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Abstract: New disease targets and medicinal chemistry approaches are urgently needed to develop
novel therapeutic strategies for treating pulmonary diseases. Emerging evidence suggests that
reduced activity of protein phosphatase 2A (PP2A), a complex heterotrimeric enzyme that regulates
dephosphorylation of serine and threonine residues from many proteins, is observed in multiple
pulmonary diseases, including lung cancer, smoke-induced chronic obstructive pulmonary disease,
alpha-1 antitrypsin deficiency, asthma, and idiopathic pulmonary fibrosis. Loss of PP2A responses is
linked to many mechanisms associated with disease progressions, such as senescence, proliferation,
inflammation, corticosteroid resistance, enhanced protease responses, and mRNA stability. Therefore,
chemical restoration of PP2A may represent a novel treatment for these diseases. This review outlines
the potential impact of reduced PP2A activity in pulmonary diseases, endogenous and exogenous
inhibitors of PP2A, details the possible PP2A-dependent mechanisms observed in these conditions,
and outlines potential therapeutic strategies for treatment. Substantial medicinal chemistry efforts are
underway to develop therapeutics targeting PP2A activity. The development of specific activators of
PP2A that selectively target PP2A holoenzymes could improve our understanding of the function of
PP2A in pulmonary diseases. This may lead to the development of therapeutics for restoring normal
PP2A responses within the lung.

Keywords: PP2A; lung diseases; inflammation; future therapy

1. Introduction

Chronic respiratory disorders affect the lungs, airways, and other structural compo-
nents, leading to widespread illness and mortality. Lung cancer, asthma, chronic obstructive
pulmonary disease (COPD), and idiopathic pulmonary fibrosis (IPF) are some of these res-
piratory conditions, and are among the top causes of morbidity and mortality worldwide.
From 1990 to 2017, there was an increase in the prevalence of chronic lung disease world-
wide. In 2017, 544.9 million individuals worldwide were impacted by chronic respiratory
diseases, which is a rise of 39.8% from the 1990 data [1]. This equated to a global prevalence
of 7.1% [1].

The most common lung cancer types, non-small cell lung cancer (NSCLC) and small
cell lung cancer (SCLC), account for approximately 80–85% and 10–15% of all instances
of lung cancer, respectively [2,3]. The 5-year survival rate for patients with lung cancer is
presently only 18.6%, which is significantly lower compared to other common forms of
cancer. Lung cancer is among the primary causes of death across the globe, resulting in
over 1.3 million fatalities each year [4]. Recent data indicate that the number of people
dying from lung cancer worldwide is expected to rise significantly by 2035, reaching
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3 million. This increase will affect both men and women, with deaths in men projected to
double from 1.1 million in 2012 to 2.1 million in 2035 and deaths in women projected to
double from 0.5 million in 2012 to 0.9 million in 2035 [5]. Moreover, lung cancer is more
prevalent in individuals with COPD than in those without it [4], and smoking is the most
common connection between COPD and lung cancer [6]. The number of people worldwide
with COPD is predicted to be 328 million [1,5,6]. COPD causes persistent shortness of
breath and limited lung airflow; COPD is degenerative and tends to worsen over time.
While medication can relieve symptoms, it cannot stop or reverse the disease’s progression.
COPD can be classified into two primary conditions: bronchitis and emphysema. Both
of these eventually lead to chronic dyspnea. Although smoking causes both COPD and
lung cancer, their relationship is not solely due to smoking, as COPD is an independent
risk factor for lung cancer [7]. Several overlapping molecular pathways are observed in
COPD and lung cancer but also in other pulmonary diseases, such as asthma and IPF. The
incidence and mortality rate of asthma has decreased over the past years [8]. While asthma
prevalence and mortality rates have decreased, managing varying levels of asthma severity
is challenging due to corticosteroid sensitivity [9]. The frequency of IPF is increasing [10],
with the estimated occurrence rates of IPF increasing from approximately 3 to 9 cases per
100,000 individuals annually in Europe and North America between 1998 and 2012 [11].

One of the common molecular players observed to be altered in all of these pulmonary
diseases is the serine/threonine (Ser/Thr) phosphatase, protein phosphatase (PP) 2A
(PP2A). This review will outline the activation status of PP2A in pulmonary diseases and
the subsequent impact on multiple pathways, discuss the potential means of targeting
PP2A responses, and possible outcomes of targeting PP2A activity systemically.

2. Protein Phosphatase 2A

Reversible phosphorylation of signal mediators is a cornerstone of intracellular signal-
ing and is primarily regulated by a delicate balance of intracellular and extracellular kinases
and phosphatases [12]. Phosphoprotein phosphatase is the largest Ser/Thr phosphatase
family comprising several members, including PP1, PP2A, PP2B, and PP4. PP2A constitutes
about 1% of the total cellular protein content and, along with PP1, is responsible for more
than 90% of all Ser/Thr phosphatase activity within the cell [13]. PP2A holoenzyme is
composed of three discrete subunits. These are the scaffolding (A), regulatory (B), and
catalytic (C) subunits. The A and C subunits each have two possible variations, α and
β [14–16]. The B subunit exists as four different classes, each with 2–5 isoforms. This
leads to numerous combinations of the PP2A holoenzyme, thus imparting specificity for
different targets (see Figure 1). The main pathways influenced by PP2A are the PI3K
(Akt), mTOR (p70S6K), and MAPK (MEK/ERK) pathways, but PP2A also targets pathways
such as cMyc, Wnt signaling (GSK-3β and β-catenin), apoptosis (Bcl2, Bad, and FOXO
proteins), tau signaling, cell cycle regulation (cdc25, WEE1, and pRb), and DNA damage
responses (p53, ATM, and Chk) [17–22]. The canonical B-subunit picture is incomplete
with four recent papers from independent research groups adding to it: Huang et al.,
identified that PP2A AC binds to the Integrator-RNAPII complex [23], cryo-EM structures
of the PP2A AC-Integrator complex were recently determined that provide a structural
basis for understanding the PP2A AC-Integrator transcriptional regulation [24,25], and
binding of the PP2A AC to the integrator complex subunits INTS6 and INTS8 subunit
to regulate transcription [26]. The effect of PP2A in this context is to enhance promoter
proximal stalling of RNAPolII by dephosphorylation of its C Terminal Domain (CTD), and
restrain gene transcription. Due to the pleiotropic nature of PP2A actions, it regulates many
biological processes such as cell proliferation, cell survival, gene transcription, protein
synthesis, cell migration, and invasion [27].
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Figure 1. PP2A subunits, endogenous inhibitors, and common signaling pathways. Created with
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PP2A Subunits

The A subunit exists in two isoforms, PR65/Aα and PR65/Aβ, encoded by the
PPP2R1A and PPP2R1B genes, respectively. This particular subunit serves as a back-
bone for holoenzyme recombination [27]. These isoforms are characterized by repeats of
amino acids organized into two anti-parallel α-helices referred to as HEAT repeat domain.
HEAT repeats are named after the first four proteins found to contain them: Huntington,
EF3, PP2A A subunit, and TOR1. These repeats are arranged in a crescent-like configuration
in the PP2A A subunit [28].

Similar to the A subunit, the C subunit has two isoforms that serve as PP2A holoen-
zyme’s catalytic domain. The PPP2CA and PPP2CB genes encode these isoforms, each
forming a globular structure folding on itself in an α/β arrangement. PPP2CB has weaker
promoter activity, resulting in its expression being ten-fold lower than PPP2CA [27]. It is
transcribed in an inactive form and is post-translationally activated after the assemblage of
the entire PP2A holoenzyme [29,30]. The catalytic C subunit binds to the HEAT repeats of
the A subunit at the 11–15 positions [31]. The catalytic function of this subunit is brought
about by binding two manganese atoms to phosphate, thus facilitating the hydrolysis
of serine/threonine phosphate esters. The resulting AC dimer is also known as the core
enzyme when attached to the A subunit [32].

B subunit isoforms bind in a mutually exclusive manner, providing subcellular local-
ization, substrate specificity, and physiologic function of the final PP2A product [33,34]. As
mentioned above, the B subunit exists in four different classes. These are: B (B55/PR55), B’
(B56/PR61), B” (PR48/PR72/PR130), and B”’ (PR93/PR110)/striatin [35]. The B (B55/PR55)
class has five different isoforms (α, β, β2, γ, and δ), which are encoded by four genes
(PPP2R2A, PPP2R2B, PPP2R2C, and PPP2R2D) [36–38]. The B’ (B56/PR61) class is the
largest subtype family containing ten isoforms (α, β, γ, δ, δ, ε, ε-s) and are encoded by
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five genes PPP2R5 (A-E) [12–14,39,40]. The B” (PR48/PR72/PR130) class is encoded by
three genes (PPP2R3A, PPP2R3B, and PPP2R3C) comprising of six isoforms [41]. B′′′

(PR93/PR110)/striatin subunits are encoded by three genes (STRN, STRN3, and STRN4),
each producing one isoform. The combination of all the different subunits, their subclasses,
and isoforms leads to more than 80 different PP2A complexes, each with unique physi-
ological functions. The B subunit attaches to repeats 1–10, while the C subunit occupies
repeats 11–15 [42].

3. The Activation Status of PP2A in Pulmonary Diseases

Impairment of PP2A function is commonly observed in many cancers, but it also
occurs in other diseases and, prominently, within lung diseases. Multiple mechanisms, in-
cluding genetic and post-translational modifications, are reported to impact PP2A function
and activity in pulmonary diseases. New research has shown that inhibiting PP2A can
contribute to the pathology of COPD, alpha-1 antitrypsin (AAT) deficiency, lung cancer,
asthma, and IPF [43–51]. This section will examine the possibility that reduced PP2A activ-
ity could be a unifying factor in several pulmonary diseases (see Table 1). Exploring the
molecular mechanisms responsible for alterations of PP2A activation could be an essential
step in pulmonary disease pathology.

Table 1. Status of PP2A signaling in pulmonary diseases.

Disease PP2A Status Mechanisms for
Altered PP2A

Downstream of
PP2A Signaling Reference

COPD Reduced PP2A
responses

Increased CIP2A and SET
signaling, reduced antioxidant

responses, viral induced
suppression of PP2A,

inhibition of PTP1B responses,
phosphorylation of the C

subunit of PP2A

Increased: Immune cell
infiltration, MAPK signaling,

Cathepsin S expression,
phosphorylation of TTP, innate
inflammation, NFκB signaling

[43,44,52–55]

AAT
deficiency

Reduced PP2A
responses

Loss of AAT, inhibition of
PTP1B responses, reduced

PKA responses

Increased: Innate immune
responses,

proteolytic responses
[45]

Lung cancer Reduced PP2A
responses

Loss of PP2A subunits via
gene mutations, increased

CIP2A expression,
and EGFR mutations

Dysfunction of downstream
GTPase RalA, dysfunctional
cell growth, migration, and
apoptosis. Increased ERK,

MKK4, ATF2, and c-Jun Akt,
and c-Myc signaling

[46,56–64]

Asthma Reduced PP2A
responses

Eosinophil peroxidase
enhances PP2A

phosphorylation but other
mechanisms may exist for

suppression of PP2A

Increased: Phosphorylation of
p38, JNK-1 and GR at site

Ser226, CCL4, IL-13, and iNOS
expression, serum IgE levels

[65–69]

IPF Reduced PP2A
responses

Low α2β1 integrin receptor
concentrations lead to
decreased PP2A levels;

elevated MID1
and TRAIL expression

Increased: Inflammation,
profibrotic genes, pulmonary
fibrosis, and matrix collagen
deposition in mouse models

[50,51,70,71]

3.1. PP2A in Cigarette Smoke-Induced COPD

PP2A plays a major regulatory role in initiating and maintaining inflammatory dis-
ease seen in COPD [72]. Modulation of PP2A activity downregulates cytokine expression
and prevents the induction of proteases following smoke exposure [43,44,54]. Conversely,
the presence of a PP2A inhibitor, okadaic acid, or direct inhibition of PP2A expression
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enhances smoke-induced inflammation in mice [43,54]. Mechanistically, PP2A can mediate
the dephosphorylation of IκB, which results in the stabilization of IκB and the subse-
quent inhibition of NFκB, a significant mediator of both acute and chronic inflamma-
tory processes [73]. Furthermore, PP2A negatively regulates the transcriptionally active
NFκB by dephosphorylating its RelA (p65) subunit [74]. Diminished PP2A activity is
observed to occur in parallel with increased phosphorylation of MAPK, ERK, activation
of NFκB, increased airspace enlargements, and loss of lung function in smoke-exposed
mice [43–45,52,54].

Cigarette smoke enhances endogenous inhibitors to suppress PP2A and contributes
to suppressing PP2A activators, such as protein tyrosine phosphatase 1B (PTP1B) [45,52].
PP2A becomes inactivated by phosphorylation of a tyrosine site at position 307 (Tyr307) in
the catalytic subunit of the enzyme, which is offset by the activity of PTP1B [52]. We recently
demonstrated enhanced lung damage in Ptp1b deficient mice when exposed to cigarette
smoke [75]. Smoke inhalation also subdues PTP1B activity, and smoke-exposed Ptp1b
deficient mice are more susceptible to COPD [52,75,76]. Smoke-induced TLR9 expression
results in TLR9 directly binding and inactivating PTP1B [76].

A critical contributor to COPD disease pathogenesis is maladaptive airway remodeling.
While the role of serine elastase and matrix metalloproteinases in the pathogenesis of COPD
is rigorously described, there is emerging interest in the role of the cathepsin family of
enzymes as a major initiator of pathologic airway remodeling [77]. Cathepsin S is a
lysosomal peptidase and member of the C1 family of cysteine proteases, which contains
cathepsin E, G, and K [43]. Cathepsin S is unique amongst others in the cathepsin family
due to its ability to function in a pH neutral environment which can potentially contribute
to early COPD disease development [78]. Our group demonstrated that PP2A activation
negatively regulates cathepsin S expression at a transcriptional level for the first time [43].
Thus, this suppresses early deleterious airway changes in the presence of cigarette smoke.

PP2A also plays a crucial role in mitigating and resolving established inflammatory
responses via regulating the mRNA-destabilizing protein tristetraprolin (TTP). Enhancing
TTP activity reduces the severity of cigarette smoke-induced experimental COPD [55].
After smoke-induced inflammation, basal PP2A activity dephosphorylates TTP, activating
it to destabilize the mRNA of proinflammatory cytokines and chemokines in inflammatory
cells at the site of injury or infection and contributes to the resolution of the inflammatory
response [79].

3.2. PP2A Responses in Alpha-1 Antitrypsin Deficiency

The development of COPD in AAT deficiency individuals is the best described genetic
associated link to COPD development. By examining PP2A activity levels in neutrophils
from healthy MM and AAT deficiency ZZ individuals, our group observed diminished
PP2A in the neutrophils from AAT deficiency subjects. Additionally, AAT supplemen-
tation in AAT deficiency individuals increases PP2A activity in neutrophils, monocytes,
small airway epithelial cells, and A549 cells. Mechanistically, AAT increased PP2A activ-
ity in a PTP1B-dependent manner in vitro and in vivo. AAT stimulation leads to PP2A
dephosphorylation and activation at Tyr307 in the catalytic C subunit, a specific target of
PTP1B phosphatase [45]. Furthermore, AAT can activate PP2A via protein kinase A (PKA)
induction, which mediates the phosphorylation of the B subunit PPP2R5D to enhance
PP2A activity [80]. As a result of augmented PP2A activation by AAT, BALF samples from
AAT deficiency individuals undergoing supplementation AAT therapy had significantly
reduced levels of MMP-1, MMP-9, IL-8, IL-1β, MCP-1, and TNF-α. Therefore, loss of PP2A
responses in AAT deficiency alters the protease and inflammation profile in the lungs.

3.3. PP2A in Asthma

Yoshiki and colleagues observed that severe asthmatic patients who are treatment
resistant to conventional steroid therapy had increased phosphorylation of JNK-1 and
glucocorticoid receptor (GR) Ser226 with concomitant decreases in PP2A activity [66].
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IFN-γ/LPS induce miR-9 expression reduces PP2A regulatory subunit B (B56) δ isoform,
altering PP2A activity and inhibiting dexamethasone-induced GR nuclear translocation [81].
Eosinophil peroxidase enhances PP2A phosphorylation, leading to reduced PP2A protein
expression and activity [67]. This inactivation can be reversed by formoterol or omal-
izumab, a monoclonal antibody that inhibits cell degranulation [67,68]. PP2A reduction by
siRNA enhances CCL4, IL-13, and iNOS expression in eosinophils co-cultured with airway
epithelial cells [68]. Similar to human data, PP2A activity is reduced in the ovalbumin
mouse model of asthma [69]. Activating PP2A with FTY720 (Fingolimod/ Fingolimod
Hydrochloride, a sphingosine-1-phosphate (S1P) antagonist) suppresses tissue inflam-
mation and serum IgE levels in the ovalbumin-induced asthma mouse model, which is
further enhanced when combined with proteasome inhibitor bortezomib, which suppresses
CIP2A expression by an unknown mechanism [65]. Equally, the phosphodiesterase in-
hibitor, theophylline, enhanced PP2A responses to counter inflammation in A549 cells [82].
Theophylline is known to relax bronchial smooth muscle and is used in the treatment of
asthma and COPD [83]. Salmeterol is also reported to induce PP2A activity in a house dust
mite (HDM) and rhinovirus 1B infection mouse model [84]. PP2A activity is also known
to play a role in mast cell degranulation targeting the TNF-related apoptosis-inducing
ligand (TRAIL) with 2-amino-4-(4-heptyloyphenol)-2-methylbutan-1-ol (AALs) is reported
to increase PP2A in allergic mice that subsequently reduced eosinophilia, TGF-β1, and
peribronchial fibrosis [51,85].

Patients with severe eosinophilic chronic rhinosinusitis characterized by local resis-
tance to corticosteroids had decreased PP2A mRNA expression in the nasal epithelium,
which was improved by PP2A plasmid transduction, omalizumab, and long-acting beta ag-
onist [67,68]. Native, non-carboxymethylated, PP2A trimeric enzyme is bounded by the B′δ
regulatory B subunit, which maintains p38 and MK2 in the inactive, non-phosphorylated
state, preventing degranulation. However, with increased antigen binding of the FcεRI
receptors during an asthma exacerbation, PP2A is carboxymethylated, leading to the ex-
change of B′δ for the Bα subunit. This allows for the phosphorylation and activation of p38,
MK2, and MAPK leading to degranulation and disease [86].

3.4. PP2A in Pulmonary Fibrosis

The deletion of PP2A is linked to the pathogenesis of IPF, as PP2A activation responses
are blunted in fibroblasts isolated from IPF subjects [50]. Myeloid-specific deletion of
Ppp2r1a (the gene responsible for subunit A) transgenic mouse models exposed to ambient
particulate matter 2.5 (PM2.5) resulted in increased inflammation and pulmonary fibrosis
in these animals [70]. PM2.5 exposure can induce oxidative damage, fibrosis, and collagen
deposition [87]. Similarly, Sun et al. 2019 demonstrated that myeloid-specific deletion
of PP2A in murine models increased lung fibrosis and matrix collagen deposition when
challenged with bleomycin [71]. Direct β-catenin activation contributes to the induction of
epithelial-mesenchymal transition (EMT), a critical process in tissue fibrosis and repair after
injury [88–95]. α2β1 integrin is an extracellular receptor found on the surface membrane of
pulmonary fibroblasts. α2β1 integrin receptor promotes dephosphorylation and activation
of GSK-3β through PP2A [96]. In IPF, low α2β1 integrin receptor concentrations lead to
decreased PP2A levels, increased phosphorylated GSK-3β, and increased β-catenin and
fibroblast proliferation.

Tissue analysis of eight IPF patients’ lung biopsies revealed elevated MID1 and TRAIL
expression and decreased PP2A activity [50]. To further elucidate the role of PP2A, TRAIL
knockout mice administered bleomycin or animals treated with the PP2A activator FTY-720
reduced bleomycin-induced fibrosis, and reduced expression levels of profibrotic genes, re-
duced collagen deposition, and decreased apoptosis. Importantly, TRAIL knockout animals
and FTY-720 treated mice were protected from bleomycin-induced fibrosis as observed
by preserving normal levels of vital capacity and compliance as seen during pulmonary
function testing [51]. Theophylline may have some potential in the treatment of IPF as it
can inhibit TGFβ -mediated transition of pulmonary fibroblasts into myofibroblasts by reg-
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ulaing the cAMP-PKA pathway and theophylline suppresses COL1 gene expression [97]. A
recent study demonstrated that theophylline could prevent bleomycin induced pulmonary
fibrosis in mice by inhibiting Th17 differentiation and TGFβ signaling [98].

3.5. PP2A in Lung Cancer

Loss of PP2A subunits via gene mutations or its inhibition by various endogenous
inhibitors is associated with the development of various cancers [56]. Particularly, muta-
tions in the PP2A-Aα subunit correlate with lung cancer (LC), occurring in 1.3% of LC
tumors [99]. Furthermore, PP2A-Aβmutation results in dysfunction of downstream GT-
Pase RalA. PP2A dephosphorylation of RalA leads to tumor suppression and loss of RalA
regulation, resulting in dysfunctional cell growth, migration, and apoptosis [57].

Mutations in genes encoding PP2A’s regulatory β-subunit are also implicated in
lung adenocarcinoma cell proliferation. The PP2A-B56γ isoform is responsible for de-
phosphorylation and inactivation of ERK and thus aborting cancer cell growth and tissue
invasion [58,59]. c-MYC transcription factor signaling significantly promotes NSCLC tu-
morigenesis and cancer cell metabolism [100]. When a B56α regulatory subunit binds the
PP2A holoenzyme, it provides targeting specificity for c-MYC. PP2A can then directly inac-
tivate c-MYC via dephosphorylation at serine 62, effectively neutralizing its pro-oncogenic
activity [60]. Additionally, constitutive activation of Akt serine/threonine kinase is crit-
ical in activating pro-oncotic gene expression, promoting NSCLC cell survival despite
chemotherapy and radiation [61–63]. PP2A activation, via endogenous inhibitor suppres-
sion, positively correlates with reduced phosphorylated Akt and subsequent increased
cancer cell death [101,102]. The upregulation of the PP2A inhibitor CIP2A is associated
with increased cancer cell proliferation and the upregulation of multiple downstream me-
diators, including JNK, MKK4, ATF2, and c-Jun [64]. This suggests that PP2A’s anti-tumor
properties may involve pathways beyond ERK and Akt signaling, indicating the need for
further research to fully elucidate the complex role of PP2A in tumorigenesis.

4. Endogenous Inhibitors of PP2A in Pulmonary Diseases

PP2A has multiple endogenous and exogenous inhibitors, but the major endogenous
inhibitors are cancerous inhibitor of PP2A (CIP2A), inhibitor 2 of PP2A (I2PP2A/SET),
endosulfine α (ENSA), ubiquitin E3 ligase midline 1 (MID1), and the protein phosphatase
methylesterase 1 (PME-1) [35,49].

4.1. Cancerous Inhibitor of PP2A (CIP2A)

Our group has shown that cigarette smoke can enhance CIP2A expression resulting
in PP2A inactivation [44]. CIP2A homodimer binds to PP2A heterotrimers containing
B56 subunits and inhibits by ejecting the A-subunit from the heterotrimer [103]. CIP2A
regulates PP2A and subsequently downstream effects on PLK1, E2F1, Akt, DAPK1, and
c-MYC in multiple types of cancer [104]. CIP2A expression is upregulated by numerous
factors, including microRNAs (miRNAs) and EGFR [105]. EGFR-MEK pathway utilizes
the ETS1 transcription factor to induce CIP2A expression [105]. We observed elevated
EGFR signaling in human bronchial epithelial (HBE) cells from COPD patients compared to
cells from healthy individuals [44]. Inhibition of EGFR signaling with erlotinib suppressed
CIP2A signaling and enhanced PP2A responses [44]. CIP2A expression is also known to be
negatively regulated by two miRNAs, miR-375 and miR-383-5p [106,107]. Overexpression
of miR-383-5p in H1299 lung adenocarcinoma cells led to G1 cell cycle arrest and apoptosis
via CIP2A inhibition, while miR-375 mediated CIP2A repression and subsequent reduced
production of oncoprotein MYC in oral tumors [107,108].

4.2. Inhibitor 2 of PP2A (I2PP2A/SET)

I2PP2A is a specific and potent inhibitor of PP2A displaying non-competitive kinetics
with IC50 of 2nM in vitro [109]. I2PP2A (a truncated form of SET) interacts with two sub-
units of PP2A, the PP2A-A subunit, and the PP2A-C subunit, via direct binding to both
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the N and C terminal regions, thereby inhibiting PP2A activity. Modulation of I2PP2A in
lung cancer cell lines modulates PP2A activity and subsequent phosphorylation of AKT
and ERK, which are linked to cell proliferation [109–112]. SET also regulates cyclin D1
and p27, which are integral in the cell cycle and can regulate MMP9 secretion, contributing
to the disruption of the extracellular matrix and enhancing cancer cell metastasis [112].
SET also plays a role in epithelial to mesenchymal transition (EMT) via its interaction with
c-MYC [113]. SET inhibition of PP2A ultimately leads to c-MYC phosphorylation at Ser 62,
which prevents degradation and oncogenic c-MYC expression [60].

4.3. Ubiquitin E3 Ligase Midline 1 (MID1)

MID1 interacts with the α4 regulatory subunit of PP2A and is required for its catalytic
C subunit’s ubiquitin-specific modification and proteasome-mediated degradation [114].
MID1 is upregulated in mouse bronchial epithelium following inhalation of HDM, and
MID1 regulates airway inflammation by limiting PP2A activity [115]. Elevated MID1
responses via TRAIL signaling inhibit PP2A activity and correlate with lung function
decline in pulmonary fibrosis [51]. This MID1-mediated regulation of PP2A activity also
plays a role in lung adenocarcinoma by influencing cell cycle progression, proliferation,
and apoptosis [116]. Importantly, the absence of TRAIL, in combination with reduced MID1
and protected PP2A activity, does not affect type 1 IFNs during rhinovirus infection but
reduces viral replication [117]. Targeting MID1 or PP2A activity directly impacted airway
hyperreactivity, IL-25, IL-33, CCL20, IL-5, IL-13, NFκB activity, p38 MAPK phosphorylation,
accumulation of eosinophils, T lymphocytes, and myeloid dendritic cells, and mucus-
producing cells [86,115].

4.4. Protein Phosphatase Methylesterase 1 (PME-1)

PME-1 is upregulated in 3.1% (4/124) of lung cancer samples and is associated with
PP2A demethylation at leucine 309 resulting in the inactivation of PP2A [118]. Contrast-
ingly, recent studies suggest PME-1 methyl-esterase activity possibly protects PP2Ac from
ubiquitin/proteasome degradation in embryonic fibroblasts, with PME-1 knockout mice
having lower PP2A activity compared to wild-type animals [119].

4.5. Newly Discovered PP2A Regulators

ENSA plays a significant role in regulating mitosis by inhibiting the activity of
PP2A-B55 during the M phase. Ref. [120] ENSA interacts with PP2A mainly via the
A-subunit [121]. PP2A can be influenced by the immunoglobulin-binding protein 1 (IGBP1)
as it interacts with the catalytic component of PP2A in small lung adenocarcinoma, and
IGBP1 is universally expressed and positively correlated to poorer prognosis [122]. IGBP1
inhibition of PP2A activity also impairs erythroid differentiation by enhancing 4EBP and
p70S6k phosphorylation [123].

The PP2A catalytic subunits are subject to ubiquitination and proteasomal degradation
when not bound to an A or B subunit. α4 is a non-catalytically active protein that can
protect PP2A activity via C subunit binding and protects the C subunits from ubiquitination.
The overexpression of α4 leads to hasten resolution of stress associated with DNA damage
and increased cell survival [124].

Ceramide can activate PP2A in a stereospecific manner. In acute lung injury, TNFα
induction leads to enhanced NFκB and MAPK responses, and IL8 mRNA production. TNFα
activates sphingomyelinase, ultimately leading to ceramide production and accumulation.
This accumulation results in PP2A activation leading to decreased inflammation [125].
Additionally, ceramide can indirectly activate PP2A by binding to SET and disrupting
the interaction of SET to PPP2CA [126]. The S1P analog FTY720 is structurally related to
ceramide and can bind to SET to prevent inhibition of PP2A [113].
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5. Potential Approaches to Activate PP2A
5.1. Indirect Activation of PP2A via Targeting Endogenous Inhibitors

Most novel approaches aim to restore PP2A activity can be classified into direct
strategies to activate the PP2A holoenzyme or its subunits and indirectly by counteracting
the variety of endogenous negative regulators of PP2A (see Table 2).

Table 2. Therapeutic targeting of PP2A.

Compound/Drug Mode of Action Impact on PP2A FDA-Approval Status Downstream Effects Reference

FTY720

FTY720 binds
I2PP2A/SET at the
K209/Y122 residue,

inactivating SET

Indirectly increases
PP2A activity

Fingolimod/Gilenya®,
FDA-approved drug by

Novartis to treat
multiple sclerosis

Suppression of c-myc and
upregulation of NDRG1,

Reduces EMT
[127–129]

FTY720 derivative:
AAL(s), OSU-2S

Disruption of the
SET-PP2A complex

Indirectly increases
PP2A activity Experimental use only AAL(s) enhances

TTP responses [79,130]

FTY720 derivatives:
MP07-66

Disruption of the
SET-PP2A complex

Indirectly increases
PP2A activity Experimental use only

Antiproliferative activity
in human hepatocellular
carcinoma without im-

munosuppressive effects

[131]

ApoE-derived
peptides: COG1410,

COG112

Binding to the
C-terminal end

of SET

Indirectly increases
PP2A activity Experimental use only

Inhibition of Akt
signaling, cellular

proliferation, cellular
migration, and invasion

[132–134]

TGI1002 Disrupts
SET-PP2A interaction

Indirectly increases
PP2A activity Experimental use only

Increases
dephosphorylation of

BCR-ABL, inhibits
tumor growth

[135]

EGFR kinase
inhibitors: erlotinib

Erlotinib inhibits
CIP2A responses

Indirectly increases
PP2A activity

Erlotinib (Tarceva®) is
approved for treating
EGFR-mutant NSLC

Induces apoptosis in
hepatocellular

carcinomas, reduces
smoke induced innate
immune and protease

responses

[44,136,137]

Erlotinib
derivative: TD52

Inhibits CIP2A
independently of
EGFR signaling

Indirectly increases
PP2A activity Experimental use only

Reduces CIP2A signaling,
tumor burden, and
increased apoptosis

[138–140]

Proteasome inhibitor:
bortezomib

Suppresses CIP2A
by undefined
mechanism

Indirectly increases
PP2A activity

Bortezomib (Velcade®),
approved for treating

multiple myeloma
Tumor growth inhibition [141–143]

Metformin CIP2A inhibition Indirectly increases
PP2A activity

Approved as an
antidiabetic agent used

in type 2
diabetes mellitus

Inhibition of GSK3β,
represses tumor growth,

indirectly leads to
dephosphorylation of

many proteins

[144,145]

Celastrol (tripterine)

CIP2A inhibition
through the
ubiquitin-

proteasome
pathway

Indirectly increases
PP2A activity Experimental use only

Inhibited cell
proliferation and induced

apoptosis in NSCL
[102]

Ethoxysanguinarine CIP2A inhibition Indirectly increases
PP2A activity Experimental use only

Downregulates c-Myc
and pAkt, inhibits

proliferation and induces
apoptosis of lung

cancer cells

[101]

PME-1 inhibitors:
AMZ30 and ML174

Inhibit
PME-1 signaling

Reduces
demethylation of
PP2A, increases
PP2A activity

Experimental use only
Decreases cell

proliferation and invasive
growth in vitro

[146]
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Table 2. Cont.

Compound/Drug Mode of Action Impact on PP2A FDA-Approval Status Downstream Effects Reference

SMAPs: DBK-1154,
DT-382, DT-794,

DT-061, and
ATUX-792

SMAP binding
stabilizes and

promotes PP2A
heterotrimeric
holoenzyme

assembly

Directly
activate PP2A Experimental use only

Increased ADP-ribose
cleavage, increased tumor
cell death, increase tumor

necrosis, reduce
cathepsin S expression,
MAP kinases responses

[43,46,147,148]

Xylulose-5-
phosphate

Increases
free phosphate

Indirectly increases
PP2A activity Experimental use only

Possible regulation of
glucose metabolism and

fat synthesis
[149]

α-Tocopheryl
succinate

Unknown
mechanism

Unknown if direct or
indirect

PP2A activation
Experimental use only

Inhibition of JNK, Akt,
MAPK, NFκB, Sp1 and
the androgen receptor

[150,151]

Forskolin Unknown
mechanism

Unknown if direct or
indirect PP2A

activation
Experimental use only

Dephosphorylation of
PP2A substrates such as

EF-2 and RB
[152]

Chlorpromazine
(Thorazine)

Same mechanism
as SMAPs

Direct activation
of PP2A

Phenothiazine
neuroleptic, FDA

approved for
short-term

management of severe
anxiety and

psychotic aggression

Dephosphorylation of
multiple PP2A substrates

and subsequently
induces apoptosis

[153]

Salmeterol Unknown
mechanism

Unknown if
direct or indirect
PP2A activation

FDA approved in the
management and

treatment of asthma
and COPD

Reduced immune cell
infiltration and innate
immune responses in
HDM mouse model

[84]

Theophylline Unknown
mechanism

Unknown
mechanism to

activate PP2A but is
independent of its
inhibition of PDE

FDA approved for the
treatment of asthma

and COPD

Inhibits type III and type
IV phosphodiesterase

(PDE). It also binds to the
adenosine A2B receptor

[82,154–156]

5.2. Inhibiting SET with FTY720

As already mentioned, one strategy to inhibit SET is using ceramide and its deriva-
tives, endogenous bioactive sphingolipids that activate PP2A by disrupting SET/PP2A
interaction [127–129]. FTY720 (Fingolimod/Gilenya®), an FDA-approved drug by Novartis,
is a sphingosine analog with immunosuppressive actions used to treat multiple sclerosis.
In vivo, FTY720 is phosphorylated to FTY720-phosphate, the active immunosuppressant
compound, that later binds to the sphingosine phosphate receptor (S1P1), leading to in-
ternalization and destruction of this receptor [157]. FTY720 directly binds I2PP2A/SET at
the K209/Y122 residue, inactivating SET [158]. Inactivation of PP2A via SET leads to the
induction of the c-myc oncogene and subsequent suppression of the NDRG1 tumor sup-
pressor gene, which drives epithelial to mesenchymal transition in cancerous A549/CDDP
cells and impart chemoresistance [113]. FTY720 reduced epithelial-mesenchymal transi-
tion molecular markers (Snail, N-cadherin, and vimentin), increased tumor sensitivity to
cisplatin, and reduced cancer cell invasion [159]. Derivatives of FTY720, like MP07-66
and OSU-2S, demonstrated FTY720-like antiproliferative activity in human hepatocellular
carcinoma while nullifying its immunosuppressive effects [131]. Whether these compounds
will demonstrate improved morbidity and mortality outcomes in lung cancer is yet to
be determined.

In addition to its immunosuppressive functions, FTY720 has an additional immunomod-
ulatory role in modifying hypersensitivity response in reactive airway disease [115]. In
mice challenged with HDM, allergic airway response is correlated with upregulation of
MID1, inhibition of PP2A, and activation of inflammatory mediators NFκB, p38 MAPK, and
JNK [115]. These changes are MIDI dependent as inhibition of MID1 using siRNA led to a
rise in PP2A and dephosphorylation of NF-κB, p38 MAPK, and JNK [115]. This is impor-
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tant for asthma as several studies note increased p38 MAPK signaling in the epithelium of
severe asthmatics [160,161], phosphorylation of NFκB leading to Th-2 cell-mediated allergic
airway responses, and JNK phosphorylation regulation of glucocorticoid receptor responses
in acute asthmatic exacerbation [66,162]. Treating mice with 2-amino-4-(4-heptyloyphenol)-
2-methylbutanol (AAL), a non-phosphorylatable version of FTY720, before exposure to
noxious stimuli reduces total lung resistance, inflammatory cells recruitment to the lung,
and increased dynamic compliance [115].

5.3. Next-Generation SET Inhibitors

Another possible option to inhibit SET involves apolipoprotein E (ApoE), a multi-
functional protein that has a role in cholesterol transport and immunoregulation [163–166].
ApoE, and apoE-mimetic peptides, COG112 and COG449 (OP449), activate PP2A by bind-
ing the C-terminal end of SET. Refs. [132–134] OP449 is effective when combined with
tyrosine kinase inhibitors for treating acute and chronic myeloid leukemia [132]. Finally,
TGI1002 is a small 2-phenyloxypyrimidine molecule that also disrupts the PP2A/SET
interaction and can increase in vitro activity of PP2A [135].

5.4. Inhibiting CIP2A
5.4.1. Erlotinib Derivatives

Two FDA-approved drugs inhibit CIP2A: erlotinib and bortezomib. Erlotinib (Tarceva®)
is an EGFR kinase inhibitor indicated for treating EGFR-mutant NSLC [136,137]. However,
several observations suggest that erlotinib may also have activity on CIP2A, independent
of EGFR. Erlotinib disubstituted quinazoline derivative, TD52, inhibits CIP2A responses
without the specific EGFR effects. TD52-treated triple-negative breast cancer xenografts
exhibited a reduction in CIP2A signaling, tumor burden, and increased apoptosis. Notably,
treatments were well tolerated without mice body weight changes. TD52 administration
reduced p-Elk1 and decreased its binding to the CIP2A promoter, reducing CIP2A levels
in vivo [138–140]. Separately, our group has demonstrated that erlotinib can suppress CIP2A
expression in HBE cells isolated from COPD patients [44]. This reduction in CIP2A led to
enhanced PP2A activity and reduced innate immune and protease responses.

Bortezomib (Velcade®), a proteasome inhibitor first approved for treating multiple
myeloma, has indirect PP2A-mediated activity potential [141]. Molecular studies suggest
Bortezmobib’s pro-apoptotic effects are partially mediated by induction of PP2A dephos-
phorylation and subsequent inactivation of known oncoprotein Akt at Ser 473 [167,168].
Treatment of hepatic adenocarcinoma and triple-negative primary ductal carcinoma cells
with bortezomib in vitro showed a dose-dependent reduction in CIP2A mRNA production
without affecting protein stability or proteasomal degradation [142,143]. Although the
specific mechanism of CIP2A transcription suppression is yet to be reported, this is of
great interest as CIP2A repression and subsequent upregulation of PP2A activity in key
cancer-promoting pathways (such as Akt and c-myc) affects the sensitivity of these solid
tumors to bortezomib.

5.4.2. Metformin

Metformin, a frontline agent in treating insulin-resistant type 2 diabetes, can increase
PP2A activity via CIP2A inhibition. While the biochemical mechanism of CIP2A sup-
pression is yet to be determined, metformin treatment alone correlates with significantly
reduced CIP2A levels via increased proteasomal degradation [144]. Furthermore, its in-
hibition of oxidative phosphorylation coupled with fasting-induced hypoglycemia (and
subsequent suppression in glycolysis) repressed tumor growth in the human colorectal
carcinoma xenograft mouse model [144]. Inhibition of GSK3β counteracts metformin’s
anti-tumor effect in glucose-deprived environment [144]. GSK3β is a Ser/Thr kinase critical
in regulating protein synthesis, cell growth, differentiation, and death. PP2A is a known
activator of GSK3β via dephosphorylation of serine residues nine and others [169,170]. Of
note, while metformin activates PP2A activity, glucose depletion promotes transcription of
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the PPP2R5D gene encoding PP2A B56δ regulatory subunit, ensuring GSK3β activating
specificity. There are two clinical trials currently investigating possible therapeutic effects
of fasting with metformin therapy on stage I-III triple-negative breast cancer and ductal
carcinoma in situ [171,172].

Given metformin’s relatively safe adverse effect profile, many therapeutic indications
for its use are being explored. Metformin’s activation of PP2A can preventing spatial
memory deficits in Alzheimer’s disease rat model, possibly by avoiding tau protein hyper-
phosphorylation [173]. Furthermore, Katila et al. demonstrate metformin’s neuroprotective
effects in mitigating 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) neurotoxicity
via increased α-synuclein dephosphorylation in a similar manner [174]. Active clinical
trials to assess Metformin use as secondary prophylaxis in amyotrophic lateral sclerosis,
frontotemporal dementia, and Huntington’s disease [175,176].

5.4.3. Other Newer CIP2A Inhibitors

As research in the field of CIP2A inhibition continues, new agents such as Celastrol
(tripterine), a compound found in traditional Chinese medicine, and ethoxysanguinarine, a
benzophenanthridine alkaloid extracted from Macleaya cordata that can inhibit the function
of this protein, are being investigated [101,102,177–179].

5.5. Inhibiting PME-1

PME1 is a serine hydrolase that facilitates reversible demethylation and inactivation
of PP2A at the leucine 309 residue [180]. Methylation of the L309 carboxyl group is critical
for PP2A-B subunit binding, formation of PP2A holoenzyme assembly, and targeting
specificity [181]. In conjunction with PP2A demethylation, PME-1 is believed to bind
directly to the PP2A-C subunit’s catalytic domain, inducing conformational change and
inactivating the enzyme. PME-1 can upregulate ERK activity and increasing its downstream
target Elk-1. Enhanced Elk-1 mediated gene transcription contributes to malignant cell
growth in glioblastoma cell lines [182,183].

Bachovin et al. identified several PME-1 inhibitors, including sulfonyl acrylonitrile
base AMZ30 and aza-β-lactams-based ML174 [146]. The most potent PME-1 inhibitor is
ML174 (also known as ABL127) and it covalently binds serine 156 of PME-1 via induction
of serine nucleophilic attack on an ML174 carbonyl group within its beta-lactam ring [146].
While preclinical studies of ML174 are promising, their clinical potential has yet to be
thoroughly investigated and little to no lung investigations are reported.

5.6. Direct Activation of PP2A

Two main classes of compounds target the scaffolding subunit A of PP2A and acti-
vate the holoenzyme: phenothiazines and small molecule activators of PP2A (SMAPs).
Phenothiazines are FDA-approved medications traditionally used as potent dopamine
receptor antagonists in treating various psychiatric disorders [184]. For example, chlor-
promazine (thorazine) can induce PP2A activity, with concomitant dephosphorylation
of PP2A-associated proteins and induction apoptosis [153]. They activate PP2A via a
mechanism described by Gutierrez and colleagues, which is responsible for the anti-tumor
effects shown by these drugs [147,153,185,186]. Reengineering phenothiazines led to the
identification of SMAPs, which are a part of the tricyclic sulfonamide subclass of tricyclic
neuroleptics [187]. Mechanistically, they stabilize PP2A ABC holoenzyme heterotrimers,
which restores basal PP2A activity by directly activating PP2A [187].

SMAPs DT-061, DT-382, DT-794, and DT-1154 (also known as DBK-1154) outlined in
Sangodkar et al. were tested in KRAS mutant lung cancer cells and demonstrated increased
poly (ADP-ribose) polymerase cleavage, an indicator of DNA damage, and increased
tumor cell death in a caspase-dependent manner [46]. In vivo experiments, treatment with
SMAPs significant inhibited tumor growth and increased tumor cell death [46]. Molecularly,
SMAP treatment substantially reduced phosphorylated ERK, the activation of which has
been well described to promote growth and chemoresistance in various cancers [188–190].
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Cross comparison between the SMAP treatment arm with a combination of MK2206 (AKT
inhibitor) and AZD6244 (MEK inhibitor) demonstrated similar antiproliferative activity
suggesting that the phosphatase effect of SMAP extends beyond ERK dephosphorylation
alone. Furthermore, systemic administration of SMAP over 30 days induced no liver
toxicity, mouse weight loss, behavioral changes, or increased mortality [46].

Our group has utilized DBK-1154 in a smoke-induced COPD mouse model and
demonstrated reduced emphysematous airway remodeling compared to controls [43]. In
the presence of cigarette smoke, administration of 1154 over two months was well tol-
erated, as seen by the absence of body weight and liver-to-body weight reduction [43].
Treatment with DBK-1154 reduced smoke-induced ductal destruction, immune cell infiltra-
tion, airway enlargement, and cathepsin S production [43]. A new SMAPs was recently
described to be an improvement on DBK-1154, due to DBK-1154 having low stability to
oxidative metabolism, resulting in fast clearance and limited systemic exposure after an
oral dose [148]. This new SMAP, ATUX-792 has modifications to the carbazole tricyclic,
central pyran ring constraint, and chlorine substitution of the carbazole group that makes
ATUX-792 more resistance to oxidation [148,191]. Therefore, improving the bioavailability
of these compounds may increase the potential for future human trials.

5.7. Unknown Mechanism of Targeting PP2A

A select group of compounds are reported to activate PP2A, but without a suggested
mechanism. Xylulose-5-phosphate (X5P), a nucleotide precursor in the pentose phosphate
pathway, added to fractionated hepatic murine lysates, increased free phosphate resulting
from X5P-induced PP2A activity [149]. Carnosic acid, a polyphenolic diterpene isolated
from rosemary, can inactivate intracellular signaling pathways by influencing PP2A re-
sponses in prostate cancer cells. However, it shows demethylation of PP2A with consequent
inhibition of PP2A activity in skeletal muscle cells [192,193]. This discordance in the ac-
tion of carnosic acid on PP2A highlights the importance of discovering the mechanisms of
actions of these PP2A-modulating strategies for potential drug development approaches. Vi-
tamin E analogs like α-Tocopheryl succinate (α-TOS) can activate PP2A [150,151]. Forskolin
is a diterpenoid derived from the Coleus forskohlii root that also activates PP2A and treatment
with it results in the dephosphorylation of PP2A substrates [152].

6. Potential Therapeutic Benefits of PP2A Inhibition

There are several studies suggesting that inhibition of PP2A may be beneficial. For
example, knockdown of PP2A’s catalytic c-subunit α (PP2Acα) can restore glycogen produc-
tion in the liver, reduce serum glucose, and reduce hepatic fibrosis resulting from repeated
hepatic injury [194,195]. LB-100, derived from Cantharidin, a compound secreted from blis-
tering beetles used in traditional Chinese medicine, can inhibit PP2Acα activity [196–198]
by displaces one of two Mn (2+) cofactors within the PP2A C subunit [198]. Chen et al.
demonstrated that six weeks of intraperitoneal injection of LB-100 significantly attenuated
high-fat diet-induced hepatic steatosis and inflammation in C57BL/6 mice. Molecularly,
LB-100 administration was correlated with significantly downregulated Srebp1 and down-
stream gene targets involved in lipogenesis [199].

Recent studies demonstrated LB-100’s therapeutic potential in various disease contexts,
including sensitization of malignant meningioma to radiation therapy and enhancing T cell-
mediated immunity against glioblastoma [200,201]. In 2016, LB-100 completed a phase I
clinical trial for treating solid tumors with Docetaxel. The study enrolled 29 patients
and demonstrated favorable safety, tolerability, and preliminary therapeutic potentials
in sarcomas, thymoma, and atypical carcinoids of lung, ovarian, testicular, breast, and
prostate cancer [202]. Clinical trials are ongoing to investigate the potential clinical benefits
of LB-100 use in glioblastoma, metastatic small-cell lung cancer, and myelodysplastic
syndrome [201].
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7. Potential Negative Impact of Systemic Targeting PP2A

PP2A has different physiologic functions, including playing a role in the maturation
of germ cells, maintaining homeostasis of various body organs, tumor suppression, and
regulation of metabolic processes. Although this review primarily focuses on pulmonary
functions of PP2A, we will briefly outline essential PP2A functions throughout the body
as systemic treatment with PP2A activators could influence several critical responses
within the body. A recent study suggests that antiphospholipid antibody recognition of
β2 glycoprotein I promote thrombosis and the authors suggested that inhibition of PP2A
could be a potential therapeutic mechanism for thrombosis [203].

Dysfunction of PP2A signaling can lead to cardiac hypertrophy, increased levels of
atrial natriuretic peptide and B-type natriuretic peptide, ventricular fibrosis, and impair-
ment in the cardiac contractile function in mouse studies [204–206]. PP2A in the my-
ocardium dephosphorylates proteins involved in excitation-contraction coupling, which in-
activates or decreases the function of the following: β-adrenergic receptor, L-type Ca2+ chan-
nel, ryanodine receptor, phospholamban, troponin I, myosin light chain [204]. Increased
protein phosphatase activity is observed in failing human and animal hearts [207]. A
study of transgenic mice transplanted with CD-1 mice overexpressing the PP2A catalytic
domain was subjected to left anterior descending artery-ligation surgery or sham surgery.
A month after myocardial infarction, histologic slides from the transgenic mice indicated
dilated cardiomyopathy, decreased function on echocardiogram, and decreased function of
sarco/endoplasmic reticulum Ca2+-ATPase (SERCA) and CaMKII pumps [206]. Dysfunc-
tion of PP2A units can also lead to dilated cardiomyopathy and impaired LV function [208].
Although dysregulation of PP2A pathways leads to different cardiac phenotypes, dys-
function of the Ca2+ response pathway might be the common pathway involved in the
pathogenesis of heart failure phenotypes [209,210]. B56α subunit is a likely subunit in-
volved in cardiac contractile function.

Recent work in patients with antiphospholipid syndrome (APS), an acquired autoim-
mune disease, suggest a possible association of PP2A in developing the prothrombotic
state. APS pathogenesis involves an inciting factor triggering endothelial cell damage and
apoptosis. This results in the formation of neoantigens formed from damaged cellular
membranes bounded by serum proteins. These neoantigens sensitize an adaptive immune
response by developing antiphospholipid antibodies (aPLs), mediating subsequent clinical
manifestations of venous and arterial thromboembolism. Sacharidou et al.’s work on
human aortic endothelial cells suggests that interaction between extracellular aPL and
surface glycoprotein β2 glycoprotein I (B2GPI) culminate in downstream inhibition of
eNOS, and subsequent production cessation of a key anticoagulant factor, nitric oxide,
likely from PP2A mediated phosphatase activity resulting in eNOS S1177 dephosphoryla-
tion and subsequent de-activation. Of note, this investigation utilized aPL/B2GPI binding
as a novel mode of PP2A activation. The group also observed that by knockdown of the
PP2A-Asubunit (PR65A), aPL suppression of eNOS was reversed. PP2A’s holoenzyme
diverse heterogeneity stems from a large possible combination of variable subunits. A
lack of data exists to inform whether differing modes of PP2A activation result in the
common PP2A activation profile or distinct variability of PP2A activation dependent on
the activation mechanism. Furthermore, whether PP2A activation contributes to systemic
thrombophilia in individuals without serum antiphospholipid autoantibodies has yet to be
determined [203].

Insulin sensitivity is a hallmark of various metabolic diseases, including type 2 dia-
betes Mellitus. PP2A mRNA levels and activity levels were elevated in the liver and muscle
tissue of the insulin-resistant Zucker Diabetic Fatty (ZDF) rat model [211]. Insulin mediates
activation (phosphorylation) of Akt. This leads to the inactivation of FOX01 and inhibition
of gluconeogenesis [212,213]. Activation of Akt also results in the inactivation of Gsk3α and
activation of glycogen synthase and resulting in increased glycogen synthesis [214]. Insulin
acts through aPKCs to stimulate sterol regulatory element-binding protein 1 (Srebp1c)
and increase FFA and TG synthesis [215,216]. In insulin-resistant mice, insulin activation
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of Akt is impaired. This is likely secondary to increased Akt-specific PP2A phosphatase
activity [217,218]. Ultimately, this leads to increased serum glucose via enhanced gluconeo-
genesis and reduction in glycogen synthesis; given that aPKCs stimulation is not impaired,
increased serum FFA and TG are also observed in the insulin-resistant state.

8. Conclusions

There is mounting evidence that PP2A phosphatase responses are subdued in several
pulmonary diseases which could plays an important role in altered inflammation signaling.
The overlapping prevalence of some of these pulmonary diseases and the possible existence
of common underlying molecular mechanisms, suggest that targeting similar pathways
in pulmonary diseases may be a logical approach to future treatment and indicate that
PP2A may be a key pathogenic link in the progression of several pulmonary diseases. Since
PP2A is a key regulator of inflammation and proteolytic responses, reduced PP2A could
alter the inflammation and extracellular matrix responses in the lungs triggering altered
lung function, pathology, and promote tumor initiation, growth and possibly metastasis.
Currently, there are several drugs that could be utilized to exert therapeutic effects on
PP2A activation, directly or indirectly. However, further extensive research is required
to determine the complex biology of PP2A and possibly improve the bioavailability of
current PP2A-activating compounds. Equally, systemic effects of PP2A activation needs
addressing in parallel with investigating the subsequent pulmonary outcomes. Clinical
trials of these compounds are likely to take place first in cancer, where the balance of risk to
benefit are more pronounced, though IPF which has a prognosis, after diagnosis, similar to
lung cancer may be an exception to this. Determining the upstreaming regulators of PP2A
and subsequent downstream effects of PP2A signaling at the initiation and through the
progression of the disease needs to be thoroughly investigated.
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