungi are also comprehensively analyzed in this review, in order to provide detailed and
clear information for potential readers to facilitate a better understanding. A species analy-
sis of the endolichenic fungi reported in recent years is illustrated in Figure 24, and it can
be readily found that 35 endolichenic fungi from 20 species of lichens in five districts have
been investigated since 2015. Among these endolichenic fungi, Xylaria sp., Aspergillus sp.,
Nodulisporium sp., Daldinia sp., and Talaromyces sp. collectively represent the predominant
endophytes with the largest proportions and that are the most frequently studied.
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Figure 24. The main types of endolichenic fungi and their proportions.

With the further aim of providing an unambiguous depiction of the secondary metabo-
lites generated by the major strains of endolichenic fungi, a careful analysis of the critical
chemical compositions of the major strains is also performed, and the informative results
are depicted in Figure 25. From the statistical data, it is easily found that the secondary
metabolites from most of the endolichenic fungi are mainly polyketides, with the exception
of the fungi of Xylaria sp., Aspergillus sp., and Nodulisporium sp. Moreover, the structural
types of the secondary metabolites from these three strains are relatively diverse, evenly
distributed as polyketides, terpenoids, and alkaloids. Interestingly, a series of novel com-
pounds with unprecedented skeletons have been found in the four endolichenic fungal
strains of Xylaria sp., Aspergillus sp., Daldinia sp., and Phaeosphaeria sp.
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3.3. The Biological Activity of the Secondary Metabolites of Endolichenic Fungi

The biological activity of secondary metabolites is an important subject for natural
product and medicinal chemists. In this review, the biological activity of the secondary
metabolites discovered from endolichenic fungi since 2015 is also extensively summa-
rized and carefully analyzed (Tables 1–5). According to the statistical data, more than
40 biologically meaningful natural products have been isolated and pharmacologically
evaluated since 2015, and their biological properties include cytotoxic, antimicrobial, anti-
inflammatory, antioxidative, anti-influenza A virus, and other related biological effects.
The structural types of the reported compounds and their biological activity are compre-
hensively analyzed, and the conclusive results are shown in Figure 26. Notably, these
results collectively indicate that the rich and significant biological activity of secondary
metabolites from endolichenic fungi might be closely related to their structural diversity.
For example, a larger number and various structural types of polyketides are included
in the secondary metabolites from endolichenic fungi, and additional types of bioactive
molecules remain to be discovered.

Finally, the bioactivity of the secondary metabolites of the most prominent strains is
statistically analyzed (Figure 27), and it is found that the bioactivity of different strains is
also significantly different, such as that of the endolichenic fungi Xylaria sp. The secondary
metabolites mainly reflect the cytotoxicity and antibacterial activity of the strain Aspergillus
sp. It mainly shows cytotoxicity, antimicrobial activity, and anti-inflammatory effects.
Meanwhile, the strain Daldinia sp. shows antioxidant and antiviral activities.
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Table 1. Cytotoxicity of metabolites against tumor cell lines.

Type of Compound Compound Cell Line IC50 Endolichenic Fungus Host Reference

Polyketides bostrycin (16) L5178 1.7 µM A. montagnei Cladonia sp. Wang et al., 2017 [23]

Polyketides ulosporins G (23)
A549 1.3 µM

U. bilgramii Umbilicaria sp. Xie et al., 2020 [24]MCF-7 1.3 µM
KB 3.0 µM

Polyketides 1′-O-methyl-averantin (29)

CSC221 19.34 µg/mL

Jackrogersella sp. Cetraria sp. Varlı et al., 2023 [25]
Caco2 18.35 µg/mL
DLD1 21.50 µg/mL
HCT116 22.78 µg/mL

Polyketides acremonone G (67) L5178 2.7 µM A. montagnei Cladonia sp. Wang et al., 2017 [23]

Polyketides 3-O-phenylethyl cyclopolic acid (115) HUVEC 43.8 µM Arthrinium sp. Cladonia squamosal Gamage et al., 2023 [43]

Polyketides 3-O-p-hydroxy phenyl
ethylcyclo polic acid (116) HUVEC 1.83 mM Arthrinium sp. C. squamosal Gamage et al., 2023 [43]

Polyketides hypoxyolide A (138) K562, SW480, HEPG2 12.0–32.7 µM H. fuscum Usnea sp. Basnet et al., 2019 [49]

Polyketides alaromycin A (170) THLE 46.6 ± 3.8 µM Talaromyces sp. X. angustiphylla Yuan et al., 2018 [57]MDA-MB-231 24.6 ± 1.3 µM

Polyketides clearanol A (171)
THLE 51.6 ± 3.2 µM Talaromyces sp. X. angustiphylla Yuan et al., 2018 [57]MDA-MB-231 19.1 ± 1.2 µM

Polyketides phomol (201)
K562 19.4 µM

H. fuscum Usnea sp. Basnet et al., 2019 [49]SW480 15.9 µM
HEPG2 32.7 µM

Polyketides 5,6-epoxy-phomol (202)
K562

12.0–32.7 µM H. fuscum Usnea sp. Basnet et al., 2019 [49]SW480
HEPG2

Polyketides palmarumycin P3 (209) EC109 24.5–33.3 µM P. fortinii Pamelia sp. Song e al. 2023 [63]

Polyketides plecmillin A (218) HCT116 2.1 µM / Peltigera elisabethae Li et al., 2019 [62]

Polyketides phialoce-phalarin H (220) EC109 24.5–33.3 µM P. fortinii Pamelia sp. Song e al. 2023 [63]

Polyketides phialoce-phalarin I (221) EC109 24.5–33.3 µM P. fortinii Pamelia sp. Song e al. 2023 [63]

Polyketides phialoce-phalarin A (225) EC109 24.5–33.3 µM P. fortinii Pamelia sp. Song e al. 2023 [63]
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Table 1. Cont.

Type of Compound Compound Cell Line IC50 Endolichenic Fungus Host Reference

Polyphenyls Floricolin K (275)
A2780 25.1 ± 2.3 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]MCF-7 13.4 ± 1.4 µM

Polyphenyls Floricolin L (276)
A2780 21.4 ± 1.9 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]MCF-7 17.9 ± 2.4 µM

Polyphenyls Floricolin M (277)
A2780 40.1 ± 3.8 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]MCF-7 17.5 ± 1.7 µM

Polyphenyls Floricolin N (278)
A2780 14.9 ± 1.4 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]MCF-7 11.7 ± 1.2 µM
A549 27.8 ± 2.0 µM

Polyphenyls Floricolin O (279)
A2780 3.4 ± 0.6 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]MCF-7 19.9 ± 2.1 µM
A549 40.1 ± 3.8 µM

Polyphenyls Floricolin P (280)
A2780 8.6 ± 1.0 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]MCF-7 16.7 ± 0.8 µM

Polyphenyls Floricolin T (284)
MCF-7 38.5 ± 4.0 µM

F. striata Pseudosyphellaria spp. Xu et al., 2018 [66]A549 12.5 ± 2.5 µM

Polyphenyls 6′-methyl-[1,1′-biphenyl]-3,3′,4′,5-
tetraol (292)

HBE 29.3 ±1.7 µM
Talaromyces sp. X. angustiphylla Yuan et al., 2018 [57]THLE 36.2 ±1.9 µM

MDA-MB-231 34.7 ±4.4 µM

Polyphenyls desmethylaltenusin (293) HBE 43.9 ± 1.6 µM Talaromyces sp. X. angustiphylla Yuan et al., 2018 [57]THLE 41.2 ± 6.4 µM

Polyketides ES-242-3 (250)
MCF-7 14.08 ± 0.2 µM T. pinophilus Porina tetracerae Shevkar et al., 2022 [34]HeLa cell line 4.46 ± 0.05 µM

Terpenoids hypoxyside A (296) K562 18.7 µM H.fuscum Usnea sp. Basnet et al., 2019 [49]

Terpenoids eremoxylarin I (311) HCoV-229E 18.1 µM X. hypoxylon Rhizocarpon
geographicum Miral et al., 2023 [72]

Terpenoids sarcosenones A (313)

MCF-7 10.3 ± 1.0 µM

Sarcosomataceae sp. Everniastrum sp. Hou et al., 2019 [73]
HeLa 11.9 ± 4.4 µM
HepG2 26.4 ± 3.2 µM
786-O 26.4 ± 3.2 µM

Terpenoids sphaeropsidin A (317) K562 28.6 µM M. inundatum Ramalina sp. Basnet et al., 2019 [74]
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Table 1. Cont.

Type of Compound Compound Cell Line IC50 Endolichenic Fungus Host Reference

Terpenoids hymatoxin L (318) RKO 68.8 µM
M. inundatum Ramalina sp. Basnet et al., 2019 [74]K562 32.5 µM

Terpenoids 16-α-D-mannopyranosyl-
oxyisopimar-7-en-19-oic acid (319)

RKO 31.7 µM
M. inundatum Ramalina sp. Basnet et al., 2019 [74]K562 7.60 µM

Terpenoids 16-α-D-glucopyranosyl-
oxyisopimar-7-en-19-oic acid (320) K562 27.4 µM M. inundatum Ramalina sp. Basnet et al., 2019 [74]

Terpenoids radianspene C (321) MDA-MB-435 0.91 µM Nemania sp. Bryoria fuscescens Varlı et al., 2022 [75]

Polyketides libertellenone T (324)

Caco2 17.5 µg/mL

Pseudoplectania sp. Specimen Graphis Gamage et al., 2023 [77]HCT116 28 µg/mL
DLD1 36.6 µg/mL
HT29 28 µg/mL

Terpenoids myrotheol A (333) RKO 51.0 µM
M. inundatum Ramalina sp. Basnet et al., 2019 [74]K562 28 µM

Terpenoids myrotheol B (334) RKO 51.0 µM
M. inundatum Ramalina sp. Basnet et al., 2019 [74]K562 28 µM

Terpenoids myrotheside D (336) RKO 62.3 µM
M. inundatum Ramalina sp. Basnet et al., 2019 [74]K562 63.9 µM

Alkaloids isocoumarindole A (345)
MIA-PaCa-2 1.63 µM Aspergillus sp. Cetrelia sp. Chen et al., 2019 [80]AsPC-1 5.53 µM

Alkaloids
(Z)-3-{(3-acetyl-2-
hydroxyphenyl)diazenyl}-2,4-
dihydroxybenzaldehyde (347)

NCI-H292 27.2 µg/mL X. psidii Amandinea medusulina Santhirasegaram et al.,
2020 [50]

Alkaloids xylaroamide A (370) BT-549 2.5 µM Xylaria sp. Usnea sp. Luo et al., 2022 [84]RKO 9.5 µM

Steroids ergone (389)
ergosterol (390)

MDA-MB-231
MDA-MB-231

33 ± 0.5 µM

24.9 ± 3.7 µM
20.3 ± 4.4 µM

Talaromyces sp. X. angustiphylla Yuan et al., 2018 [57]

Fatty acid palmitic acid (399)
THLE 17.1 ± 0.7 µM

Talaromyces sp. X. angustiphylla Yuan et al., 2018 [57]HBE 17.2 ± 0.5 µM
MDA-MB-231 28.6 ± 3.2 µM
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Table 2. Antimicrobial activity.

Type of Compound Compound Microbe MIC/IC50 Endolichenic Fungus Host Reference

Polyketides funiculosone (38)
S. aureus 25 µg/mL

T. funiculosus Diorygma
hieroglyphicum Padhi et al., 2019 [26]E. coli 58 µg/mL

Candida albicans 35 µg/mL

Polyketides mangrovamide J (39) S. aureus, E. coli 23–104 µg/mL T. funiculosus D. hieroglyphicum Padhi et al., 2019 [26]

Polyketides ravenelin (40) S. aureus, E. coli 23–104 µg/mL T. funiculosus D. hieroglyphicum Padhi et al., 2019 [26]

Polyketides asperglaucins B (106) P. syringae pv actinidae.
Bacillus cereus. 6.25 µM A. chevalieri L. incana Lin et al., 2021 [42]

Polyketides phomol (201) S. aureus 51.2 µM H. fuscum Usnea sp. Basnet et al., 2019 [49]

Polyphenyls floricolin A (259) C. albicans 16 µg/mL F. striata Umbilicaria sp. Li et al., 2016 [65]

Polyphenyls floricolin B (260) C. albicans 8 µg/mL F. striata Umbilicaria sp. Li et al., 2016 [65]

Polyphenyls floricolin C (261) C. albicans 8 µg/mL F. striata Umbilicaria sp. Li et al., 2016 [65]

Terpenoids eremoxylarins D (306) S.aureus 6.25 µg/mL X. hypoxylon R. geographicum Miral et al., 2023 [72]

Terpenoids eremoxylarins D (306) MRSA 12.5 µg/mL X.hypoxylon R. geographicum Miral et al., 2023 [72]S. epidermidis. 12.5 µg/mL

Terpenoids eremoxylarins F (308)
S. aureus 0.78 µg/mL

X. hypoxylon R. geographicum Miral et al., 2023 [72]MRSA 1.56 µg/mL
S. epidermidis. 3.10 µg/mL

Terpenoids eremoxylarins G (309)
S. aureus 1.56 µg/mL

X. hypoxylon R. geographicum Miral et al., 2023 [72]MRSA 3.10 µg/mL
S. epidermidis. 3.10 µg/mL

Terpenoids eremoxylarins I (311)
S. aureus 0.39 µg/mL

X. hypoxylon R. geographicum Miral et al., 2023 [72]MRSA 1.56 µg/mL
S. epidermidis. 1.56 µg/mL

Terpenoids 16-α-D-mannopyranosyl-oxyisopimar-
7-en-19-oic acid (319) S. aureus 96.5 µM H. fuscum Usnea sp. Basnet et al., 2019 [49]

Alkaloids Isocoumarindole A (345) C. albicans 32.0 µg/mL Aspergillus sp. Cetrelia sp. Chen et al., 2019 [80]

others acetyl tributyl citrate (396)
K. pneumoniae 3.11 µM

F. proliferatum
Parmotrema
rampoddense Tan et al., 2020 [88]P. aeruginosa 0.19 µM

S. aureus 0.78 µM
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Table 3. Antioxidant activity.

Type of Compound Compound Biological Target Biological Active Value
(MIC/IC50) Endolichenic Fungus Host Reference

Polyketides norlichexanthone (34) DDPH assay ORAC value (mol TE/g)
of 0.0202 Dothideomycetes sp. Pertusaria laeviganda Kawakami et al., 2019 [91]

Polyketides

5-methoxy-4,8,15-trimethyl-3,7-
dioxo-1,3,7,8,9,10,11,12,13,
14,15,15α-dodecahydrocycl-
ododeca[de]isochromene-15-
carboxylic acid (80)

DDPH assay 1.3 ± 0.2 mg/mL C. trifolii Usnea sp. Samanthi et al., 2015 [37]

Polyketides 8-methoxynaphthalen-1-ol (96) DDPH assay 10.2 ± 5.8 µg/mL D. eschscholzii Parmotrema sp. Manthrirathna et al.,
2020 [32]

Polyketides tetrahydroauroglaucin (107) DDPH assay 11.0 ± 0.2 µM A. chevalieri L. incana Lin et al., 2021 [42]
Polyketides flavoglaucin (108) DDPH assay 11.5 ± 0.6 µM A. chevalieri L. incana Lin et al., 2021 [42]

Polyketides
2-(1′,5′-heptadienyl)-3,6-dihydroxy-5-
(3′′-methyl-2′′-butenyl)
benzaldehyde (109)

DDPH assay 12.3 ± 0.5 µM A. chevalieri L. incana Lin et al., 2021 [42]

Polyketides 2-(E-3-heptenyl)-3,6-dihydroxy-5-(3-
methyl-2-butenyl)-benzalde-hyde (111) DDPH assay 10.6 ± 0.1 µM A. chevalieri L. incana Lin et al., 2021 [42]

Polyketides neurosporalol 1 (117) ABTS assay 3.48 ± 0.33 µg/mL N. ugadawe G. tsunodae Madyranga et al., 2021 [44]

Polyketides

1,14-dihydroxy-6-methyl-
6,7,8,9,10,10α,14,14α-octahydro-1H-
benzo [f][1]
oxacyclododecin-4(13H)-one(203)

DDPH assay 4.0 ± 2.6 mg/mL C. trifolii Usnea sp. Samanthi et al., 2015 [37]

Polyketides neurosporalol 2 206 ABTS assay 5.03 ± 0.15 µg/mL N. ugadawe G. tsunodae Madyranga et al., 2021 [44]

Table 4. Anti-inflammatory effects.

Type of Compound Compound Biological Target Biological Actve
Value (MIC/IC50) Endolichenic Fungus Host Reference

Polyketides phomalichenone A (84) inhibition of NO production 9.4 ± 0.5 µM Phoma sp. / Kim et al., 2018 [28]

Polyketides
(E)-1-(2,4-dihydroxy-3-(2-
hydroxyethyl)-6-methoxyphenyl)
but-2-en-1-one (87)

inhibition of NO production 7.4 ± 2.8 µM Phoma sp. / Kim et al., 2018 [28]

Polyketides javanicol E (146) inhibition of NO production 17.00 µM E. javanicum Parmelia sp. Xu et al., 2020 [51]
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Table 4. Cont.

Type of Compound Compound Biological Target Biological Actve
Value (MIC/IC50) Endolichenic Fungus Host Reference

Polyketides (+)-terrein (147) inhibition of NO production 13.46 µM E. javanicum Parmelia sp. Xu et al., 2020 [51]

Polyketides dothideopyrone F (169) inhibition of NO production 15.0 ± 2.8 µM Dothideomycetes sp. Stereocaulon
tomentosum Kim et al., 2018 [55]

Polyketides nesurosporalol 2 (206) HRBCM stabilization assay 129.03 ± 0.15 µg/mL N. ugadawe G tsunodae Madyranga et al., 2021 [44]
Terpenoids sterpurol D (299) inhibition of NO production 14.81 ± 2.23 µM C. aucubae / Zhai et al., 2021 [71]
Terpenoids sterpurol E (300) inhibition of NO production 9.93 ± 0.99 µM C. aucubae / Zhai et al., 2021 [71]
Terpenoids sterpurol A (302) inhibition of NO production 15.32 ± 1.43 µM C. aucubae / Zhai et al., 2021 [71]
Terpenoids sterpurol B (303) inhibition of NO production 9.06 ± 1.13 µM C. aucubae / Zhai et al., 2021 [71]
Terpenoids paneolilludinic acid (304) inhibition of NO production 11.49 ± 0.58 µM C. aucubae / Zhai et al., 2021 [71]
Alkaloids neoechinulin C (354) inhibition of NO production 12.0 µM A. chevalieri L. incana Lin et al., 2021 [42]
Fatty acids (–)-10,11-dihydroxyfarnesol (397) inhibition of NO production 12.17 ± 0.40 µM C. aucubae / Zhai et al., 2021 [71]

Table 5. Other activities.

Type of Compound Compound Activity Biological Active
Value (MIC/IC50) Endolichenic Fungus Host Reference

Polyketides daldipyrenone A (41) adinonectu-secretion
promoting activity 3.36 µM D. pyrenaica Myelochroa

aurulenta Lee et al., 2023 [27]

Polyketides
(5R,7R)-5,7-dihydroxy-2-methyl-
5,6,7,8-tetrahydro-4H-chromen-4-
one (54)

anti-influenza A virus 16.1 mM Daldinia sp. / Zhang et al., 2021 [33]

Polyketides
(5R,7S)-5,7-dihydroxy-2-methyl-
5,6,7,8-tetrahydro-4H-chromen-4-
one (56)

anti-influenza A virus 9.0 mM Daldinia sp. / Zhang et al., 2021 [33]

Polyketides daldispol A (97) anti-influenza A virus 12.7 mM Daldinia sp. / Zhang et al., 2021 [33]
Polyketides daldispol C (98) anti-influenza A virus 6.4 mM Daldinia sp. / Zhang et al., 2021 [33]

Polyketides 2-phenylethyl-β-D-
glucopyranoside (100) anti-influenza A virus 12.5 mM Daldinia sp. / Zhang et al., 2021 [33]

Polyketides p-hydroxyphenethyl alcohol (104) anti-ZIKV activity inhibitory ratio of
42.7% at 10 µM Daldinia sp. / Zhang et al., 2021 [33]

Polyketides (R)-ulodione A(149a) anti-butyrylcholinesterase 9.0 ± 0.1µM U. bilgramii Umbilicaria sp. Luan et al., 2020 [52]
Polyketides (S)-ulodione A(149b) anti-butyrylcholinesterase 9.3 ± 0.2 µM U. bilgramii Umbilicaria sp. Luan et al., 2020 [52]
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Table 5. Cont.

Type of Compound Compound Activity Biological Active
Value (MIC/IC50) Endolichenic Fungus Host Reference

Polyketides lecanicillone A (257)
fresh weight and root
elongation of
Arabidopsis thaliana

32.04 µM Phaeosphaeria sp. black lichen Zhai et al., 2023 [64]

Polyketides lecanicillolide (258)
fresh weight and root
elongation of
Arabidopsis thaliana

26.78 µM Phaeosphaeria sp. black lichen Zhai et al., 2023 [64]

Terpenoids ophiokorrin (298) Root elongation of
Arabidopsis thaliana 18.06 µg/mL O. korrae Physciaceae

physcia Li et al., 2019 [30]

Steroids nodulisporiviridin G (377) Aβ42 aggregation
inhibitory activity 1.2 µM Nodulisporium sp. Everniastrum sp. Zhao et al., 2015 [85]
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4. Conclusions and Outlook

Lichens are naturally occurring as stable microorganism-like plants with complex com-
positions of known ascomycetes, photosynthesizing partners, and specific basidiomycete
yeasts. Because of their extremely unique growth environments, they are widely acknowl-
edged as impressive microorganisms with an outstanding capacity to produce a variety
of biologically significant and structurally fascinating secondary metabolites with rich
structural diversities. Endophytic fungi, as the main components of lichens, can also
produce secondary metabolites with novel structures and extensive bioactivities based
on their mutualistic symbiosis with their hosts, which have thus made them appealing
targets and attracted extensive research attention from natural product and pharmaceutical
chemists. In recent years, many research groups have been motivated to conduct research
on the discovery of novel secondary metabolites from endolichenic fungi. According to the
number of isolated compounds and the research articles published in renowned journals in
recent years, it can be readily found that research efforts and contributions with regard to
the secondary metabolites of endophytic fungi in lichens have steadily increased, and they
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collectively demonstrate endolichenic fungi’s increasing importance in the field of natural
product chemistry.

According to the careful inspection and review of research efforts made since 2015,
a variety of endophytic fungi were obtained from lichens by surface sterilization, and
a number of species of endolichenic fungal strains with broad biological activities and
high chemical abundance were selected as targeted strains for further extensive chemical
studies, to obtain promising lead compounds with biologically significant activities and
potential economic value. Thus, the urgent requirement for innovative drug development
in the modern pharmaceutical industry can be satisfied. The specific process followed by
natural product chemists in studying endolichenic fungi is introduced in Figure 28. Among
past research achievements, a total of 583 compounds have been successfully isolated and
identified from endolichenic fungi, of which 374 have been introduced as new compounds.
Since 2015, 35 species of lichen endophytic fungi have been extensively investigated with
the aim to discover biologically active or structurally novel natural products. As a result, a
total of 407 compounds, with 270 new ones, have been reported, which include 16 novel
compounds with unprecedented skeletons. Most importantly, more than 30 active lead
compounds have been described to show significant potential in new drug development.
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After a comprehensive analysis of the research status of this topic since 2015, it is
easily found that the main secondary metabolites in endolichenic fungi share outstanding
characteristics in terms of structural diversity, and they usually contain polyketides as their
major bioactive chemical components, followed by alkaloids, terpenes, steroids, and so
on. The great structural diversity of the secondary metabolites in endolichenic fungi may
also contribute to the diversity of their biological activity. Through careful inspection and a
statistical analysis, it is found that the secondary metabolites of lichen endophytic fungi
show extensive biological activities, including not only significant cytotoxic, antioxidant,
and anti-inflammatory activities, but also noticeable antiviral and root-growth-inhibitory
biofunctions. In summary, the numerous excellent studies on the secondary metabolites
of endophytic fungi in lichens collectively indicate that they are emerging as a research
hotspot for both natural product and pharmaceutical chemists. Moreover, it is believed
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that further scientific research on the secondary metabolites of endolichenic fungi will be
beneficial to enrich the compound library of chemical molecules, as well as improve the
biological activities of drug molecules.
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