Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (690)

Search Parameters:
Keywords = endocrine disrupting chemical

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 858 KiB  
Review
Unraveling the Core of Endometriosis: The Impact of Endocrine Disruptors
by Efthalia Moustakli, Anastasios Potiris, Themos Grigoriadis, Athanasios Zikopoulos, Eirini Drakaki, Ioanna Zouganeli, Charalampos Theofanakis, Angeliki Gerede, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Int. J. Mol. Sci. 2025, 26(15), 7600; https://doi.org/10.3390/ijms26157600 - 6 Aug 2025
Abstract
Globally, endometriosis affects almost 10% of reproductive-aged women, leading to chronic pain and discomfort. Endocrine-disrupting compounds (EDCs) seem to play a pivotal role as a causal factor. The current manuscript aims to explain potential molecular pathways, synthesize current evidence regarding EDCs as causative [...] Read more.
Globally, endometriosis affects almost 10% of reproductive-aged women, leading to chronic pain and discomfort. Endocrine-disrupting compounds (EDCs) seem to play a pivotal role as a causal factor. The current manuscript aims to explain potential molecular pathways, synthesize current evidence regarding EDCs as causative agents of endometriosis, and highlight implications in the general population and clinical work. A thorough review of experimental, epidemiologic, and mechanistic research studies was conducted to explain the association between EDCs and endometriosis. Among the primary EDCs under investigation are polychlorinated biphenyls, dioxins, phthalates, and bisphenol A (BPA). Despite methodological heterogeneity and some discrepancies, epidemiologic evidence supports a positive association between some increased levels of BPA, phthalates, and dioxins in urine or in blood, and endometriosis. Experiments support some effect of EDCs on endometrial cells and causing endometriosis. EDCs function as xenoestrogens, alter immune function, induce oxidative stress, and disrupt progesterone signaling. Epigenetic reprogramming may play a role in mediating EDC-induced endometriosis. Endocrine, immunological, and epigenetic pathways link EDCs and endometriosis. Prevention techniques require deeper comprehension of those factors. Causal linkages and possible treatment targets should be based on longitudinal studies and multi-omics techniques. Restriction of EDCs could be beneficial for endometriosis prevalence limitation. Full article
(This article belongs to the Section Molecular Pathology, Diagnostics, and Therapeutics)
Show Figures

Figure 1

24 pages, 1861 KiB  
Review
Protective Effect of Melatonin Against Bisphenol A Toxicity
by Seong Soo Joo and Yeong-Min Yoo
Int. J. Mol. Sci. 2025, 26(15), 7526; https://doi.org/10.3390/ijms26157526 - 4 Aug 2025
Viewed by 189
Abstract
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with [...] Read more.
Bisphenol A (BPA), a prevalent endocrine-disrupting chemical, is widely found in various consumer products and poses significant health risks, particularly through hormone receptor interactions, oxidative stress, and mitochondrial dysfunction. BPA exposure is associated with reproductive, metabolic, and neurodevelopmental disorders. Melatonin, a neurohormone with strong antioxidant and anti-inflammatory properties, has emerged as a potential therapeutic agent to counteract the toxic effects of BPA. This review consolidates recent findings from in vitro and animal/preclinical studies, highlighting melatonin’s protective mechanisms against BPA-induced toxicity. These include its capacity to reduce oxidative stress, restore mitochondrial function, modulate inflammatory responses, and protect against DNA damage. In animal models, melatonin also mitigates reproductive toxicity, enhances fertility parameters, and reduces histopathological damage. Melatonin’s ability to regulate endoplasmic reticulum (ER) stress and cell death pathways underscores its multifaceted protective role. Despite promising preclinical results, human clinical trials are needed to validate these findings and establish optimal dosages, treatment durations, and safety profiles. This review discusses the wide range of potential uses of melatonin for treating BPA toxicity and suggests directions for future research. Full article
(This article belongs to the Section Molecular Toxicology)
Show Figures

Figure 1

18 pages, 3421 KiB  
Article
Bisphenol E Neurotoxicity in Zebrafish Larvae: Effects and Underlying Mechanisms
by Kaicheng Gu, Lindong Yang, Yi Jiang, Zhiqiang Wang and Jiannan Chen
Biology 2025, 14(8), 992; https://doi.org/10.3390/biology14080992 (registering DOI) - 4 Aug 2025
Viewed by 163
Abstract
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been [...] Read more.
As typical environmental hormones, endocrine-disrupting chemicals (EDCs) have become a global environmental health issue of high concern due to their property of interfering with the endocrine systems of organisms. As a commonly used substitute for bisphenol A (BPA), bisphenol E (BPE) has been frequently detected in environmental matrices such as soil and water in recent years. Existing research has unveiled the developmental and reproductive toxicity of BPE; however, only one in vitro cellular experiment has preliminarily indicated potential neurotoxic risks, with its underlying mechanisms remaining largely unelucidated in the current literature. Potential toxic mechanisms and action targets of BPE were predicted using the zebrafish model via network toxicology and molecular docking, with RT-qPCRs being simultaneously applied to uncover neurotoxic effects and associated mechanisms of BPE. A significant decrease (p < 0.05) in the frequency of embryonic spontaneous movements was observed in zebrafish at exposure concentrations ≥ 0.01 mg/L. At 72 hpf and 144 hpf, the larval body length began to shorten significantly from 0.1 mg/L to 1 mg/L, respectively (p < 0.01), accompanied by a reduced neuronal fluorescence intensity and a shortened neural axon length (p < 0.01). By 144 hpf, the motor behavior in zebrafish larvae was inhibited. Through network toxicology and molecular docking, HSP90AB1 was identified as the core target, with the cGMP/PKG signaling pathway determined to be the primary route through which BPE induces neurotoxicity in zebrafish larvae. BPE induces neuronal apoptosis and disrupts neurodevelopment by inhibiting the cGMP/PKG signaling pathway, ultimately suppressing the larval motor behavior. To further validate the experimental outcomes, we measured the expression levels of genes associated with neurodevelopment (elavl3, mbp, gap43, syn2a), serotonergic synaptic signaling (5-ht1ar, 5-ht2ar), the cGMP/PKG pathway (nos3), and apoptosis (caspase-3, caspase-9). These results offer crucial theoretical underpinnings for evaluating the ecological risks of BPE and developing environmental management plans, as well as crucial evidence for a thorough comprehension of the toxic effects and mechanisms of BPE on neurodevelopment in zebrafish larvae. Full article
(This article belongs to the Special Issue Advances in Aquatic Ecological Disasters and Toxicology)
Show Figures

Graphical abstract

26 pages, 1112 KiB  
Review
The Invisible Influence: Can Endocrine Disruptors Reshape Behaviors Across Generations?
by Antonella Damiano, Giulia Caioni, Claudio D’Addario, Carmine Merola, Antonio Francioso and Michele Amorena
Stresses 2025, 5(3), 46; https://doi.org/10.3390/stresses5030046 - 1 Aug 2025
Viewed by 150
Abstract
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive [...] Read more.
Among the numerous compounds released as a result of human activities, endocrine-disrupting chemicals (EDCs) have attracted particular attention due to their widespread detection in human biological samples and their accumulation across various ecosystems. While early research primarily focused on their effects on reproductive health, it is now evident that EDCs may impact neurodevelopment, altering the integrity of neural circuits essential for cognitive abilities, emotional regulation, and social behaviors. These compounds may elicit epigenetic modifications, such as DNA methylation and histone acetylation, that result in altered expression patterns, potentially affecting multiple generations and contribute to long-term behavioral phenotypes. The effects of EDCs may occur though both direct and indirect mechanisms, ultimately converging on neurodevelopmental vulnerability. In particular, the gut–brain axis has emerged as a critical interface targeted by EDCs. This bidirectional communication network integrates the nervous, immune, and endocrine systems. By altering the microbiota composition, modulating immune responses, and triggering epigenetic mechanisms, EDCs can act on multiple and interconnected pathways. In this context, elucidating the impact of EDCs on neurodevelopmental processes is crucial for advancing our understanding of their contribution to neurological and behavioral health risks. Full article
(This article belongs to the Collection Feature Papers in Human and Animal Stresses)
Show Figures

Figure 1

13 pages, 2414 KiB  
Article
In Silico Characterization of Molecular Interactions of Aviation-Derived Pollutants with Human Proteins: Implications for Occupational and Public Health
by Chitra Narayanan and Yevgen Nazarenko
Atmosphere 2025, 16(8), 919; https://doi.org/10.3390/atmos16080919 - 29 Jul 2025
Viewed by 298
Abstract
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of [...] Read more.
Combustion of aviation jet fuel emits a complex mixture of pollutants linked to adverse health outcomes among airport personnel and nearby communities. While epidemiological studies showed the detrimental effects of aviation-derived air pollutants on human health, the molecular mechanisms of the interactions of these pollutants with cellular biomolecules like proteins that drive the adverse health effects remain poorly understood. In this study, we performed molecular docking simulations of 272 pollutant–protein complexes using AutoDock Vina 1.2.7 to characterize the binding strength of the pollutants with the selected proteins. We selected 34 aviation-derived pollutants that constitute three chemical categories of pollutants: volatile organic compounds (VOCs), polyaromatic hydrocarbons (PAHs), and organophosphate esters (OPEs). Each pollutant was docked to eight proteins that play critical roles in endocrine, metabolic, transport, and neurophysiological functions, where functional disruption is implicated in disease. The effect of binding of multiple pollutants was analyzed. Our results indicate that aliphatic and monoaromatic VOCs display low (<6 kcal/mol) binding affinities while PAHs and organophosphate esters exhibit strong (>7 kcal/mol) binding affinities. Furthermore, the binding strength of PAHs exhibits a positive correlation with the increasing number of aromatic rings in the pollutants, ranging from nearly 7 kcal/mol for two aromatic rings to more than 15 kcal/mol for five aromatic rings. Analysis of intermolecular interactions showed that these interactions are predominantly stabilized by hydrophobic, pi-stacking, and hydrogen bonding interactions. Simultaneous docking of multiple pollutants revealed the increased binding strength of the resulting complexes, highlighting the detrimental effect of exposure to pollutant mixtures found in ambient air near airports. We provide a priority list of pollutants that regulatory authorities can use to further develop targeted mitigation strategies to protect the vulnerable personnel and communities near airports. Full article
(This article belongs to the Section Air Quality and Health)
Show Figures

Figure 1

27 pages, 1569 KiB  
Review
Bisphenols: Endocrine Disruptors and Their Impact on Fish: A Review
by Nikola Peskova and Jana Blahova
Fishes 2025, 10(8), 365; https://doi.org/10.3390/fishes10080365 - 29 Jul 2025
Viewed by 355
Abstract
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for [...] Read more.
Bisphenols (BPs), particularly bisphenol A (BPA) and its structural analogues, are synthetic compounds widely used in plastics and industrial materials. These substances are also recognised as endocrine-disrupting chemicals (EDCs) due to their ability to interfere with hormonal systems, which has significant implications for aquatic organisms. This review summarises the occurrence, environmental distribution, and toxicity of BPs in fish, with a focus on estrogenic, androgenic, thyroid, and glucocorticoid disruptions. Studies consistently show that exposure to BPs leads to altered gene expression, developmental abnormalities, impaired reproduction, and disrupted hormonal signalling in various fish species. Although BPA alternatives like bisphenol S, bisphenol F, or bisphenol AF were introduced as safer options, emerging evidence suggests they may pose equal or greater risks. Regulatory measures are evolving, particularly within the European Union, but legislation remains limited for many bisphenol analogues. This review emphasises the need for comprehensive environmental monitoring, stricter regulatory frameworks, and the development of genuinely safer alternatives to minimise the ecological and health impacts of BPs in aquatic systems. Full article
(This article belongs to the Section Environment and Climate Change)
Show Figures

Graphical abstract

27 pages, 1434 KiB  
Review
Unmasking the Epigenome: Insights into Testicular Cell Dynamics and Reproductive Function
by Shabana Anjum, Yamna Khurshid, Stefan S. Du Plessis and Temidayo S. Omolaoye
Int. J. Mol. Sci. 2025, 26(15), 7305; https://doi.org/10.3390/ijms26157305 - 28 Jul 2025
Viewed by 618
Abstract
The epigenetic landscape plays a pivotal role in regulating the functions of both germ and somatic cells (Sertoli and Leydig cells) within the testis, which are essential for male fertility. While somatic cells support germ cell maturation and testosterone synthesis, the epigenetic regulation [...] Read more.
The epigenetic landscape plays a pivotal role in regulating the functions of both germ and somatic cells (Sertoli and Leydig cells) within the testis, which are essential for male fertility. While somatic cells support germ cell maturation and testosterone synthesis, the epigenetic regulation of germ cells is critical for proper spermatogenesis and function. Epigenetic modifications such as DNA methylation, histone modifications, chromatin remodeling, and non-coding RNAs (ncRNAs) are crucial for regulating gene expression that is essential for spermatogenesis and reproductive function. Although numerous studies have highlighted the significance of the epigenome and its implications for male reproductive health, a comprehensive overview of the existing literature and knowledge is lacking. This review aims to provide an in-depth analysis of the role of epigenetics in spermatogenesis and reproductive health, with a specific focus on DNA methylation, histone remodeling, and small noncoding RNAs (sncRNAs). Additionally, we examine the impact of lifestyle and environmental factors, such as diet, smoking, physical activity, and exposure to endocrine-disrupting chemicals, on the sperm epigenome. We emphasize how these factors influence fertility, embryonic development, and potential transgenerational inheritance. This review underscores how recent advances in the understanding of the epigenetic modulation of testicular function can inform the pathophysiology of male infertility, thereby paving the way for the development of targeted diagnostic and therapeutic strategies. Full article
(This article belongs to the Special Issue Advances in Spermatogenesis and Male Infertility)
Show Figures

Figure 1

21 pages, 1625 KiB  
Article
Disrupting Defenses: Effects of Bisphenol A and Its Analogs on Human Antibody Production In Vitro
by Francesca Carlotta Passoni, Martina Iulini, Valentina Galbiati, Marina Marinovich and Emanuela Corsini
Life 2025, 15(8), 1203; https://doi.org/10.3390/life15081203 - 28 Jul 2025
Viewed by 258
Abstract
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus [...] Read more.
Bisphenol A (BPA) is an endocrine-disrupting chemical with estrogen-like activity, known to impair immune function. BPA may act as a pro-inflammatory agent, reducing immune response efficacy, increasing bacterial load in E. coli infections, and altering immune responses in parasitic infections (Leishmania major, Nippostrongylus brasiliensis, Toxocara canis) through cytokine and regulatory T-cell modulation. Following its ban in food contact materials in Europe, several analogs have been introduced. This study assessed the immunotoxicity of BPA and six analogs, namely BPAP, BPE, BPP, BPS-MAE, BPZ, and TCBPA, by evaluating in vitro the antibody production. Peripheral blood mononuclear cells from healthy male and female donors were exposed to increasing concentrations of each compound for 24 h. After stimulation with rhIL-2 and ODN2006, IgM and IgG secretion were measured on day six. All compounds suppressed antibody production in a concentration-dependent manner, with some sex-related differences. IC50 values showed BPP as the most potent suppressor, and BPE as the weakest. Similarly, IC20 values confirmed these differences in potency, except for BPA being the weakest for IgM in males. Overall, te results do not support the idea that BPA analogs are safer than BPA. Full article
(This article belongs to the Section Life Sciences)
Show Figures

Figure 1

23 pages, 2174 KiB  
Article
Effects of TBBPA Exposure on Neurodevelopment and Behavior in Mice
by Yongin Kim, Inho Hwang, Sun Kim and Eui-Bae Jeung
Int. J. Mol. Sci. 2025, 26(15), 7289; https://doi.org/10.3390/ijms26157289 - 28 Jul 2025
Viewed by 345
Abstract
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in consumer products. TBBPA is often detected in soil, water, organisms, and even in human blood and breast milk. Hence, it is accessible to developing fetuses and nursing offspring after maternal exposure. The [...] Read more.
Tetrabromobisphenol A (TBBPA) is a brominated flame retardant widely used in consumer products. TBBPA is often detected in soil, water, organisms, and even in human blood and breast milk. Hence, it is accessible to developing fetuses and nursing offspring after maternal exposure. The reported evidence for the endocrine disruption of TBBPA in the brain has raised concerns regarding its effects on neurodevelopmental and behavioral functions. This study investigated the effects of TBBPA exposure on neurodevelopment. A cell-based developmental neurotoxicity assay was performed to determine whether TBBPA is a developmental neurotoxicant. The assay revealed TBBPA to be a developmental neurotoxicant. C57BL/6N maternal mice were administered TBBPA at 0, 0.24, and 2.4 mg/kg during pregnancy and lactation, and their offspring underwent behavioral testing. The behavioral experiments revealed sex-specific effects. In females, only a deterioration of the motor ability was observed. In contrast, deteriorations in motor function, memory, and social interaction were noted in males. Furthermore, we validated changes in the expression of genes associated with behavioral abnormalities, confirming that perinatal exposure to TBBPA, at the administered doses, can affect neurodevelopment and behavior in offspring. These findings highlight the need for more in-depth and multifaceted research on the toxicity of TBBPA. Full article
(This article belongs to the Collection New Advances in Molecular Toxicology)
Show Figures

Figure 1

14 pages, 336 KiB  
Article
Testing the Development of a Diet-Based Bisphenol a Score to Facilitate Studies on Child Neurodevelopment: A Pilot Project
by Marisa A. Patti, Apollo Kivumbi, Juliette Rando, Ashley Song, Lisa A. Croen, Rebecca J. Schmidt, Heather E. Volk and Kristen Lyall
Int. J. Environ. Res. Public Health 2025, 22(8), 1174; https://doi.org/10.3390/ijerph22081174 - 25 Jul 2025
Viewed by 316
Abstract
While gestational Bisphenol A (BPA) exposure has been associated with autism, limited work has focused on dietary sources. Here, we sought to develop a summary metric to capture dietary exposure specifically and test its associations with measured levels, as well as child traits [...] Read more.
While gestational Bisphenol A (BPA) exposure has been associated with autism, limited work has focused on dietary sources. Here, we sought to develop a summary metric to capture dietary exposure specifically and test its associations with measured levels, as well as child traits related to autism. Participants (n = 116) were from the Early Autism Risk Longitudinal Investigation (EARLI) Study, which recruited pregnant women who previously had a child diagnosed with autism. Maternal concentrations of BPA were quantified in urine, and dietary sources of BPA were ascertained via food frequency questionnaires during gestation. A novel BPA “dietary burden score” was developed based on reported intake of foods known to contribute to BPA exposure (i.e., canned foods) from a Dietary History Questionnaire modified for pregnancy. Child autism-related traits were assessed via the Social Responsiveness Scale (SRS-2). We examined associations between BPA biomarkers, dietary burden scores, and child SRS scores. Dietary burden scores were weakly correlated with urinary BPA concentrations (R = 0.19, p = 0.05) but were not associated with child SRS scores. Our work suggests that more detailed dietary assessments may be needed to fully capture diet-based BPA exposures and address diet as a modifiable source of chemical exposure to reduce associated health impacts of BPA. Full article
15 pages, 1024 KiB  
Review
The Impact of Endocrine Disruptors on the Female Genital Tract Microbiome: A Narrative Review
by Efthalia Moustakli, Themos Grigoriadis, Anastasios Potiris, Eirini Drakaki, Athanasios Zikopoulos, Ismini Anagnostaki, Athanasios Zachariou, Ekaterini Domali, Peter Drakakis and Sofoklis Stavros
Life 2025, 15(8), 1177; https://doi.org/10.3390/life15081177 - 24 Jul 2025
Viewed by 260
Abstract
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially [...] Read more.
Background/Objectives: Endocrine disruptors (EDs) are xenobiotic chemicals that disrupt hormone signaling and homeostasis within the human body. Accumulative evidence proposes that EDs could affect systemic hormone balance and local microbial communities, including the female genital tract (FGT) microbiome. The FGT microbiome, and especially the vaginal microbiota, contributes significantly to reproductive health maintenance, defense against infection, and favorable pregnancy outcomes. Disruption of the delicate microbial environment is associated with conditions like bacterial vaginosis, infertility, and preterm birth. Methods: The present narrative review summarizes the existing literature on EDs’ potential for changing the FGT microbiome. We discuss EDs like bisphenol A (BPA), phthalates, and parabens and their potential for disrupting the FGT microbiome through ED-induced hormone perturbations, immune modulation, and epithelial barrier breach, which could lead to microbial dysbiosis. Results: Preliminary evidence suggests that ED exposure–microbial composition changes relationships; however, robust human evidence for EDs’ changes on the FGT microbiome remains scarce. Conclusions: Our review addresses major research gaps and suggests future directions for investigation, such as the necessity for longitudinal and mechanistic studies that combine microbiome, exposome, and endocrine parameters. The relationship between EDs and the FGT microbiome could be critical for enhancing women’s reproductive health and for steering regulatory policies on exposure to environmental chemicals. Full article
Show Figures

Figure 1

19 pages, 773 KiB  
Systematic Review
The Physiopathological Link Between Bisphenol A Exposure and Molar Incisor Hypomineralization Occurrence: A Systematic Review
by Estelle Mathonat, Thibault Canceill, Mathieu Marty, Alison Prosper, Alexia Vinel and Emmanuelle Noirrit-Esclassan
Dent. J. 2025, 13(8), 332; https://doi.org/10.3390/dj13080332 - 22 Jul 2025
Viewed by 283
Abstract
Objective: This study aimed to assess, through a systematic review, the potential link between bisphenol A (BPA) exposure and molar incisor hypomineralization (MIH). Methods: A systematic review was performed according to the PRISMA grid. All international studies—in vitro, in vivo, or [...] Read more.
Objective: This study aimed to assess, through a systematic review, the potential link between bisphenol A (BPA) exposure and molar incisor hypomineralization (MIH). Methods: A systematic review was performed according to the PRISMA grid. All international studies—in vitro, in vivo, or clinical—evaluating the relationships between bisphenol A and MIH were included. An iterative search of eligible publications was conducted on May 26, 2025, using three different databases: PubMed, Science Direct, and Google Scholar. Results: Eleven studies were included in the review, ten of which were experimental studies. They were published between 2013 and 2024. Among the selected articles, a rat model was used in eight studies and seven established a link between MIH and BPA (63.64% of the articles). In the included studies, the incisors of rats treated with BPA presented asymmetrical white spots at the enamel level, with a phenotype similar to human MIH. The authors highlight the hypothesis of the implication of steroid receptors expressed by ameloblasts, in particular at the stage of maturation, thus impacting enamel quality. Conclusions: The results presented in this review highlight a trend in the interaction of bisphenol A with steroid receptors, thus affecting enamel quality. However, these associations are weak, and future studies should investigate cofactors modulating BPA’s role in the development of MIH. Full article
(This article belongs to the Special Issue Current Advances in Pediatric Odontology)
Show Figures

Figure 1

21 pages, 3526 KiB  
Article
Prenatal Bisphenol A Exposure Impairs Fetal Heart Development: Molecular and Structural Alterations with Sex-Specific Differences
by Alessandro Marrone, Anna De Bartolo, Vittoria Rago, Francesco Conforti, Lidia Urlandini, Tommaso Angelone, Rosa Mazza, Maurizio Mandalà and Carmine Rocca
Antioxidants 2025, 14(7), 863; https://doi.org/10.3390/antiox14070863 - 14 Jul 2025
Viewed by 439
Abstract
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that [...] Read more.
Cardiovascular diseases (CVDs) remain the leading cause of morbidity and mortality worldwide, with increasing evidence suggesting that their origins may lie in prenatal life. Endocrine-disrupting chemicals (EDCs), such as bisphenol A (BPA), have been implicated in the alteration of fetal programming mechanisms that cause a predisposition to long-term cardiovascular vulnerability. However, the impact of prenatal endocrine disruption on fetal heart development and its sex-specific nature remains incompletely understood. This study investigates the molecular and structural effects of low-dose prenatal BPA exposure on fetal rat hearts. Our results reveal that BPA disrupts estrogen receptor (ER) signaling in a sex-dependent manner, with distinct alterations in ERα, ERβ, and GPER expression. BPA exposure also triggers significant inflammation, oxidative stress, and ferroptosis; this is evidenced by elevated NF-κB, IL-1β, TNF-α, and NLRP3 inflammasome activation, as well as impaired antioxidant defenses (SOD1, SOD2, CAT, and SELENOT), increased lipid peroxidation (MDA) and protein oxidation, decreased GPX4, and increased ACSL4 levels. These alterations are accompanied by increased markers of cardiac distension (ANP, BNP), extracellular matrix remodeling mediators, and pro-fibrotic regulators (Col1A1, Col3A1, TGF-β, and CTGF), with a more pronounced response in males. Histological analyses corroborated these molecular findings, revealing structural alterations as well as glycogen depletion in male fetal hearts, consistent with altered cardiac morphogenesis and metabolic stress. These effects were milder in females, reinforcing the notion of sex-specific vulnerability. Moreover, prenatal BPA exposure affected myocardial fiber architecture and vascular remodeling in a sex-dependent manner, as evidenced by reduced expression of desmin alongside increased levels of CD34 and Ki67. Overall, our findings provide novel insights into the crucial role of prenatal endocrine disruption during fetal heart development and its contribution to the early origins of CVD, underscoring the urgent need for targeted preventive strategies and further research into the functional impact of BPA-induced alterations on postnatal cardiac function and long-term disease susceptibility. Full article
Show Figures

Graphical abstract

42 pages, 8737 KiB  
Review
Environmental Xenobiotics and Epigenetic Modifications: Implications for Human Health and Disease
by Ana Filipa Sobral, Andrea Cunha, Inês Costa, Mariana Silva-Carvalho, Renata Silva and Daniel José Barbosa
J. Xenobiot. 2025, 15(4), 118; https://doi.org/10.3390/jox15040118 - 13 Jul 2025
Viewed by 2040
Abstract
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis [...] Read more.
Environmental xenobiotics, including heavy metals, endocrine-disrupting chemicals (EDCs), pesticides, air pollutants, nano- and microplastics, mycotoxins, and phycotoxins, are widespread compounds that pose significant risks to human health. These substances, originating from industrial and agricultural activities, vehicle emissions, and household products, disrupt cellular homeostasis and contribute to a range of diseases, including cancer and neurodegenerative diseases, among others. Emerging evidence indicates that epigenetic alterations, such as abnormal deoxyribonucleic acid (DNA) methylation, aberrant histone modifications, and altered expression of non-coding ribonucleic acids (ncRNAs), may play a central role in mediating the toxic effects of environmental xenobiotics. Furthermore, exposure to these compounds during critical periods, such as embryogenesis and early postnatal stages, can induce long-lasting epigenetic alterations that increase susceptibility to diseases later in life. Moreover, modifications to the gamete epigenome can potentially lead to effects that persist across generations (transgenerational effects). Although these modifications represent significant health risks, many epigenetic alterations may be reversible through the removal of the xenobiotic trigger, offering potential for therapeutic intervention. This review explores the relationship between environmental xenobiotics and alterations in epigenetic signatures, focusing on how these changes impact human health, including their potential for transgenerational inheritance and their potential reversibility. Full article
Show Figures

Graphical abstract

24 pages, 336 KiB  
Review
Molecular Shadows of Per- and Polyfluoroalkyl Substances (PFASs): Unveiling the Impact of Perfluoroalkyl Substances on Ovarian Function, Polycystic Ovarian Syndrome (PCOS), and In Vitro Fertilization (IVF) Outcomes
by Charalampos Voros, Diamantis Athanasiou, Ioannis Papapanagiotou, Despoina Mavrogianni, Antonia Varthaliti, Kyriakos Bananis, Antonia Athanasiou, Aikaterini Athanasiou, Georgios Papadimas, Athanasios Gkirgkinoudis, Kyriaki Migklis, Dimitrios Vaitsis, Aristotelis-Marios Koulakmanidis, Charalampos Tsimpoukelis, Sofia Ivanidou, Anahit J. Stepanyan, Maria Anastasia Daskalaki, Marianna Theodora, Panagiotis Antsaklis, Dimitrios Loutradi and Georgios Daskalakisadd Show full author list remove Hide full author list
Int. J. Mol. Sci. 2025, 26(14), 6604; https://doi.org/10.3390/ijms26146604 - 10 Jul 2025
Viewed by 592
Abstract
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial [...] Read more.
Per- and polyfluoroalkyl substances (PFASs) comprise a diverse array of synthetic chemicals that resist environmental degradation. They are increasingly recognised as endocrine-disrupting compounds (EDCs). These chemicals, found in non-stick cookware, food packaging, and industrial waste, accumulate in human tissues and fluids, raising substantial concerns regarding their impact on female reproductive health. Epidemiological studies have demonstrated associations between PFAS exposure and reduced fertility; nevertheless, the underlying molecular pathways remain inadequately understood. This narrative review investigates the multifaceted effects of PFASs on ovarian physiology, including its disruption of the hypothalamic–pituitary–ovarian (HPO) axis, alteration of anti-Müllerian hormone (AMH) levels, folliculogenesis, and gonadotropin receptor signalling. Significant attention is directed towards the emerging association between PFASs and polycystic ovarian syndrome (PCOS), wherein PFAS-induced hormonal disruption may exacerbate metabolic issues and elevated androgen levels. Furthermore, we analyse the current data regarding PFAS exposure in women undergoing treatment based on assisted reproductive technologies (ARTs), specifically in vitro fertilisation (IVF), highlighting possible associations with diminished oocyte quality, suboptimal embryo development, and implantation failure. We examine potential epigenetic and transgenerational alterations that may influence women’s reproductive capabilities over time. This study underscores the urgent need for further research and regulatory actions to tackle PFAS-related reproductive toxicity, particularly in vulnerable populations, such as women of reproductive age and those receiving fertility treatments. Full article
(This article belongs to the Special Issue Molecular Advances in Obstetrical and Gynaecological Disorders)
Back to TopTop