Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (20)

Search Parameters:
Keywords = endogenous phosphatase inhibitors

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 2888 KB  
Article
Interplay Between Protein Phosphatase 2A (PP2A) and SE Translocation (SET) as Macromolecular Target of Anticancer Compounds: A Combined Computational and Experimental Study
by Giovanni Ribaudo, Mario Angelo Pagano, Margrate Anyanwu, Matteo Giannangeli, Marika Vezzoli, Andrea Visentin, Federica Frezzato, Livio Trentin, Anna Maria Brunati and Alessandra Gianoncelli
Macromol 2025, 5(3), 43; https://doi.org/10.3390/macromol5030043 - 12 Sep 2025
Viewed by 1067
Abstract
Cancer represents a leading cause of mortality globally, with its complex biological nature posing significant challenges for treatment. Central to cancer progression are molecular pathways that govern cellular function, among which protein phosphatase 2A (PP2A) plays a vital role. As a serine/threonine phosphatase, [...] Read more.
Cancer represents a leading cause of mortality globally, with its complex biological nature posing significant challenges for treatment. Central to cancer progression are molecular pathways that govern cellular function, among which protein phosphatase 2A (PP2A) plays a vital role. As a serine/threonine phosphatase, PP2A maintains cellular homeostasis by dephosphorylating a broad range of protein substrates and has emerged as a key tumor suppressor. However, PP2A activity can be physiologically inhibited by endogenous regulators such as the SE Translocation (SET) protein. Overexpression of SET has been associated with the loss of PP2A function, promoting hallmark features of cancer. Interestingly, targeting the PP2A/SET interaction has shown therapeutic potential. Indeed, inhibiting SET to reactivate PP2A may restore cellular regulation, induce apoptosis in tumor cells, and attenuate cancer progression. Research efforts have explored compounds such as the endogenous D-erythro-C18-ceramide and the drug fingolimod (FTY720), both known for their ability to reactivate PP2A. In this work, PP2A/SET complex models were generated through a computational approach and, using molecular docking, the interaction of potential SET inhibitors from a library of 26 alkoxy phenyl 1-propan-one derivatives (APPDs) was characterized. Additionally, absorption, distribution, metabolism, and excretion (ADME) predictions were performed to assess pharmacokinetic properties and therapeutic potential. Eventually, the predicted binding affinities were then correlated with biological data to assess the reliability of the models. These findings provide valuable insights into molecule–receptor interactions and lay the groundwork for developing inhibitors with encouraging therapeutic implications. Full article
Show Figures

Graphical abstract

31 pages, 1450 KB  
Review
Small-Molecule Inhibitors of Amyloid Beta: Insights from Molecular Dynamics—Part A: Endogenous Compounds and Repurposed Drugs
by Mariyana Atanasova
Pharmaceuticals 2025, 18(3), 306; https://doi.org/10.3390/ph18030306 - 23 Feb 2025
Cited by 2 | Viewed by 4014
Abstract
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various [...] Read more.
The amyloid hypothesis is the predominant model of Alzheimer’s disease (AD) pathogenesis, suggesting that amyloid beta (Aβ) peptide is the primary driver of neurotoxicity and a cascade of pathological events in the central nervous system. Aβ aggregation into oligomers and deposits triggers various processes, such as vascular damage, inflammation-induced astrocyte and microglia activation, disrupted neuronal ionic homeostasis, oxidative stress, abnormal kinase and phosphatase activity, tau phosphorylation, neurofibrillary tangle formation, cognitive dysfunction, synaptic loss, cell death, and, ultimately, dementia. Molecular dynamics (MD) is a powerful structure-based drug design (SBDD) approach that aids in understanding the properties, functions, and mechanisms of action or inhibition of biomolecules. As the only method capable of simulating atomic-level internal motions, MD provides unique insights that cannot be obtained through other techniques. Integrating experimental data with MD simulations allows for a more comprehensive understanding of biological processes and molecular interactions. This review summarizes and evaluates MD studies from the past decade on small molecules, including endogenous compounds and repurposed drugs, that inhibit amyloid beta. Furthermore, it outlines key considerations for future MD simulations of amyloid inhibitors, offering a potential framework for studies aimed at elucidating the mechanisms of amyloid beta inhibition by small molecules. Full article
Show Figures

Figure 1

19 pages, 4503 KB  
Article
Oral Antiviral Defense: Saliva- and Beverage-like Hypotonicity Dynamically Regulate Formation of Membraneless Biomolecular Condensates of Antiviral Human MxA in Oral Epithelial Cells
by Pravin B. Sehgal, Huijuan Yuan, Anthony Centone and Susan V. DiSenso-Browne
Cells 2024, 13(7), 590; https://doi.org/10.3390/cells13070590 - 28 Mar 2024
Cited by 1 | Viewed by 2285
Abstract
The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and [...] Read more.
The oral mucosa represents a defensive barrier between the external environment and the rest of the body. Oral mucosal cells are constantly bathed in hypotonic saliva (normally one-third tonicity compared to plasma) and are repeatedly exposed to environmental stresses of tonicity, temperature, and pH by the drinks we imbibe (e.g., hypotonic: water, tea, and coffee; hypertonic: assorted fruit juices, and red wines). In the mouth, the broad-spectrum antiviral mediator MxA (a dynamin-family large GTPase) is constitutively expressed in healthy periodontal tissues and induced by Type III interferons (e.g., IFN-λ1/IL-29). Endogenously induced human MxA and exogenously expressed human GFP-MxA formed membraneless biomolecular condensates in the cytoplasm of oral carcinoma cells (OECM1 cell line). These condensates likely represent storage granules in equilibrium with antivirally active dispersed MxA. Remarkably, cytoplasmic MxA condensates were exquisitely sensitive sensors of hypotonicity—the condensates in oral epithelium disassembled within 1–2 min of exposure of cells to saliva-like one-third hypotonicity, and spontaneously reassembled in the next 4–7 min. Water, tea, and coffee enhanced this disassembly. Fluorescence changes in OECM1 cells preloaded with calcein-AM (a reporter of cytosolic “macromolecular crowding”) confirmed that this process involved macromolecular uncrowding and subsequent recrowding secondary to changes in cell volume. However, hypertonicity had little effect on MxA condensates. The spontaneous reassembly of GFP-MxA condensates in oral epithelial cells, even under continuous saliva-like hypotonicity, was slowed by the protein-phosphatase-inhibitor cyclosporin A (CsA) and by the K-channel-blocker tetraethylammonium chloride (TEA); this is suggestive of the involvement of the volume-sensitive WNK kinase-protein phosphatase (PTP)-K-Cl cotransporter (KCC) pathway in the regulated volume decrease (RVD) during condensate reassembly in oral cells. The present study identifies a novel subcellular consequence of hypotonic stress in oral epithelial cells, in terms of the rapid and dynamic changes in the structure of one class of phase-separated biomolecular condensates in the cytoplasm—the antiviral MxA condensates. More generally, the data raise the possibility that hypotonicity-driven stresses likely affect other intracellular functions involving liquid–liquid phase separation (LLPS) in cells of the oral mucosa. Full article
(This article belongs to the Special Issue Molecular Mechanisms of Immunity to Infectious Viruses)
Show Figures

Figure 1

12 pages, 3141 KB  
Article
PHI-1, an Endogenous Inhibitor Protein for Protein Phosphatase-1 and a Pan-Cancer Marker, Regulates Raf-1 Proteostasis
by Jason A. Kirkbride, Garbo Young Nilsson, Jee In Kim, Kosuke Takeya, Yoshinori Tanaka, Hiroshi Tokumitsu, Futoshi Suizu and Masumi Eto
Biomolecules 2023, 13(12), 1741; https://doi.org/10.3390/biom13121741 - 4 Dec 2023
Cited by 3 | Viewed by 2895
Abstract
Raf-1, a multifunctional kinase, regulates various cellular processes, including cell proliferation, apoptosis, and migration, by phosphorylating MAPK/ERK kinase and interacting with specific kinases. Cellular Raf-1 activity is intricately regulated through pathways involving the binding of regulatory proteins, direct phosphorylation, and the ubiquitin–proteasome axis. [...] Read more.
Raf-1, a multifunctional kinase, regulates various cellular processes, including cell proliferation, apoptosis, and migration, by phosphorylating MAPK/ERK kinase and interacting with specific kinases. Cellular Raf-1 activity is intricately regulated through pathways involving the binding of regulatory proteins, direct phosphorylation, and the ubiquitin–proteasome axis. In this study, we demonstrate that PHI-1, an endogenous inhibitor of protein phosphatase-1 (PP1), plays a pivotal role in modulating Raf-1 proteostasis within cells. Knocking down endogenous PHI-1 in HEK293 cells using siRNA resulted in increased cell proliferation and reduced apoptosis. This heightened cell proliferation was accompanied by a 15-fold increase in ERK1/2 phosphorylation. Importantly, the observed ERK1/2 hyperphosphorylation was attributable to an upregulation of Raf-1 expression, rather than an increase in Ras levels, Raf-1 Ser338 phosphorylation, or B-Raf levels. The elevated Raf-1 expression, stemming from PHI-1 knockdown, enhanced EGF-induced ERK1/2 phosphorylation through MEK. Moreover, PHI-1 knockdown significantly contributed to Raf-1 protein stability without affecting Raf-1 mRNA levels. Conversely, ectopic PHI-1 expression suppressed Raf-1 protein levels in a manner that correlated with PHI-1’s inhibitory potency. Inhibiting PP1 to mimic PHI-1’s function using tautomycin led to a reduction in Raf-1 expression. In summary, our findings highlight that the PHI-1-PP1 signaling axis selectively governs Raf-1 proteostasis and cell survival signals. Full article
(This article belongs to the Section Molecular Biology)
Show Figures

Figure 1

9 pages, 2941 KB  
Communication
Novel Treatments for PXE: Targeting the Systemic and Local Drivers of Ectopic Calcification
by Ida Joely Jacobs and Qiaoli Li
Int. J. Mol. Sci. 2023, 24(20), 15041; https://doi.org/10.3390/ijms242015041 - 10 Oct 2023
Cited by 2 | Viewed by 2165
Abstract
Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of [...] Read more.
Pseudoxanthoma elasticum (PXE) is a heritable multisystem ectopic calcification disorder. The gene responsible for PXE, ABCC6, encodes ABCC6, a hepatic efflux transporter regulating extracellular inorganic pyrophosphate (PPi), a potent endogenous calcification inhibitor. Recent studies demonstrated that in addition to the deficiency of plasma PPi, the activated DDR/PARP signaling in calcified tissues provides an additional possible mechanism of ectopic calcification in PXE. This study examined the effects of etidronate (ETD), a stable PPi analog, and its combination with minocycline (Mino), a potent inhibitor of DDR/PARP, on ectopic calcification in an Abcc6-/- mouse model of PXE. Abcc6-/- mice, at 4 weeks of age, before the development of ectopic calcification, were treated with ETD, Mino, or both for 18 weeks. Micro-computed tomography, histopathologic examination, and quantification of the calcium content in Abcc6-/- mice treated with both ETD and Mino revealed further reduced calcification than either treatment alone. The effects were associated with reduced serum alkaline phosphatase activity without changes in plasma PPi concentrations. These results suggest that ETD and Mino combination therapy might provide an effective therapeutic approach for PXE, a currently intractable disease. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 1062 KB  
Review
Protein Phosphatase 2A as a Therapeutic Target in Pulmonary Diseases
by Howard Yu, Sahil Zaveri, Zeeshan Sattar, Michael Schaible, Brais Perez Gandara, Anwar Uddin, Lucas R. McGarvey, Michael Ohlmeyer and Patrick Geraghty
Medicina 2023, 59(9), 1552; https://doi.org/10.3390/medicina59091552 - 26 Aug 2023
Cited by 7 | Viewed by 4944
Abstract
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from [...] Read more.
New disease targets and medicinal chemistry approaches are urgently needed to develop novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates dephosphorylation of serine and threonine residues from many proteins, is observed in multiple pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease, alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is linked to many mechanisms associated with disease progressions, such as senescence, proliferation, inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore, chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions, and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are underway to develop therapeutics targeting PP2A activity. The development of specific activators of PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal PP2A responses within the lung. Full article
(This article belongs to the Section Pulmonology)
Show Figures

Figure 1

20 pages, 4799 KB  
Article
Implication of the PTN/RPTPβ/ζ Signaling Pathway in Acute Ethanol Neuroinflammation in Both Sexes: A Comparative Study with LPS
by María Rodríguez-Zapata, Milagros Galán-Llario, Héctor Cañeque-Rufo, Julio Sevillano, María Gracia Sánchez-Alonso, José M. Zapico, Marcel Ferrer-Alcón, María Uribarri, Beatriz de Pascual-Teresa, María del Pilar Ramos-Álvarez, Gonzalo Herradón, Carmen Pérez-García and Esther Gramage
Biomedicines 2023, 11(5), 1318; https://doi.org/10.3390/biomedicines11051318 - 28 Apr 2023
Cited by 7 | Viewed by 3096
Abstract
Binge drinking during adolescence increases the risk of alcohol use disorder, possibly by involving alterations of neuroimmune responses. Pleiotrophin (PTN) is a cytokine that inhibits Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. PTN and MY10, an RPTPβ/ζ pharmacological inhibitor, modulate ethanol behavioral and microglial [...] Read more.
Binge drinking during adolescence increases the risk of alcohol use disorder, possibly by involving alterations of neuroimmune responses. Pleiotrophin (PTN) is a cytokine that inhibits Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ. PTN and MY10, an RPTPβ/ζ pharmacological inhibitor, modulate ethanol behavioral and microglial responses in adult mice. Now, to study the contribution of endogenous PTN and the implication of its receptor RPTPβ/ζ in the neuroinflammatory response in the prefrontal cortex (PFC) after acute ethanol exposure in adolescence, we used MY10 (60 mg/kg) treatment and mice with transgenic PTN overexpression in the brain. Cytokine levels by X-MAP technology and gene expression of neuroinflammatory markers were determined 18 h after ethanol administration (6 g/kg) and compared with determinations performed 18 h after LPS administration (5 g/kg). Our data indicate that Ccl2, Il6, and Tnfa play important roles as mediators of PTN modulatory actions on the effects of ethanol in the adolescent PFC. The data suggest PTN and RPTPβ/ζ as targets to differentially modulate neuroinflammation in different contexts. In this regard, we identified for the first time important sex differences that affect the ability of the PTN/RPTPβ/ζ signaling pathway to modulate ethanol and LPS actions in the adolescent mouse brain. Full article
(This article belongs to the Special Issue Biological Aspects of Drug Addiction 2.0)
Show Figures

Figure 1

22 pages, 4644 KB  
Article
ROCK Inhibitor (Y-27632) Abolishes the Negative Impacts of miR-155 in the Endometrium-Derived Extracellular Vesicles and Supports Embryo Attachment
by Islam M. Saadeldin, Bereket Molla Tanga, Seonggyu Bang, Chaerim Seo, Okjae Koo, Sung Ho Yun, Seung Il Kim, Sanghoon Lee and Jongki Cho
Cells 2022, 11(19), 3178; https://doi.org/10.3390/cells11193178 - 10 Oct 2022
Cited by 10 | Viewed by 3697
Abstract
Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment [...] Read more.
Extracellular vesicles (EVs) are nanosized vesicles that act as snapshots of cellular components and mediate cellular communications, but they may contain cargo contents with undesired effects. We developed a model to improve the effects of endometrium-derived EVs (Endo-EVs) on the porcine embryo attachment in feeder-free culture conditions. Endo-EVs cargo contents were analyzed using conventional and real-time PCR for micro-RNAs, messenger RNAs, and proteomics. Porcine embryos were generated by parthenogenetic electric activation in feeder-free culture conditions supplemented with or without Endo-EVs. The cellular uptake of Endo-EVs was confirmed using the lipophilic dye PKH26. Endo-EVs cargo contained miR-100, miR-132, and miR-155, together with the mRNAs of porcine endogenous retrovirus (PERV) and β-catenin. Targeting PERV with CRISPR/Cas9 resulted in reduced expression of PERV mRNA transcripts and increased miR-155 in the Endo-EVs, and supplementing these in embryos reduced embryo attachment. Supplementing the medium containing Endo-EVs with miR-155 inhibitor significantly improved the embryo attachment with a few outgrowths, while supplementing with Rho-kinase inhibitor (RI, Y-27632) dramatically improved both embryo attachment and outgrowths. Moreover, the expression of miR-100, miR-132, and the mRNA transcripts of BCL2, zinc finger E-box-binding homeobox 1, β-catenin, interferon-γ, protein tyrosine phosphatase non-receptor type 1, PERV, and cyclin-dependent kinase 2 were all increased in embryos supplemented with Endo-EVs + RI compared to those in the control group. Endo-EVs + RI reduced apoptosis and increased the expression of OCT4 and CDX2 and the cell number of embryonic outgrowths. We examined the individual and combined effects of RI compared to those of the miR-155 mimic and found that RI can alleviate the negative effects of the miR-155 mimic on embryo attachment and outgrowths. EVs can improve embryo attachment and the unwanted effects of the de trop cargo contents (miR-155) can be alleviated through anti-apoptotic molecules such as the ROCK inhibitor. Full article
Show Figures

Graphical abstract

16 pages, 2503 KB  
Article
Development of Antibody-like Proteins Targeting the Oncogenic Ser/Thr Protein Phosphatase PPM1D
by Megumi Ikeura, Hiroto Tashiro, Yuka Yamagata, Hikaru Saito, Tamaki Kobayashi, Masataka Mizunuma, Kazuki Yamazaki, Keisuke Baba, Kazuhiro Furukawa and Yoshiro Chuman
Processes 2022, 10(8), 1501; https://doi.org/10.3390/pr10081501 - 29 Jul 2022
Cited by 2 | Viewed by 3192
Abstract
PPM1D, a protein Ser/Thr phosphatase, is overexpressed in various cancers and functions as an oncogenic protein by inactivating the p53 pathway. Therefore, molecules that bind PPM1D are expected to be useful anti-cancer agents. In this study, we constructed a phage display library based [...] Read more.
PPM1D, a protein Ser/Thr phosphatase, is overexpressed in various cancers and functions as an oncogenic protein by inactivating the p53 pathway. Therefore, molecules that bind PPM1D are expected to be useful anti-cancer agents. In this study, we constructed a phage display library based on the antibody-like small molecule protein adnectin and screened for PPM1D-specific binding molecules. We identified two adnectins, PMDB-1 and PMD-24, that bind PPM1D specific B-loop and PPM1D430 as targets, respectively. Specificity analyses of these recombinant proteins using other Ser/Thr protein phosphatases showed that these molecules bind to only PPM1D. Expression of PMDB-1 in breast cancer-derived MCF-7 cells overexpressing endogenous PPM1D stabilized p53, indicating that PMDB-1 functions as an inhibitor of PPM1D. Furthermore, MTT assay exhibited that MCF-7 cells expressing PMDB-1 showed inhibition of cell proliferation. These data suggest that the adnectin PMDB-1 identified in this study can be used as a lead compound for anti-cancer drugs targeting intracellular PPM1D. Full article
(This article belongs to the Special Issue The Amazing World of Peptide Engineering)
Show Figures

Graphical abstract

21 pages, 27284 KB  
Article
Phosphoprotein Phosphatase 1 but Not 2A Activity Modulates Coupled-Clock Mechanisms to Impact on Intrinsic Automaticity of Sinoatrial Nodal Pacemaker Cells
by Syevda Tagirova Sirenko, Ihor Zahanich, Yue Li, Yevgeniya O. Lukyanenko, Alexey E. Lyashkov, Bruce D. Ziman, Kirill V. Tarasov, Antoine Younes, Daniel R. Riordon, Yelena S. Tarasova, Dongmei Yang, Tatiana M. Vinogradova, Victor A. Maltsev and Edward G. Lakatta
Cells 2021, 10(11), 3106; https://doi.org/10.3390/cells10113106 - 10 Nov 2021
Cited by 11 | Viewed by 3844
Abstract
Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although [...] Read more.
Spontaneous AP (action potential) firing of sinoatrial nodal cells (SANC) is critically dependent on protein kinase A (PKA) and Ca2+/calmodulin-dependent protein kinase II (CaMKII)-dependent protein phosphorylation, which are required for the generation of spontaneous, diastolic local Ca2+ releases (LCRs). Although phosphoprotein phosphatases (PP) regulate protein phosphorylation, the expression level of PPs and phosphatase inhibitors in SANC and the impact of phosphatase inhibition on the spontaneous LCRs and other players of the oscillatory coupled-clock system is unknown. Here, we show that rabbit SANC express both PP1, PP2A, and endogenous PP inhibitors I-1 (PPI-1), dopamine and cyclic adenosine 3′,5′-monophosphate (cAMP)-regulated phosphoprotein (DARPP-32), kinase C-enhanced PP1 inhibitor (KEPI). Application of Calyculin A, (CyA), a PPs inhibitor, to intact, freshly isolated single SANC: (1) significantly increased phospholamban (PLB) phosphorylation (by 2–3-fold) at both CaMKII-dependent Thr17 and PKA-dependent Ser16 sites, in a time and concentration dependent manner; (2) increased ryanodine receptor (RyR) phosphorylation at the Ser2809 site; (3) substantially increased sarcoplasmic reticulum (SR) Ca2+ load; (4) augmented L-type Ca2+ current amplitude; (5) augmented LCR’s characteristics and decreased LCR period in intact and permeabilized SANC, and (6) increased the spontaneous basal AP firing rate. In contrast, the selective PP2A inhibitor okadaic acid (100 nmol/L) had no significant effect on spontaneous AP firing, LCR parameters, or PLB phosphorylation. Application of purified PP1 to permeabilized SANC suppressed LCR, whereas purified PP2A had no effect on LCR characteristics. Our numerical model simulations demonstrated that PP inhibition increases AP firing rate via a coupled-clock mechanism, including respective increases in the SR Ca2+ pumping rate, L-type Ca2+ current, and Na+/Ca2+-exchanger current. Thus, PP1 and its endogenous inhibitors modulate the basal spontaneous firing rate of cardiac pacemaker cells by suppressing SR Ca2+ cycling protein phosphorylation, the SR Ca2+ load and LCRs, and L-type Ca2+ current. Full article
(This article belongs to the Special Issue Cell Biology in the United States: Latest Advances and Perspectives)
Show Figures

Figure 1

14 pages, 4300 KB  
Article
Calmodulin-Dependent Regulation of Overexpressed but Not Endogenous TMEM16A Expressed in Airway Epithelial Cells
by Khaoula Talbi, Jiraporn Ousingsawat, Raquel Centeio, Rainer Schreiber and Karl Kunzelmann
Membranes 2021, 11(9), 723; https://doi.org/10.3390/membranes11090723 - 21 Sep 2021
Cited by 6 | Viewed by 3275
Abstract
Regulation of the Ca2+-activated Cl channel TMEM16A by Ca2+/calmodulin (CAM) is discussed controversially. In the present study, we compared regulation of TMEM16A by Ca2+/calmodulin (holo-CAM), CAM-dependent kinase (CAMKII), and CAM-dependent phosphatase calcineurin in TMEM16A-overexpressing HEK293 cells [...] Read more.
Regulation of the Ca2+-activated Cl channel TMEM16A by Ca2+/calmodulin (CAM) is discussed controversially. In the present study, we compared regulation of TMEM16A by Ca2+/calmodulin (holo-CAM), CAM-dependent kinase (CAMKII), and CAM-dependent phosphatase calcineurin in TMEM16A-overexpressing HEK293 cells and TMEM16A expressed endogenously in airway and colonic epithelial cells. The activator of the Ca2+/CAM-regulated K+ channel KCNN4, 1-EBIO, activated TMEM16A in overexpressing cells, but not in cells with endogenous expression of TMEM16A. Evidence is provided that CAM-interaction with TMEM16A modulates the Ca2+ sensitivity of the Cl channel. Enhanced Ca2+ sensitivity of overexpressed TMEM16A explains its activity at basal (non-elevated) intracellular Ca2+ levels. The present results correspond well to a recent report that demonstrates a Ca2+-unbound form of CAM (apo-CAM) that is pre-associated with TMEM16A and mediates a Ca2+-dependent sensitization of activation (and inactivation). However, when using activators or inhibitors for holo-CAM, CAMKII, or calcineurin, we were unable to detect a significant impact of CAM, and limit evidence for regulation by CAM-dependent regulatory proteins on receptor-mediated activation of endogenous TMEM16A in airway or colonic epithelial cells. We propose that regulatory properties of TMEM16A and and other members of the TMEM16 family as detected in overexpression studies, should be validated for endogenous TMEM16A and physiological stimuli such as activation of phospholipase C (PLC)-coupled receptors. Full article
(This article belongs to the Special Issue Molecular Mechanism of Cellular Membranes for Signal Transduction)
Show Figures

Figure 1

11 pages, 1837 KB  
Communication
Role of Receptor Protein Tyrosine Phosphatase β/ζ in Neuron–Microglia Communication in a Cellular Model of Parkinson’s Disease
by Marta del Campo, Rosalía Fernández-Calle, Marta Vicente-Rodríguez, Sara Martín Martínez, Esther Gramage, José María Zapico, María Haro and Gonzalo Herradon
Int. J. Mol. Sci. 2021, 22(13), 6646; https://doi.org/10.3390/ijms22136646 - 22 Jun 2021
Cited by 8 | Viewed by 4062
Abstract
Pleiotrophin (PTN) is a neurotrophic factor that regulates glial responses in animal models of different types of central nervous system (CNS) injuries. PTN is upregulated in the brain in different pathologies characterized by exacerbated neuroinflammation, including Parkinson’s disease. PTN is an endogenous inhibitor [...] Read more.
Pleiotrophin (PTN) is a neurotrophic factor that regulates glial responses in animal models of different types of central nervous system (CNS) injuries. PTN is upregulated in the brain in different pathologies characterized by exacerbated neuroinflammation, including Parkinson’s disease. PTN is an endogenous inhibitor of Receptor Protein Tyrosine Phosphatase (RPTP) β/ζ, which is abundantly expressed in the CNS. Using a specific inhibitor of RPTPβ/ζ (MY10), we aimed to assess whether the PTN/RPTPβ/ζ axis is involved in neuronal and glial injury induced by the toxin MPP+. Treatment with the RPTPβ/ζ inhibitor MY10 alone decreased the viability of both SH-SY5Y neuroblastoma cells and BV2 microglial cultures, suggesting that normal RPTPβ/ζ function is involved in neuronal and microglial viability. We observed that PTN partially decreased the cytotoxicity induced by MPP+ in SH-SY5Y cells underpinning the neuroprotective function of PTN. However, MY10 did not seem to modulate the SH-SY5Y cell loss induced by MPP+. Interestingly, we observed that media from SH-SY5Y cells treated with MPP+ and MY10 decreases microglial viability but may elicit a neuroprotective response of microglia by upregulating Ptn expression. The data suggest a neurotrophic role of microglia in response to neuronal injury through upregulation of Ptn levels. Full article
Show Figures

Figure 1

29 pages, 1478 KB  
Review
ABCC6, Pyrophosphate and Ectopic Calcification: Therapeutic Solutions
by Briana K. Shimada, Viola Pomozi, Janna Zoll, Sheree Kuo, Ludovic Martin and Olivier Le Saux
Int. J. Mol. Sci. 2021, 22(9), 4555; https://doi.org/10.3390/ijms22094555 - 27 Apr 2021
Cited by 43 | Viewed by 8357
Abstract
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization [...] Read more.
Pathological (ectopic) mineralization of soft tissues occurs during aging, in several common conditions such as diabetes, hypercholesterolemia, and renal failure and in certain genetic disorders. Pseudoxanthoma elasticum (PXE), a multi-organ disease affecting dermal, ocular, and cardiovascular tissues, is a model for ectopic mineralization disorders. ABCC6 dysfunction is the primary cause of PXE, but also some cases of generalized arterial calcification of infancy (GACI). ABCC6 deficiency in mice underlies an inducible dystrophic cardiac calcification phenotype (DCC). These calcification diseases are part of a spectrum of mineralization disorders that also includes Calcification of Joints and Arteries (CALJA). Since the identification of ABCC6 as the “PXE gene” and the development of several animal models (mice, rat, and zebrafish), there has been significant progress in our understanding of the molecular genetics, the clinical phenotypes, and pathogenesis of these diseases, which share similarities with more common conditions with abnormal calcification. ABCC6 facilitates the cellular efflux of ATP, which is rapidly converted into inorganic pyrophosphate (PPi) and adenosine by the ectonucleotidases NPP1 and CD73 (NT5E). PPi is a potent endogenous inhibitor of calcification, whereas adenosine indirectly contributes to calcification inhibition by suppressing the synthesis of tissue non-specific alkaline phosphatase (TNAP). At present, therapies only exist to alleviate symptoms for both PXE and GACI; however, extensive studies have resulted in several novel approaches to treating PXE and GACI. This review seeks to summarize the role of ABCC6 in ectopic calcification in PXE and other calcification disorders, and discuss therapeutic strategies targeting various proteins in the pathway (ABCC6, NPP1, and TNAP) and direct inhibition of calcification via supplementation by various compounds. Full article
(This article belongs to the Special Issue ABC Transporters in Human Diseases)
Show Figures

Figure 1

26 pages, 2936 KB  
Article
High-Throughput Screening for CEBPD-Modulating Compounds in THP-1-Derived Reporter Macrophages Identifies Anti-Inflammatory HDAC and BET Inhibitors
by Tatjana Ullmann, Sonja Luckhardt, Markus Wolf, Michael J. Parnham and Eduard Resch
Int. J. Mol. Sci. 2021, 22(6), 3022; https://doi.org/10.3390/ijms22063022 - 16 Mar 2021
Cited by 14 | Viewed by 5031
Abstract
This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene [...] Read more.
This study aimed to identify alternative anti-inflammatory compounds that modulate the activity of a relevant transcription factor, CCAAT/enhancer binding protein delta (C/EBPδ). C/EBPδ is a master regulator of inflammatory responses in macrophages (Mϕ) and is mainly regulated at the level of CEBPD gene transcription initiation. To screen for CEBPD-modulating compounds, we generated a THP-1-derived reporter cell line stably expressing secreted alkaline phosphatase (SEAP) under control of the defined CEBPD promoter (CEBPD::SEAP). A high-throughput screening of LOPAC®1280 and ENZO®774 libraries on LPS- and IFN-γ-activated THP-1 reporter Mϕ identified four epigenetically active hits: two bromodomain and extraterminal domain (BET) inhibitors, I-BET151 and Ro 11-1464, as well as two histone deacetylase (HDAC) inhibitors, SAHA and TSA. All four hits markedly and reproducibly upregulated SEAP secretion and CEBPD::SEAP mRNA expression, confirming screening assay reliability. Whereas BET inhibitors also upregulated the mRNA expression of the endogenous CEBPD, HDAC inhibitors completely abolished it. All hits displayed anti-inflammatory activity through the suppression of IL-6 and CCL2 gene expression. However, I-BET151 and HDAC inhibitors simultaneously upregulated the mRNA expression of pro-inflammatory IL-1ß. The modulation of CEBPD gene expression shown in this study contributes to our understanding of inflammatory responses in Mϕ and may offer an approach to therapy for inflammation-driven disorders. Full article
Show Figures

Figure 1

18 pages, 2962 KB  
Article
Optimized Approaches for the Induction of Putative Canine Induced Pluripotent Stem Cells from Old Fibroblasts Using Synthetic RNAs
by Mirae Kim, Seon-Ung Hwang, Junchul David Yoon, Yeon Woo Jeong, Eunhye Kim and Sang-Hwan Hyun
Animals 2020, 10(10), 1848; https://doi.org/10.3390/ani10101848 - 11 Oct 2020
Cited by 8 | Viewed by 5207
Abstract
Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The [...] Read more.
Canine induced pluripotent stem cells (ciPSCs) can provide great potential for regenerative veterinary medicine. Several reports have described the generation of canine somatic cell-derived iPSCs; however, none have described the canine somatic cell reprogramming using a non-integrating and self-replicating RNA transfection method. The purpose of this study was to investigate the optimal strategy using this approach and characterize the transition stage of ciPSCs. In this study, fibroblasts obtained from a 13-year-old dog were reprogrammed using a non-integrating Venezuelan equine encephalitis (VEE) RNA virus replicon, which has four reprogramming factors (collectively referred to as T7-VEE-OKS-iG and comprised of hOct4, hKlf4, hSox2, and hGlis1) and co-transfected with the T7-VEE-OKS-iG RNA and B18R mRNA for 4 h. One day after the final transfection, the cells were selected with puromycin (0.5 µg/mL) until day 10. After about 25 days, putative ciPSC colonies were identified showing TRA-1-60 expression and alkaline phosphatase activity. To determine the optimal culture conditions, the basic fibroblast growth factor in the culture medium was replaced with a modified medium supplemented with murine leukemia inhibitory factor (mLIF) and two kinase inhibitors (2i), PD0325901(MEK1/2 inhibitor) and CHIR99021 (GSK3β inhibitor). The derived colonies showed resemblance to naïve iPSCs in their morphology (dome-shaped) and are dependent on mLIF and 2i condition to maintain an undifferentiated phenotype. The expression of endogenous pluripotency markers such as Oct4, Nanog, and Rex1 transcripts were confirmed, suggesting that induced ciPSCs were in the late intermediate stage of reprogramming. In conclusion, the non-integrating and self-replicating VEE RNA replicon system can potentially make a great contribution to the generation of clinically applicable ciPSCs, and the findings of this study suggest a new method to utilize the VEE RNA approach for canine somatic cell reprogramming. Full article
Show Figures

Figure 1

Back to TopTop