Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,076)

Search Parameters:
Keywords = emerging devices

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2036 KiB  
Article
Scalable Chemical Vapor Deposition of Silicon Carbide Thin Films for Photonic Integrated Circuit Applications
by Souryaya Dutta, Alex Kaloyeros, Animesh Nanaware and Spyros Gallis
Appl. Sci. 2025, 15(15), 8603; https://doi.org/10.3390/app15158603 (registering DOI) - 2 Aug 2025
Abstract
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in [...] Read more.
Highly integrable silicon carbide (SiC) has emerged as a promising platform for photonic integrated circuits (PICs), offering a comprehensive set of material and optical properties that are ideal for the integration of nonlinear devices and solid-state quantum defects. However, despite significant progress in nanofabrication technology, the development of SiC on an insulator (SiCOI)-based photonics faces challenges due to fabrication-induced material optical losses and complex processing steps. An alternative approach to mitigate these fabrication challenges is the direct deposition of amorphous SiC on an insulator (a-SiCOI). However, there is a lack of systematic studies aimed at producing high optical quality a-SiC thin films, and correspondingly, on evaluating and determining their optical properties in the telecom range. To this end, we have studied a single-source precursor, 1,3,5-trisilacyclohexane (TSCH, C3H12Si3), and chemical vapor deposition (CVD) processes for the deposition of SiC thin films in a low-temperature range (650–800 °C) on a multitude of different substrates. We have successfully demonstrated the fabrication of smooth, uniform, and stoichiometric a-SiCOI thin films of 20 nm to 600 nm with a highly controlled growth rate of ~0.5 Å/s and minimal surface roughness of ~5 Å. Spectroscopic ellipsometry and resonant micro-photoluminescence excitation spectroscopy and mapping reveal a high index of refraction (~2.7) and a minimal absorption coefficient (<200 cm−1) in the telecom C-band, demonstrating the high optical quality of the films. These findings establish a strong foundation for scalable production of high-quality a-SiCOI thin films, enabling their application in advanced chip-scale telecom PIC technologies. Full article
(This article belongs to the Section Materials Science and Engineering)
Show Figures

Figure 1

15 pages, 4435 KiB  
Article
An Ultra-Robust, Highly Compressible Silk/Silver Nanowire Sponge-Based Wearable Pressure Sensor for Health Monitoring
by Zijie Li, Ning Yu, Martin C. Hartel, Reihaneh Haghniaz, Sam Emaminejad and Yangzhi Zhu
Biosensors 2025, 15(8), 498; https://doi.org/10.3390/bios15080498 (registering DOI) - 1 Aug 2025
Abstract
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted [...] Read more.
Wearable pressure sensors have emerged as vital tools in personalized monitoring, promising transformative advances in patient care and diagnostics. Nevertheless, conventional devices frequently suffer from limited sensitivity, inadequate flexibility, and concerns regarding biocompatibility. Herein, we introduce silk fibroin, a naturally occurring protein extracted from silkworm cocoons, as a promising material platform for next-generation wearable sensors. Owing to its remarkable biocompatibility, mechanical robustness, and structural tunability, silk fibroin serves as an ideal substrate for constructing capacitive pressure sensors tailored to medical applications. We engineered silk-derived capacitive architecture and evaluated its performance in real-time human motion and physiological signal detection. The resulting sensor exhibits a high sensitivity of 18.68 kPa−1 over a broad operational range of 0 to 2.4 kPa, enabling accurate tracking of subtle pressures associated with pulse, respiration, and joint articulation. Under extreme loading conditions, our silk fibroin sensor demonstrated superior stability and accuracy compared to a commercial resistive counterpart (FlexiForce™ A401). These findings establish silk fibroin as a versatile, practical candidate for wearable pressure sensing and pave the way for advanced biocompatible devices in healthcare monitoring. Full article
(This article belongs to the Special Issue Wearable Biosensors and Health Monitoring)
15 pages, 580 KiB  
Article
Reliability and Inter-Device Agreement Between a Portable Handheld Ultrasound Scanner and a Conventional Ultrasound System for Assessing the Thickness of the Rectus Femoris and Vastus Intermedius
by Carlante Emerson, Hyun K. Kim, Brian A. Irving and Efthymios Papadopoulos
J. Funct. Morphol. Kinesiol. 2025, 10(3), 299; https://doi.org/10.3390/jfmk10030299 (registering DOI) - 1 Aug 2025
Abstract
Background: Ultrasound (U/S) can be used to evaluate skeletal muscle characteristics in clinical and sports settings. Handheld U/S devices have recently emerged as a cheaper and portable alternative to conventional U/S systems. However, further research is warranted on their reliability. We assessed the [...] Read more.
Background: Ultrasound (U/S) can be used to evaluate skeletal muscle characteristics in clinical and sports settings. Handheld U/S devices have recently emerged as a cheaper and portable alternative to conventional U/S systems. However, further research is warranted on their reliability. We assessed the reliability and inter-device agreement between a handheld U/S device (Clarius L15 HD3) and a more conventional U/S system (GE LOGIQ e) for measuring the thickness of the rectus femoris (RF) and vastus intermedius (VI). Methods: Cross-sectional images of the RF and VI muscles were obtained in 20 participants by two assessors, and on two separate occasions by one of those assessors, using the Clarius L15 HD3 and GE LOGIQ e devices. RF and VI thickness measurements were obtained to determine the intra-rater reliability, inter-rater reliability, and inter-device agreement. Results: All intraclass correlation coefficients (ICCs) were above 0.9 for intra-rater reliability (range: 0.94 to 0.97), inter-rater reliability (ICC: 0.97), and inter-device agreement (ICC: 0.98) when comparing the two devices in assessing RF and VI thickness. For the RF, the Bland–Altman plot revealed a mean difference of 0.06 ± 0.07 cm, with limits of agreement ranging from 0.21 to −0.09, whereas for the VI, the Bland–Altman plot showed a mean difference of 0.07 ± 0.10 cm, with limits of agreement ranging from 0.27 to −0.13. Conclusions: The handheld Clarius L15 HD3 was reliable and demonstrated high agreement with the more conventional GE LOGIQ e for assessing the thickness of the RF and VI in young, healthy adults. Full article
(This article belongs to the Section Kinesiology and Biomechanics)
28 pages, 2465 KiB  
Article
Latency-Aware and Energy-Efficient Task Offloading in IoT and Cloud Systems with DQN Learning
by Amina Benaboura, Rachid Bechar, Walid Kadri, Tu Dac Ho, Zhenni Pan and Shaaban Sahmoud
Electronics 2025, 14(15), 3090; https://doi.org/10.3390/electronics14153090 (registering DOI) - 1 Aug 2025
Abstract
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy [...] Read more.
The exponential proliferation of the Internet of Things (IoT) and optical IoT (O-IoT) has introduced substantial challenges concerning computational capacity and energy efficiency. IoT devices generate vast volumes of aggregated data and require intensive processing, often resulting in elevated latency and excessive energy consumption. Task offloading has emerged as a viable solution; however, many existing strategies fail to adequately optimize both latency and energy usage. This paper proposes a novel task-offloading approach based on deep Q-network (DQN) learning, designed to intelligently and dynamically balance these critical metrics. The proposed framework continuously refines real-time task offloading decisions by leveraging the adaptive learning capabilities of DQN, thereby substantially reducing latency and energy consumption. To further enhance system performance, the framework incorporates optical networks into the IoT–fog–cloud architecture, capitalizing on their high-bandwidth and low-latency characteristics. This integration facilitates more efficient distribution and processing of tasks, particularly in data-intensive IoT applications. Additionally, we present a comparative analysis between the proposed DQN algorithm and the optimal strategy. Through extensive simulations, we demonstrate the superior effectiveness of the proposed DQN framework across various IoT and O-IoT scenarios compared to the BAT and DJA approaches, achieving improvements in energy consumption and latency of 35%, 50%, 30%, and 40%, respectively. These findings underscore the significance of selecting an appropriate offloading strategy tailored to the specific requirements of IoT and O-IoT applications, particularly with regard to environmental stability and performance demands. Full article
Show Figures

Figure 1

25 pages, 17212 KiB  
Article
Three-Dimensional Printing of Personalized Carbamazepine Tablets Using Hydrophilic Polymers: An Investigation of Correlation Between Dissolution Kinetics and Printing Parameters
by Lianghao Huang, Xingyue Zhang, Qichen Huang, Minqing Zhu, Tiantian Yang and Jiaxiang Zhang
Polymers 2025, 17(15), 2126; https://doi.org/10.3390/polym17152126 (registering DOI) - 1 Aug 2025
Abstract
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision [...] Read more.
Background: Precision medicine refers to the formulation of personalized drug regimens according to the individual characteristics of patients to achieve optimal efficacy and minimize adverse reactions. Additive manufacturing (AM), also known as three-dimensional (3D) printing, has emerged as an optimal solution for precision drug delivery, enabling customizable and the fabrication of multifunctional structures with precise control over morphology and release behavior in pharmaceutics. However, the influence of 3D printing parameters on the printed tablets, especially regarding in vitro and in vivo performance, remains poorly understood, limiting the optimization of manufacturing processes for controlled-release profiles. Objective: To establish the fabrication process of 3D-printed controlled-release tablets via comprehensively understanding the printing parameters using fused deposition modeling (FDM) combined with hot-melt extrusion (HME) technologies. HPMC-AS/HPC-EF was used as the drug delivery matrix and carbamazepine (CBZ) was used as a model drug to investigate the in vitro drug delivery performance of the printed tablets. Methodology: Thermogravimetric analysis (TGA) was employed to assess the thermal compatibility of CBZ with HPMC-AS/HPC-EF excipients up to 230 °C, surpassing typical processing temperatures (160–200 °C). The formation of stable amorphous solid dispersions (ASDs) was validated using differential scanning calorimetry (DSC), hot-stage polarized light microscopy (PLM), and powder X-ray diffraction (PXRD). A 15-group full factorial design was then used to evaluate the effects of the fan speed (20–100%), platform temperature (40–80 °C), and printing speed (20–100 mm/s) on the tablet properties. Response surface modeling (RSM) with inverse square-root transformation was applied to analyze the dissolution kinetics, specifically t50% (time for 50% drug release) and Q4h (drug released at 4 h). Results: TGA confirmed the thermal compatibility of CBZ with HPMC-AS/HPC-EF, enabling stable ASD formation validated by DSC, PLM, and PXRD. The full factorial design revealed that printing speed was the dominant parameter governing dissolution behavior, with high speeds accelerating release and low speeds prolonging release through porosity-modulated diffusion control. RSM quadratic models showed optimal fits for t50% (R2 = 0.9936) and Q4h (R2 = 0.9019), highlighting the predictability of release kinetics via process parameter tuning. This work demonstrates the adaptability of polymer composite AM for tailoring drug release profiles, balancing mechanical integrity, release kinetics, and manufacturing scalability to advance multifunctional 3D-printed drug delivery devices in pharmaceutics. Full article
Show Figures

Figure 1

15 pages, 394 KiB  
Review
Contemporary Approaches to Obstructive Sleep Apnea: A Review of Orthodontic and Non-Orthodontic Interventions in Children and Adults
by Janvier Habumugisha
Oral 2025, 5(3), 55; https://doi.org/10.3390/oral5030055 (registering DOI) - 1 Aug 2025
Abstract
Background: Obstructive sleep apnea (OSA) is a prevalent disorder in both pediatric and adult populations, characterized by substantial morbidity encompassing cardiovascular, neurocognitive, and metabolic impairments. Management strategies vary by age group and underlying etiology, with orthodontic and non-orthodontic interventions playing key roles. [...] Read more.
Background: Obstructive sleep apnea (OSA) is a prevalent disorder in both pediatric and adult populations, characterized by substantial morbidity encompassing cardiovascular, neurocognitive, and metabolic impairments. Management strategies vary by age group and underlying etiology, with orthodontic and non-orthodontic interventions playing key roles. This narrative review synthesizes the current evidence on orthodontic and non-orthodontic therapies for OSA in pediatric and adult populations, emphasizing individualized, multidisciplinary care approaches and highlighting future research directions. Methods: A narrative review was conducted using PubMed, Scopus, and Google Scholar to identify studies on diagnosis and management of OSA in children and adults from 2000 to 2025. Results: In pediatric patients, treatments such as rapid maxillary expansion (RME), mandibular advancement devices (MADs), and adenotonsillectomy have shown promising outcomes in improving airway dimensions and reducing apnea–hypopnea index (AHI). For adults, comprehensive management includes positive airway pressure (PAP) therapy, oral appliances, maxillomandibular advancement (MMA) surgery, and emerging modalities such as hypoglossal nerve stimulation. Special attention is given to long-term treatment outcomes, adherence challenges, and multidisciplinary approaches. Conclusions: The findings highlight the need for individualized therapy based on anatomical, functional, and compliance-related factors. As the understanding of OSA pathophysiology evolves, orthodontic and adjunctive therapies continue to expand their role in achieving durable and patient-centered outcomes in sleep apnea management. Full article
Show Figures

Figure 1

24 pages, 1053 KiB  
Article
Modelling the Dynamic Emergence of AI-Enabled Biomedical Innovation Systems
by Shih-Hsin Chen and Wen-Hsin Chi
Systems 2025, 13(8), 648; https://doi.org/10.3390/systems13080648 (registering DOI) - 1 Aug 2025
Abstract
How do regulatory policies, funding structures, and cross-sector coordination shape knowledge flows and institutional transformation? Focusing on the smart medical device sector in Taiwan, this study explores how governance dynamics accelerate system transformation and foster demand for adaptive and integrative innovation systems. Building [...] Read more.
How do regulatory policies, funding structures, and cross-sector coordination shape knowledge flows and institutional transformation? Focusing on the smart medical device sector in Taiwan, this study explores how governance dynamics accelerate system transformation and foster demand for adaptive and integrative innovation systems. Building on the National Biotechnology Innovation System framework and qualitative system dynamics modeling, the study analyzes institutional interactions through 28 semi-structured interviews and 18 policy documents. Findings identify systemic bottlenecks, including translational gaps, coordination challenges, and barriers for traditional manufacturers. These gaps have enabled tech firms to emerge as system leaders by bridging these institutional gaps. This study extends innovation systems theory by conceptualizing an emergent governance function that addresses institutional gaps. At the policy level, the study highlights the importance of enabling institutional change in governance to address structural fragmentation and support system-wide transformation. Full article
(This article belongs to the Special Issue Innovative Systems Approaches to Healthcare Systems)
Show Figures

Figure 1

36 pages, 6545 KiB  
Review
MXene-Based Composites for Energy Harvesting and Energy Storage Devices
by Jorge Alexandre Alencar Fotius and Helinando Pequeno de Oliveira
Solids 2025, 6(3), 41; https://doi.org/10.3390/solids6030041 (registering DOI) - 1 Aug 2025
Abstract
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in [...] Read more.
MXenes, a class of two-dimensional transition metal carbides and nitrides, emerged as a promising material for next-generation energy storage and corresponding applications due to their unique combination of high electrical conductivity, tunable surface chemistry, and lamellar structure. This review highlights recent advances in MXene-based composites, focusing on their integration into electrode architectures for the development of supercapacitors, batteries, and multifunctional devices, including triboelectric nanogenerators. It serves as a comprehensive overview of the multifunctional capabilities of MXene-based composites and their role in advancing efficient, flexible, and sustainable energy and sensing technologies, outlining how MXene-based systems are poised to redefine multifunctional energy platforms. Electrochemical performance optimization strategies are discussed by considering surface functionalization, interlayer engineering, scalable synthesis techniques, and integration with advanced electrolytes, with particular attention paid to the development of hybrid supercapacitors, triboelectric nanogenerators (TENGs), and wearable sensors. These applications are favored due to improved charge storage capability, mechanical properties, and the multifunctionality of MXenes. Despite these aspects, challenges related to long-term stability, sustainable large-scale production, and environmental degradation must still be addressed. Emerging approaches such as three-dimensional self-assembly and artificial intelligence-assisted design are identified as key challenges for overcoming these issues. Full article
Show Figures

Figure 1

40 pages, 1548 KiB  
Article
Real-Time Service Migration in Edge Networks: A Survey
by Yutong Zhang, Ke Zhao, Yihong Yang and Zhangbing Zhou
J. Sens. Actuator Netw. 2025, 14(4), 79; https://doi.org/10.3390/jsan14040079 (registering DOI) - 1 Aug 2025
Abstract
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, [...] Read more.
With the rapid proliferation of Internet of Things (IoT) devices and mobile applications and the growing demand for low-latency services, edge computing has emerged as a transformative paradigm that brings computation and storage closer to end users. However, the dynamic nature and limited resources of edge networks bring challenges such as load imbalance and high latency while satisfying user requests. Service migration, the dynamic redeployment of service instances across distributed edge nodes, has become a key enabler for solving these challenges and optimizing edge network characteristics. Moreover, the low-latency nature of edge computing requires that service migration strategies must be in real time in order to ensure latency requirements. Thus, this paper presents a systematic survey of real-time service migration in edge networks. Specifically, we first introduce four network architectures and four basic models for real-time service migration. We then summarize four research motivations for real-time service migration and the real-time guarantee introduced during the implementation of migration strategies. To support these motivations, we present key techniques for solving the task of real-time service migration and how these algorithms and models facilitate the real-time performance of migration. We also explore latency-sensitive application scenarios, such as smart cities, smart homes, and smart manufacturing, where real-time service migration plays a critical role in sustaining performance and adaptability under dynamic conditions. Finally, we summarize the key challenges and outline promising future research directions for real-time service migration. This survey aims to provide a structured and in-depth theoretical foundation to guide future research on real-time service migration in edge networks. Full article
Show Figures

Figure 1

22 pages, 2591 KiB  
Article
Could Hydroinfiltrators Made with Biochar Modify the Soil Microbiome? A Strategy of Soil Nature-Based Solution for Smart Agriculture
by Azahara Navarro, Ana del Moral, Gabriel Delgado, Jesús Párraga, José Ángel Rufián, Raúl Rojano and Juan Manuel Martín-García
Appl. Sci. 2025, 15(15), 8503; https://doi.org/10.3390/app15158503 (registering DOI) - 31 Jul 2025
Abstract
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged [...] Read more.
Climate change negatively affects agriculture, causing desertification, salinisation, and drought. The biochar hydroinfiltrator (ES Patent No.: ES2793448 B2) is a device that increases the capture of rainwater or irrigation water for crops by increasing infiltration rates. Biochar, produced via biomass pyrolysis, has emerged as a promising agricultural amendment, as it helps to optimise moisture retention and improve soil structure, key aspects for boosting crop yields. There is growing interest in microorganisms’ plant-growth-promoting activity (PGP) by carrying out different activities considered growth promoters. The aim of the present study is to evaluate the use of a biochar hydroinfiltrator as a promoter of microbial activity when it is used in soil. Metagenomic analysis of soils with and without the device reveals that genera Bacillus and Sphingomonas became particularly enriched in soils with hydroinfiltrators. Also, in order to understand the interaction between the uses of biochar together with bacteria PGP, an in vitro test was carried out. Two microorganisms, previously selected for their characteristics as plant growth promoters, were inoculated in soils with and without biochar and they grew better after 15 to 30 days of inoculation, showing major CFU counts. This combined strategy—biochar hydroinfiltrator and PGP bacteria—offers an innovative, eco-friendly approach to sustainable agriculture, particularly under drought stress. Full article
Show Figures

Figure 1

17 pages, 3565 KiB  
Article
Controlled PolyDMAEMA Functionalization of Titanium Surfaces via Graft-To and Graft-From Strategies
by Chiara Frezza, Susanna Romano, Daniele Rocco, Giancarlo Masci, Giovanni Sotgiu, Monica Orsini and Serena De Santis
Micromachines 2025, 16(8), 899; https://doi.org/10.3390/mi16080899 (registering DOI) - 31 Jul 2025
Abstract
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the [...] Read more.
Titanium is widely recognized as an interesting material for electrodes due to its excellent corrosion resistance, mechanical strength, and biocompatibility. However, further functionalization is often necessary to impart advanced interfacial properties, such as selective ion transport or stimuli responsiveness. In this context, the integration of smart polymers, such as poly(2-(dimethylamino)ethyl methacrylate) (PDMAEMA)—noted for its dual pH- and thermo-responsive behavior—has emerged as a promising approach to tailor surface properties for next-generation devices. This work compares two covalent immobilization strategies for PDMAEMA on titanium: the “graft-to” method, involving the attachment of pre-synthesized polymer chains, and the “graft-from” method, based on surface-initiated polymerization. The resulting materials were characterized with size exclusion chromatography (SEC) for molecular weight, Fourier-transform infrared spectroscopy (FTIR) for chemical structure, scanning electron microscopy (SEM) for surface morphology, and contact angle measurements for wettability. Electrochemical impedance spectroscopy and polarization studies were used to assess electrochemical performance. Both strategies yielded uniform and stable coatings, with the mode of grafting influencing both surface morphology and functional stability. These findings provide valuable insights into the development of adaptive, stimuli-responsive titanium-based interfaces in advanced electrochemical systems. Full article
Show Figures

Figure 1

26 pages, 2260 KiB  
Review
Transcatheter Aortic Valve Implantation in Cardiogenic Shock: Current Evidence, Clinical Challenges, and Future Directions
by Grigoris V. Karamasis, Christos Kourek, Dimitrios Alexopoulos and John Parissis
J. Clin. Med. 2025, 14(15), 5398; https://doi.org/10.3390/jcm14155398 (registering DOI) - 31 Jul 2025
Abstract
Cardiogenic shock (CS) in the setting of severe aortic stenosis (AS) presents a critical and high-risk scenario with limited therapeutic options and poor prognosis. Transcatheter aortic valve implantation (TAVI), initially reserved for inoperable or high-risk surgical candidates, is increasingly being considered in patients [...] Read more.
Cardiogenic shock (CS) in the setting of severe aortic stenosis (AS) presents a critical and high-risk scenario with limited therapeutic options and poor prognosis. Transcatheter aortic valve implantation (TAVI), initially reserved for inoperable or high-risk surgical candidates, is increasingly being considered in patients with CS due to improvements in device technology, operator experience, and supportive care. This review synthesizes current evidence from large registries, observational studies, and meta-analyses that support the feasibility, safety, and potential survival benefit of urgent or emergent TAVI in selected CS patients. Procedural success is high, and early intervention appears to confer improved short-term and mid-term outcomes compared to balloon aortic valvuloplasty or medical therapy alone. Critical factors influencing prognosis include lactate levels, left ventricular ejection fraction, renal function, and timing of intervention. The absence of formal guidelines, logistical constraints, and ethical concerns complicate decision-making in this unstable population. A multidisciplinary Heart Team/Shock Team approach is essential to identify appropriate candidates, manage procedural risk, and guide post-intervention care. Further studies and the development of TAVI-specific risk models in CS are anticipated to refine patient selection and therapeutic strategies. TAVI may represent a transformative option for stabilizing hemodynamics and improving outcomes in this otherwise high-mortality group. Full article
(This article belongs to the Special Issue Aortic Valve Implantation: Recent Advances and Future Prospects)
Show Figures

Figure 1

11 pages, 2025 KiB  
Communication
Iodide Salt Surface Etching Reduces Energy Loss in CdTe Nanocrystal Solar Cells
by Jielin Huang, Xuyang Wang, Yilin Chen, Zhenyu Chen, Qiaochu Lin, Qichuan Huang and Donghuan Qin
Nanomaterials 2025, 15(15), 1180; https://doi.org/10.3390/nano15151180 - 31 Jul 2025
Viewed by 51
Abstract
CdTe nanocrystals (NCs) have emerged as a promising active layer for efficient thin-film solar cells due to their outstanding optical properties and simple processing techniques. However, the low hole concentration and high resistance in the CdTe NC active layer lead to high carrier [...] Read more.
CdTe nanocrystals (NCs) have emerged as a promising active layer for efficient thin-film solar cells due to their outstanding optical properties and simple processing techniques. However, the low hole concentration and high resistance in the CdTe NC active layer lead to high carrier recombination in the back contact. Herein, we developed a novel 2-iodothiophene as a wet etching solution to treat the surface of CdTe NC. We found that surface treatment using 2-iodothiophene leads to reduced interface defects and improves carrier mobility simultaneously. The surface properties of CdTe NC thin films after iodide salt treatment are revealed through surface element analysis, space charge limited current (SCLC) studies, and energy level investigations. The CdTe NC solar cells with 2-iodothiophene treatment achieved power conversion efficiency (PCE) of 4.31% coupled with a higher voltage than in controlled devices (with NH4I-treated ones, 3.08% PCE). Full article
(This article belongs to the Special Issue Nano-Based Advanced Thermoelectric Design: 2nd Edition)
Show Figures

Figure 1

22 pages, 1498 KiB  
Review
Patient Phenotypes Undergoing Tricuspid Transcatheter Edge-to-Edge Repair: Finding the Optimal Candidate
by Kyriakos Dimitriadis, Nikolaos Pyrpyris, Eirini Beneki, Panagiotis Theofilis, Konstantinos Aznaouridis, Aggelos Papanikolaou, Alexios Antonopoulos, Christina Chrysohoou, Konstantina Aggeli and Konstantinos Tsioufis
J. Cardiovasc. Dev. Dis. 2025, 12(8), 293; https://doi.org/10.3390/jcdd12080293 (registering DOI) - 31 Jul 2025
Viewed by 55
Abstract
Tricuspid regurgitation (TR) is a well-recognized factor contributing to adverse outcomes and mortality. Recent developments in transcatheter valve repair techniques, with the emergence of tricuspid transcatheter edge-to-edge repair (TEER) devices, have altered the treatment algorithm of TR and now offer a safe and [...] Read more.
Tricuspid regurgitation (TR) is a well-recognized factor contributing to adverse outcomes and mortality. Recent developments in transcatheter valve repair techniques, with the emergence of tricuspid transcatheter edge-to-edge repair (TEER) devices, have altered the treatment algorithm of TR and now offer a safe and feasible alternative for the effective management of the disease and an improvement in patient symptoms. Evidence from large studies and registries showcases the benefit of tricuspid interventions in terms of heart failure hospitalization and quality of life; however, most studies do not report a significant benefit in terms of hard outcomes. Even though longer-term follow-up may be needed to identify such differences, it is important to also identify distinct patient phenotypes that would benefit the most from such interventions, moving from pure anatomical criteria to an overall assessment of the patient’s clinical status. Therefore, the aim of this review is to provide updates on potential moderators of the effect of tricuspid TEER, focusing on novel anatomical criteria, right cardiac function, and renal physiology, in order to guide patient selection and provide an insightful discussion on the optimal patient phenotype for future trial design. Full article
Show Figures

Figure 1

17 pages, 91001 KiB  
Article
PONet: A Compact RGB-IR Fusion Network for Vehicle Detection on OrangePi AIpro
by Junyu Huang, Jialing Lian, Fangyu Cao, Jiawei Chen, Renbo Luo, Jinxin Yang and Qian Shi
Remote Sens. 2025, 17(15), 2650; https://doi.org/10.3390/rs17152650 (registering DOI) - 30 Jul 2025
Viewed by 172
Abstract
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them [...] Read more.
Multi-modal object detection that fuses RGB (Red-Green-Blue) and infrared (IR) data has emerged as an effective approach for addressing challenging visual conditions such as low illumination, occlusion, and adverse weather. However, most existing multi-modal detectors prioritize accuracy while neglecting computational efficiency, making them unsuitable for deployment on resource-constrained edge devices. To address this limitation, we propose PONet, a lightweight and efficient multi-modal vehicle detection network tailored for real-time edge inference. PONet incorporates Polarized Self-Attention to improve feature adaptability and representation with minimal computational overhead. In addition, a novel fusion module is introduced to effectively integrate RGB and IR modalities while preserving efficiency. Experimental results on the VEDAI dataset demonstrate that PONet achieves a competitive detection accuracy of 82.2% mAP@0.5 while sustaining a throughput of 34 FPS on the OrangePi AIpro 20T device. With only 3.76 M parameters and 10.2 GFLOPs (Giga Floating Point Operations), PONet offers a practical solution for edge-oriented remote sensing applications requiring a balance between detection precision and computational cost. Full article
Show Figures

Figure 1

Back to TopTop