Testing the Development of a Diet-Based Bisphenol a Score to Facilitate Studies on Child Neurodevelopment: A Pilot Project
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Participants
2.2. BPA Exposure Assessment
2.3. BPA Dietary Burden Score
2.4. Autism-Related Traits Behavioral Assessment
2.5. Covariates
2.6. Statistical Analyses
2.6.1. Primary Analyses
2.6.2. Sensitivity Analyses
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Serrano, S.E.; Braun, J.; Trasande, L.; Dills, R.; Sathyanarayana, S. Phthalates and diet: A review of the food monitoring and epidemiology data. Environ. Health 2014, 13, 43. [Google Scholar] [CrossRef] [PubMed]
- Fierens, T.; Standaert, A.; Cornelis, C.; Sioen, I.; De Henauw, S.; Willems, H.; Bellemans, M.; De Maeyer, M.; Van Holderbeke, M. A semi-probabilistic modelling approach for the estimation of dietary exposure to phthalates in the Belgian adult population. Environ. Int. 2014, 73, 117–127. [Google Scholar] [CrossRef] [PubMed]
- Pacyga, D.C.; Sathyanarayana, S.; Strakovsky, R.S. Dietary Predictors of Phthalate and Bisphenol Exposures in Pregnant Women. Adv. Nutr. 2019, 10, 803–815. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhu, H.; Kannan, K. A Review of Biomonitoring of Phthalate Exposures. Toxics 2019, 7, 21. [Google Scholar] [CrossRef] [PubMed]
- Woodruff, T.J.; Zota, A.R.; Schwartz, J.M. Environmental chemicals in pregnant women in the United States: NHANES 2003–2004. Environ. Health Perspect. 2011, 119, 878–885. [Google Scholar] [CrossRef] [PubMed]
- Alampi, J.D.; Lanphear, B.P.; Braun, J.M.; Chen, A.; Takaro, T.K.; Muckle, G.; Arbuckle, T.E.; McCandless, L.C. Association Between Gestational Exposure to Toxicants and Autistic Behaviors Using Bayesian Quantile Regression. Am. J. Epidemiol. 2021, 190, 1803–1813. [Google Scholar] [CrossRef] [PubMed]
- Hansen, J.B.; Bilenberg, N.; Timmermann, C.A.G.; Jensen, R.C.; Frederiksen, H.; Andersson, A.-M.; Kyhl, H.B.; Jensen, T.K. Prenatal exposure to bisphenol A and autistic- and ADHD-related symptoms in children aged 2 and 5 years from the Odense Child Cohort. Environ. Health 2021, 20, 24. [Google Scholar] [CrossRef] [PubMed]
- Lim, Y.-H.; Bae, S.; Kim, B.-N.; Shin, C.H.; Lee, Y.A.; Kim, J.I.; Hong, Y.-C. Prenatal and postnatal bisphenol A exposure and social impairment in 4-year-old children. Environ. Health 2017, 16, 79. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Muckle, G.; Arbuckle, T.; Bouchard, M.F.; Fraser, W.D.; Ouellet, E.; Séguin, J.R.; Oulhote, Y.; Webster, G.M.; Lanphear, B.P. Associations of Prenatal Urinary Bisphenol A Concentrations with Child Behaviors and Cognitive Abilities. Environ. Health Perspect. 2017, 125, 067008. [Google Scholar] [CrossRef] [PubMed]
- Shaw, K.A.; Williams, S.; Patrick, M.E.; Valencia-Prado, M.; Durkin, M.S.; Howerton, E.M.; Ladd-Acosta, C.M.; Pas, E.T.; Bakian, A.V.; Bartholomew, P.; et al. Prevalence and Early Identification of Autism Spectrum Disorder Among Children Aged 4 and 8 Years—Autism and Developmental Disabilities Monitoring Network, 16 Sites, United States, 2022. MMWR Surveill. Summ. 2025, 74, 1–22. [Google Scholar] [CrossRef] [PubMed]
- Constantino, J.N.; Todd, R.D. Autistic traits in the general population: A twin study. Arch. Gen. Psychiatry 2003, 60, 524–530. [Google Scholar] [CrossRef] [PubMed]
- Lyall, K. What are quantitative traits and how can they be used in autism research? Autism Res. 2023, 16, 1289–1298. [Google Scholar] [CrossRef] [PubMed]
- Buckley, J.P.; Kim, H.; Wong, E.; Rebholz, C.M. Ultra-processed food consumption and exposure to phthalates and bisphenols in the US National Health and Nutrition Examination Survey, 2013–2014. Environ. Int. 2019, 131, 105057. [Google Scholar] [CrossRef] [PubMed]
- Martínez Steele, E.; Khandpur, N.; da Costa Louzada, M.L.; Monteiro, C.A. Association between dietary contribution of ultra-processed foods and urinary concentrations of phthalates and bisphenol in a nationally representative sample of the US population aged 6 years and older. PLoS ONE 2020, 15, e0236738. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, V.K.; Kahana, A.; Heidt, J.; Polemi, K.; Kvasnicka, J.; Jolliet, O.; Colacino, J.A. A comprehensive analysis of racial disparities in chemical biomarker concentrations in United States women, 1999–2014. Environ. Int. 2020, 137, 105496. [Google Scholar] [CrossRef] [PubMed]
- Konieczna, A.; Rutkowska, A.; Rachoń, D. Health risk of exposure to Bisphenol A (BPA). Rocz. Państwowego Zakładu Hig. 2015, 66, 5–11. [Google Scholar]
- Edwards, L.; McCray, N.L.; VanNoy, B.N.; Yau, A.; Geller, R.J.; Adamkiewicz, G.; Zota, A.R. Phthalate and novel plasticizer concentrations in food items from U.S. fast food chains: A preliminary analysis. J. Expo. Sci. Environ. Epidemiol. 2022, 32, 366–373. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, A.; Zota, A.R.; Valeri, L.; James-Todd, T. Multiple mediators approach to study environmental chemicals as determinants of health disparities. Environ. Epidemiol. 2018, 2, e015. [Google Scholar] [CrossRef] [PubMed]
- Constantino, J.N. Recurrence rates in autism spectrum disorders. JAMA 2014, 312, 1154–1155. [Google Scholar] [CrossRef] [PubMed]
- Hallmayer, J.; Cleveland, S.; Torres, A.; Phillips, J.; Cohen, B.; Torigoe, T.; Miller, J.; Fedele, A.; Collins, J.; Smith, K.; et al. Genetic heritability and shared environmental factors among twin pairs with autism. Arch. Gen. Psychiatry 2011, 68, 1095–1102. [Google Scholar] [CrossRef] [PubMed]
- Newschaffer, C.J.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Nguyen, D.V.; Lee, N.L.; Berry, C.A.; Farzadegan, H.; Hess, H.N.; Landa, R.J.; et al. Infant siblings and the investigation of autism risk factors. J. Neurodev. Disord. 2012, 4, 7. [Google Scholar] [CrossRef] [PubMed]
- Nutrition, C. for F.S. and A. Bisphenol A (BPA). FDA 2023. Available online: https://www.fda.gov/food/food-packaging-other-substances-come-contact-food-information-consumers/bisphenol-bpa-use-food-contact-application (accessed on 14 July 2025).
- Silva, M.J.; Samandar, E.; Preau, J.L.; Reidy, J.A.; Needham, L.L.; Calafat, A.M. Quantification of 22 phthalate metabolites in human urine. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2007, 860, 106–112. [Google Scholar] [CrossRef] [PubMed]
- Hornung, R.W.; Reed, L.D. Estimation of Average Concentration in the Presence of Nondetectable Values. Appl. Occup. Environ. Hyg. 1990, 5, 46–51. [Google Scholar] [CrossRef]
- Buckley, J.P.; Herring, A.H.; Wolff, M.S.; Calafat, A.M.; Engel, S.M. Prenatal exposure to environmental phenols and childhood fat mass in the Mount Sinai Children’s Environmental Health Study. Environ. Int. 2016, 91, 350–356. [Google Scholar] [CrossRef] [PubMed]
- Joyce, E.E.; Chavarro, J.E.; Rando, J.; Song, A.Y.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Schmidt, R.J.; Volk, H.; Newschaffer, C.J.; et al. Prenatal exposure to pesticide residues in the diet in association with child autism-related traits: Results from the EARLI study. Autism Res. 2022, 15, 957–970. [Google Scholar] [CrossRef] [PubMed]
- Hartle, J.C.; Zawadzki, R.S.; Rigdon, J.; Lam, J.; Gardner, C.D. Development and evaluation of a novel dietary bisphenol A (BPA) exposure risk tool. BMC Nutr. 2022, 8, 143. [Google Scholar] [CrossRef] [PubMed]
- Nomura, S.O.; Harnack, L.; Robien, K. Estimating bisphenol A exposure levels using a questionnaire targeting known sources of exposure. Public. Health Nutr. 2016, 19, 593–606. [Google Scholar] [CrossRef] [PubMed]
- Wilson, N.K.; Chuang, J.C.; Morgan, M.K.; Lordo, R.A.; Sheldon, L.S. An observational study of the potential exposures of preschool children to pentachlorophenol, bisphenol-A, and nonylphenol at home and daycare. Environ. Res. 2007, 103, 9–20. [Google Scholar] [CrossRef] [PubMed]
- Lorber, M.; Schecter, A.; Paepke, O.; Shropshire, W.; Christensen, K.; Birnbaum, L. Exposure assessment of adult intake of bisphenol A (BPA) with emphasis on canned food dietary exposures. Environ. Int. 2015, 77, 55–62. [Google Scholar] [CrossRef] [PubMed]
- Lim, D.S.; Kwack, S.J.; Kim, K.-B.; Kim, H.S.; Lee, B.M. Potential risk of bisphenol A migration from polycarbonate containers after heating, boiling, and microwaving. J. Toxicol. Environ. Health A 2009, 72, 1285–1291. [Google Scholar] [CrossRef] [PubMed]
- Cao, X.-L.; Perez-Locas, C.; Dufresne, G.; Clement, G.; Popovic, S.; Beraldin, F.; Dabeka, R.W.; Feeley, M. Concentrations of bisphenol A in the composite food samples from the 2008 Canadian total diet study in Quebec City and dietary intake estimates. Food Addit. Contam. Part A Chem. Anal. Control Expo. Risk Assess. 2011, 28, 791–798. [Google Scholar] [CrossRef] [PubMed]
- Constantino, J.N.; Gruber, C. Social Responsiveness Scale, 2nd ed.; Western Psychological Services: Torrance, CA, USA, 2012. [Google Scholar]
- Constantino, J.; Gruber, J. Social Responsiveness Scale (SRS) Manual; Western Psychological Services: Torrance, CA, USA, 2005. [Google Scholar]
- Bryant, B.E.; Jordan, A.; Clark, U.S. Race as a Social Construct in Psychiatry Research and Practice. JAMA Psychiatry 2022, 79, 93–94. [Google Scholar] [CrossRef] [PubMed]
- Kim, S. Overview of Cotinine Cutoff Values for Smoking Status Classification. Int. J. Environ. Res. Public. Health 2016, 13, 1236. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Naiman, D.Q. Temporal trends in bisphenol A exposure in the United States from 2003–2012 and factors associated with BPA exposure: Spot samples and urine dilution complicate data interpretation. Environ. Res. 2015, 142, 84–95. [Google Scholar] [CrossRef] [PubMed]
- Dehesh, T.; Mosleh-Shirazi, M.A.; Jafari, S.; Abolhadi, E.; Dehesh, P. A assessment of the effects of parental age on the development of autism in children: A systematic review and a meta-analysis. BMC Psychol. 2024, 12, 685. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Tang, S.; Xu, S.; Weng, S.; Liu, Z. Maternal Body Mass Index and Risk of Autism Spectrum Disorders in Offspring: A Meta-analysis. Sci. Rep. 2016, 6, 34248. [Google Scholar] [CrossRef] [PubMed]
- Hertz-Picciotto, I.; Korrick, S.A.; Ladd-Acosta, C.; Karagas, M.R.; Lyall, K.; Schmidt, R.J.; Dunlop, A.L.; Croen, L.A.; Dabelea, D.; Daniels, J.L.; et al. Maternal tobacco smoking and offspring autism spectrum disorder or traits in ECHO cohorts. Autism Res. 2022, 15, 551–569. [Google Scholar] [CrossRef] [PubMed]
- Rifas-Shiman, S.L.; Rich-Edwards, J.W.; Kleinman, K.P.; Oken, E.; Gillman, M.W. Dietary quality during pregnancy varies by maternal characteristics in Project Viva: A US cohort. J. Am. Diet. Assoc. 2009, 109, 1004–1011. [Google Scholar] [CrossRef] [PubMed]
- Tseng, P.-T.; Chen, Y.-W.; Stubbs, B.; Carvalho, A.F.; Whiteley, P.; Tang, C.-H.; Yang, W.-C.; Chen, T.-Y.; Li, D.-J.; Chu, C.-S.; et al. Maternal breastfeeding and autism spectrum disorder in children: A systematic review and meta-analysis. Nutr. Neurosci. 2019, 22, 354–362. [Google Scholar] [CrossRef] [PubMed]
- Raghavan, R.; Riley, A.W.; Volk, H.; Caruso, D.; Hironaka, L.; Sices, L.; Hong, X.; Wang, G.; Ji, Y.; Brucato, M.; et al. Maternal Multivitamin Intake, Plasma Folate and Vitamin B12 Levels and Autism Spectrum Disorder Risk in Offspring. Paediatr. Perinat. Epidemiol. 2018, 32, 100–111. [Google Scholar] [CrossRef] [PubMed]
- Friel, C.; Leyland, A.H.; Anderson, J.J.; Havdahl, A.; Brantsæter, A.L.; Dundas, R. Healthy Prenatal Dietary Pattern and Offspring Autism. JAMA Netw. Open 2024, 7, e2422815. [Google Scholar] [CrossRef] [PubMed]
- Vecchione, R.; Westlake, M.; Bragg, M.G.; Rando, J.; Bennett, D.H.; Croen, L.A.; Dunlop, A.L.; Ferrara, A.; Hedderson, M.M.; Kerver, J.M.; et al. Maternal Dietary Patterns During Pregnancy and Child Autism-Related Traits in the Environmental Influences on Child Health Outcomes Consortium. Nutrients 2024, 16, 3802. [Google Scholar] [CrossRef] [PubMed]
- Braun, J.M.; Smith, K.W.; Williams, P.L.; Calafat, A.M.; Berry, K.; Ehrlich, S.; Hauser, R. Variability of urinary phthalate metabolite and bisphenol A concentrations before and during pregnancy. Environ. Health Perspect. 2012, 120, 739–745. [Google Scholar] [CrossRef] [PubMed]
- Rudel, R.A.; Gray, J.M.; Engel, C.L.; Rawsthorne, T.W.; Dodson, R.E.; Ackerman, J.M.; Rizzo, J.; Nudelman, J.L.; Brody, J.G. Food packaging and bisphenol A and bis(2-ethyhexyl) phthalate exposure: Findings from a dietary intervention. Environ. Health Perspect. 2011, 119, 914–920. [Google Scholar] [CrossRef] [PubMed]
- Teeguarden, J.G.; Calafat, A.M.; Ye, X.; Doerge, D.R.; Churchwell, M.I.; Gunawan, R.; Graham, M.K. Twenty-four hour human urine and serum profiles of bisphenol a during high-dietary exposure. Toxicol. Sci. 2011, 123, 48–57. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.A.; Newschaffer, C.; Eliot, M.; Hamra, G.B.; Chen, A.; Croen, L.A.; Fallin, M.D.; Hertz-Picciotto, I.; Kalloo, G.; Khoury, J.C.; et al. Gestational Exposure to Phthalates and Social Responsiveness Scores in Children Using Quantile Regression: The EARLI and HOME Studies. Int. J. Environ. Res. Public. Health 2021, 18, 1254. [Google Scholar] [CrossRef] [PubMed]
- Shin, H.-M.; Schmidt, R.J.; Tancredi, D.; Barkoski, J.; Ozonoff, S.; Bennett, D.H.; Hertz-Picciotto, I. Prenatal exposure to phthalates and autism spectrum disorder in the MARBLES study. Environ. Health 2018, 17, 85. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, S.; Young, G.S.; Carter, A.; Messinger, D.; Yirmiya, N.; Zwaigenbaum, L.; Bryson, S.; Carver, L.J.; Constantino, J.N.; Dobkins, K.; et al. Recurrence risk for autism spectrum disorders: A Baby Siblings Research Consortium study. Pediatrics 2011, 128, e488–e495. [Google Scholar] [CrossRef] [PubMed]
- Ozonoff, S.; Young, G.S.; Steinfeld, M.B.; Hill, M.M.; Cook, I.; Hutman, T.; Macari, S.; Rogers, S.J.; Sigman, M. How early do parent concerns predict later autism diagnosis? J. Dev. Behav. Pediatr. 2009, 30, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Patti, M.A.; Croen, L.A.; Dickerson, A.S.; Joseph, R.M.; Ames, J.L.; Ladd-Acosta, C.; Ozonoff, S.; Schmidt, R.J.; Volk, H.E.; Hipwell, A.E.; et al. Reproducibility between preschool and school-age Social Responsiveness Scale forms in the Environmental influences on Child Health Outcomes program. Autism Res. 2024, 17, 1187–1204. [Google Scholar] [CrossRef] [PubMed]
- Environmental Working Group. CERHR Expert Review Panel on Bisphenol A. 2007. Available online: https://www.ewg.org/research/bisphenol-toxic-plastics-chemical-canned-food (accessed on 14 July 2025).
- van Woerden, I.; Bruening, M.; Montresor-López, J.; Payne-Sturges, D.C. Trends and disparities in urinary BPA concentrations among U.S. emerging adults. Environ. Res. 2019, 176, 108515. [Google Scholar] [CrossRef] [PubMed]
- LaKind, J.S.; Pollock, T.; Naiman, D.Q.; Kim, S.; Nagasawa, A.; Clarke, J. Factors affecting interpretation of national biomonitoring data from multiple countries: BPA as a case study. Environ. Res. 2019, 173, 318–329. [Google Scholar] [CrossRef] [PubMed]
- Vindenes, H.K.; Svanes, C.; Lygre, S.H.L.; Real, F.G.; Ringel-Kulka, T.; Bertelsen, R.J. Exposure to environmental phenols and parabens, and relation to body mass index, eczema and respiratory outcomes in the Norwegian RHINESSA study. Environ. Health 2021, 20, 81. [Google Scholar] [CrossRef] [PubMed]
- Geens, T.; Aerts, D.; Berthot, C.; Bourguignon, J.-P.; Goeyens, L.; Lecomte, P.; Maghuin-Rogister, G.; Pironnet, A.-M.; Pussemier, L.; Scippo, M.-L.; et al. A review of dietary and non-dietary exposure to bisphenol-A. Food Chem. Toxicol. 2012, 50, 3725–3740. [Google Scholar] [CrossRef] [PubMed]
- von Goetz, N.; Wormuth, M.; Scheringer, M.; Hungerbühler, K. Bisphenol a: How the most relevant exposure sources contribute to total consumer exposure. Risk Anal. 2010, 30, 473–487. [Google Scholar] [CrossRef] [PubMed]
- Ehrlich, S.; Calafat, A.M.; Humblet, O.; Smith, T.; Hauser, R. Handling of thermal receipts as a source of exposure to bisphenol A. JAMA 2014, 311, 859–860. [Google Scholar] [CrossRef] [PubMed]
- Noonan, G.O.; Ackerman, L.K.; Begley, T.H. Concentration of bisphenol A in highly consumed canned foods on the U.S. market. J. Agric. Food Chem. 2011, 59, 7178–7185. [Google Scholar] [CrossRef] [PubMed]
- Maenner, M.J.; Warren, Z.; Williams, A.R.; Amoakohene, E.; Bakian, A.V.; Bilder, D.A.; Durkin, M.S.; Fitzgerald, R.T.; Furnier, S.M.; Hughes, M.M.; et al. Prevalence and Characteristics of Autism Spectrum Disorder Among Children Aged 8 Years-Autism and Developmental Disabilities Monitoring Network, 11 Sites, United States, 2020. MMWR Surveill. Summ. 2023, 72, 1–14. [Google Scholar] [CrossRef] [PubMed]
- Uldbjerg, C.S.; Lim, Y.-H.; Krause, M.; Frederiksen, H.; Andersson, A.-M.; Bräuner, E.V. Sex-specific associations between maternal exposure to parabens, phenols and phthalates during pregnancy and birth size outcomes in offspring. Sci. Total Environ. 2022, 836, 155565. [Google Scholar] [CrossRef] [PubMed]
- Thongkorn, S.; Kanlayaprasit, S.; Kasitipradit, K.; Lertpeerapan, P.; Panjabud, P.; Hu, V.W.; Jindatip, D.; Sarachana, T. Investigation of autism-related transcription factors underlying sex differences in the effects of bisphenol A on transcriptome profiles and synaptogenesis in the offspring hippocampus. Biol. Sex Differ. 2023, 14, 8. [Google Scholar] [CrossRef] [PubMed]
- Edaes, F.S.; de Souza, C.B. BPS and BPF are as Carcinogenic as BPA and are Not Viable Alternatives for its Replacement. Endocr. Metab. Immune Disord. Drug Targets 2022, 22, 927–934. [Google Scholar] [CrossRef] [PubMed]
- Bornehag, C.-G.; Engdahl, E.; Unenge Hallerbäck, M.; Wikström, S.; Lindh, C.; Rüegg, J.; Tanner, E.; Gennings, C. Prenatal exposure to bisphenols and cognitive function in children at 7 years of age in the Swedish SELMA study. Environ. Int. 2021, 150, 106433. [Google Scholar] [CrossRef] [PubMed]
- Liu, B.; Lehmler, H.J.; Sun, Y.; Xu, G.; Sun, Q.; Snetselaar, L.G.; Wallace, R.B.; Bao, W. Association of Bisphenol A and Its Substitutes, Bisphenol F and Bisphenol S, with Obesity in United States Children and Adolescents. Diabetes Metab. J. 2019, 43, 59–75. [Google Scholar] [CrossRef] [PubMed]
- Sasso, A.F.; Pirow, R.; Andra, S.S.; Church, R.; Nachman, R.M.; Linke, S.; Kapraun, D.F.; Schurman, S.H.; Arora, M.; Thayer, K.A.; et al. Pharmacokinetics of Bisphenol A in Humans Following Dermal Administration. Environ. Int. 2020, 144, 106031. [Google Scholar] [CrossRef] [PubMed]
- Hartle, J.C.; Navas-Acien, A.; Lawrence, R.S. The consumption of canned food and beverages and urinary Bisphenol A concentrations in NHANES 2003–2008. Environ. Res. 2016, 150, 375–382. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Wattar, N.; Field, C.J.; Dinu, I.; Dewey, D.; Martin, J.W. APrON study team Exposure and dietary sources of bisphenol A (BPA) and BPA-alternatives among mothers in the APrON cohort study. Environ. Int. 2018, 119, 319–326. [Google Scholar] [CrossRef] [PubMed]
- Tse, L.A.; Lee, P.M.Y.; Ho, W.M.; Lam, A.T.; Lee, M.K.; Ng, S.S.M.; He, Y.; Leung, K.-S.; Hartle, J.C.; Hu, H.; et al. Bisphenol A and other environmental risk factors for prostate cancer in Hong Kong. Environ. Int. 2017, 107, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Thompson, F.E.; Subar, A.F.; Brown, C.C.; Smith, A.F.; Sharbaugh, C.O.; Jobe, J.B.; Mittl, B.; Gibson, J.T.; Ziegler, R.G. Cognitive research enhances accuracy of food frequency questionnaire reports: Results of an experimental validation study. J. Am. Diet. Assoc. 2002, 102, 212–225. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Thompson, F.E.; Kipnis, V.; Midthune, D.; Hurwitz, P.; McNutt, S.; McIntosh, A.; Rosenfeld, S. Comparative validation of the Block, Willett, and National Cancer Institute food frequency questionnaires: The Eating at America’s Table Study. Am. J. Epidemiol. 2001, 154, 1089–1099. [Google Scholar] [CrossRef] [PubMed]
- Subar, A.F.; Kipnis, V.; Troiano, R.P.; Midthune, D.; Schoeller, D.A.; Bingham, S.; Sharbaugh, C.O.; Trabulsi, J.; Runswick, S.; Ballard-Barbash, R.; et al. Using intake biomarkers to evaluate the extent of dietary misreporting in a large sample of adults: The OPEN study. Am. J. Epidemiol. 2003, 158, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Kipnis, V.; Subar, A.F.; Midthune, D.; Freedman, L.S.; Ballard-Barbash, R.; Troiano, R.P.; Bingham, S.; Schoeller, D.A.; Schatzkin, A.; Carroll, R.J. Structure of dietary measurement error: Results of the OPEN biomarker study. Am. J. Epidemiol. 2003, 158, 14–21. [Google Scholar] [CrossRef] [PubMed]
- Weisskopf, M.G.; Webster, T.F. Trade-offs of Personal Versus More Proxy Exposure Measures in Environmental Epidemiology. Epidemiology 2017, 28, 635–643. [Google Scholar] [CrossRef] [PubMed]
SRS T-Score | ||
---|---|---|
Variable | N (%) | Mean (SD) |
Overall | 116 (100) | 48 (11) |
Maternal Age (years) | ||
<30 | 13 (11) | 55 (13) |
30–<35 | 48 (41) | 48 (12) |
≥35 | 55 (47) | 46 (8.1) |
Maternal Race | ||
White | 80 (69) | 48 (11) |
Black | 8 (7) | 49 (16) |
Other | 28 (24) | 48 (9.6) |
Maternal Ethnicity | ||
Non-Hispanic | 97 (84) | 48 (12) |
Hispanic | 19 (16) | 48 (6.7) |
Maternal Education | ||
High School or Less | 13 | 51 (10) |
Some College | 33 | 53 (14) |
Completed College | 70 | 45 (7.7) |
Annual Household Income | ||
<$50 k | 23 (20) | 51 (16) |
$50 k–<$100 k | 45 (39) | 50 (10) |
≥$100 k | 48 (41) | 45 (7.4) |
Maternal Smoking Status 1 | ||
Non-Active | 112 (97) | 47 (10) |
Active | 4 (3) | 67 (17) |
Pre-Pregnancy BMI (kg/m2) | ||
Normal/Underweight < 25 | 44 (38) | 45 (8.9) |
Overweight ≥ 25–<30 | 31 (27) | 47 (9.7) |
Obese ≥ 30 | 41 (35) | 45 (8.9) |
Parity | ||
1 | 55 (47) | 50 (12) |
2 | 44 (38) | 44 (7.5) |
3+ | 17 (16) | 51 (10) |
Child Sex | ||
Boys | 63 (54) | 50 (13) |
Girls | 53 (46) | 46 (7.2) |
BPA Dietary Burden Score | ||
T1: Low BPA Dietary Intake | 32 (28) | 45 (6.6) |
T2: Moderate BPA Dietary Intake | 43 (37) | 50 (15) |
T3: High BPA Dietary Intake | 41 (35) | 48 (8.1) |
Concentrations of BPA (ng/mL) Median (1st Quartile, 3rd Quartile) | |||
---|---|---|---|
Tercile 1 | Tercile 2 | Tercile 3 | |
1.27 (0.86, 1.93) | 1.27 (0.94, 2.23) | 1.48 (1.05, 2.25) | |
N | 32 | 43 | 41 |
Correlation R (p-Value) | Unadjusted (95% CI) | Adjusted 1 (95% CI) | |
---|---|---|---|
Association between BPA dietary burden scores and SRS T-scores | |||
0.09 (0.35) | 0.01 (−0.01, 0.04) | 0.00 (−0.03, 0.03) | |
Association between urinary BPA concentrations and SRS T-scores | |||
0.09 (0.34) | 0.00 (0.00, 0.01) | 0.00 (−0.01, 0.01) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Patti, M.A.; Kivumbi, A.; Rando, J.; Song, A.; Croen, L.A.; Schmidt, R.J.; Volk, H.E.; Lyall, K. Testing the Development of a Diet-Based Bisphenol a Score to Facilitate Studies on Child Neurodevelopment: A Pilot Project. Int. J. Environ. Res. Public Health 2025, 22, 1174. https://doi.org/10.3390/ijerph22081174
Patti MA, Kivumbi A, Rando J, Song A, Croen LA, Schmidt RJ, Volk HE, Lyall K. Testing the Development of a Diet-Based Bisphenol a Score to Facilitate Studies on Child Neurodevelopment: A Pilot Project. International Journal of Environmental Research and Public Health. 2025; 22(8):1174. https://doi.org/10.3390/ijerph22081174
Chicago/Turabian StylePatti, Marisa A., Apollo Kivumbi, Juliette Rando, Ashley Song, Lisa A. Croen, Rebecca J. Schmidt, Heather E. Volk, and Kristen Lyall. 2025. "Testing the Development of a Diet-Based Bisphenol a Score to Facilitate Studies on Child Neurodevelopment: A Pilot Project" International Journal of Environmental Research and Public Health 22, no. 8: 1174. https://doi.org/10.3390/ijerph22081174
APA StylePatti, M. A., Kivumbi, A., Rando, J., Song, A., Croen, L. A., Schmidt, R. J., Volk, H. E., & Lyall, K. (2025). Testing the Development of a Diet-Based Bisphenol a Score to Facilitate Studies on Child Neurodevelopment: A Pilot Project. International Journal of Environmental Research and Public Health, 22(8), 1174. https://doi.org/10.3390/ijerph22081174