Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (26)

Search Parameters:
Keywords = elettaria cardamomum

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 1897 KiB  
Article
Type I Interferon-Enhancing Effect of Cardamom Seed Extract via Intracellular Nucleic Acid Sensor Regulation
by Abdullah Al Sufian Shuvo, Masahiro Kassai and Takeshi Kawahara
Foods 2025, 14(15), 2744; https://doi.org/10.3390/foods14152744 - 6 Aug 2025
Abstract
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) [...] Read more.
The induction of type I interferon (IFN) via intracellular nucleic acid sensors may be useful in preventing viral infections. However, little is known about the effect of natural plant materials on sensor responses. We previously found that cardamom (Elettaria cardamomum (L.) Maton) seed extract (CSWE) enhanced type I IFN expression and prevented influenza virus infection. In this study, we investigated the effect of CSWE on type I IFN responses using intracellular nucleic acid sensor molecules. Human lung epithelial A549 cells were treated with CSWE and transfected with poly(dA:dT) or poly(I:C) using lipofection. CSWE and 1,8-cineole, the major CSWE components, dose-dependently induced type I IFNs and IFN-stimulated genes in both poly(dA:dT)- and poly(I:C)-transfected A549 cells. The type I IFN-enhancing effect of CSWE was dependent on the stimulator of interferon genes (STING), whereas the effect of 1,8-cineole was independent of STING and mediated by the down-regulation of 2,3,7,8-tetrachlorodibenzo-p-dioxin (TCDD)-inducible poly-ADP-ribose polymerase expression. Our study suggests that CSWE has the potential to act as a beneficial antiviral agent by enhancing homeostatic type I IFN production. Full article
Show Figures

Figure 1

10 pages, 258 KiB  
Brief Report
Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods
by Aline Sitowski, Gladis Aver Ribeiro, Emma J. Murphy and Gustavo Waltzer Fehrenbach
Bacteria 2025, 4(2), 20; https://doi.org/10.3390/bacteria4020020 - 3 Apr 2025
Viewed by 766
Abstract
Minimally processed foods (MPFs), often considered ready-to-eat, do not undergo cooking and therefore require proper handling and preparation to ensure safety. If not handled correctly, these foods can serve as a pathway for diseases caused by pathogenic bacteria, including Escherichia coli and Salmonella [...] Read more.
Minimally processed foods (MPFs), often considered ready-to-eat, do not undergo cooking and therefore require proper handling and preparation to ensure safety. If not handled correctly, these foods can serve as a pathway for diseases caused by pathogenic bacteria, including Escherichia coli and Salmonella spp. The antibacterial activity of essential oils (EOs) has been increasingly studied as a tool for controlling microorganisms in the food sector. Therefore, we aimed to verify the contamination of MPF by E. coli and Salmonella and to test the sensitivity of these strains to Copaifera langsdorffii, Schinus terebinthifolius, Citrus reticulata, Eucalyptus citriodora, Elettaria cardamomum, Ocimum basilicum, and Eugenia caryophyllus EOs using the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) methods. From 25 MPF samples, one E. coli strain and one Salmonella spp. were isolated. C. langsdorffii and C. reticulata EOs did not show antibacterial activity, while S. terebinthifolius and E. citriodora inhibited the growth of both strains. The E. cardamomum, O. basilicum, and E. caryophyllus EOs presented inhibitory and bactericidal responses at concentrations 0.78, 0.39, and 0.19% (v/v), respectively, compared to the two isolated strains. The present study reinforces the antibacterial potential of EOs and suggests their application in the MPF production chain. Full article
13 pages, 1547 KiB  
Article
Protective and Therapeutic Effects of Orlistat in Combination with Elettaria cardamomum “Cardamom” Extract on Learning, Memory, Anxiety, and Neuroinflammation in Obese Mice
by Anfal AL-Dalaeen, Nour Batarseh, Nadine N. Abdelhadi, Sally Atawneh, Reem AbuKashef and Ali Mosa Ra-shid Al-Yasari
Medicina 2025, 61(2), 263; https://doi.org/10.3390/medicina61020263 - 4 Feb 2025
Cited by 1 | Viewed by 1452
Abstract
Introduction and Objective: Obesity has increased worldwide, and existing anti-obesity medications have treatment limitations that diminish their overall benefits. This study aimed to investigate the effects of orlistat in combination with Elettaria cardamomum “Cardamom” (CAR) extract on working memory, recognition memory, anxiety, [...] Read more.
Introduction and Objective: Obesity has increased worldwide, and existing anti-obesity medications have treatment limitations that diminish their overall benefits. This study aimed to investigate the effects of orlistat in combination with Elettaria cardamomum “Cardamom” (CAR) extract on working memory, recognition memory, anxiety, and inflammation within hippocampal tissue. Methods: Mice were categorized into two groups: a control group (CD) and a cafeteria diet (CAF) group induced with obesity (CAF) for 10 weeks. The groups were then subdivided into a CAF group treated with orlistat (CAF-ORL), a CAF group treated with orlistat and Elettaria cardamomum (CAF-ORL-CARD), and a group that continued on the CAF. The CAF-ORL group received orlistat at a dosage of 10 mg/kg/day for four weeks, while the CAF-ORL-CARD group received 10 mg/kg/day of orlistat and 500 mg/kg of CAR extract via oral gavage. In the 14th week, various assessments were conducted, including the novel object recognition (NOR) test, Y maze test, marble-burying test (MBT), open-field test, and TNF-α levels in the hippocampus. Result: TNF-α levels in the hippocampal tissue of the CAF group were elevated compared to the CD group (p < 0.01), whereas the CAF-ORL group exhibited reduced TNF-α levels compared to the CAF group (p < 0.01). Moreover, TNF-α levels in the CAF-ORL-CARD group were significantly lower than in the CAF-ORL group (p < 0.01). The recognition index was notably higher in the CAF-ORL group compared to the CAF group (p < 0.01) and higher in the CAF-ORL-CARD group compared to the CAF-ORL group (p < 0.01). However, there were no changes in the open-field test and Y maze test (p > 0.05). Conclusions: Orlistat combined with CAR has positive effects on neuroinflammation and memory, suggesting that this combination may offer potential therapeutic benefits for cognitive impairments and hippocampal dysfunction associated with obesity. Full article
(This article belongs to the Section Pharmacology)
Show Figures

Figure 1

20 pages, 2932 KiB  
Article
An Assessment of the Cyto-Genotoxicity Effects of Green-Synthesized Silver Nanoparticles and ATCBRA Insecticide on the Root System of Vicia faba
by May A. Al-Saleh, Hanan F. Al-Harbi, L. A. Al-Humaid and Manal A. Awad
Nanomaterials 2025, 15(1), 77; https://doi.org/10.3390/nano15010077 - 6 Jan 2025
Cited by 2 | Viewed by 1156
Abstract
We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom–AgNPs, and the insecticide ATCBRA—commonly used for pest control—on the root system of Vicia faba (broad bean). The chemical composition [...] Read more.
We aimed to synthesize silver nanoparticles (AgNPs) using Elettaria cardamomum (cardamom) extracts and assess the cytotoxicity and genotoxicity of the cardamom extract, cardamom–AgNPs, and the insecticide ATCBRA—commonly used for pest control—on the root system of Vicia faba (broad bean). The chemical composition of the aqueous cardamom extract was identified and quantified using GC-MS, revealing a variety of bioactive compounds also present in cardamom essential oil. These included α-terpinyl acetate (21.3–44.3%), 1,8-cineole (10.7–28.4%), and linalool (6.4–8.6%). The successful green synthesis of AgNPs was confirmed through various micro-spectroscopic techniques, including UV-Vis spectroscopy, transmission electron microscopy (TEM), and energy-dispersive spectroscopy (EDS). UV-Vis analysis showed a strong peak between 420 and 430 nm, indicating the presence of AgNPs. TEM imaging revealed that the synthesized cardamom–AgNPs were monodispersed, primarily spherical, and semi-uniform in shape, with minimal aggregation. EDS analysis further confirmed the composition of the nanoparticles, with cardamom–AgNPs comprising around 60.5% by weight. Cytotoxicity was evaluated by measuring the mitotic index (MI), and genotoxicity was assessed by observing chromosomal aberrations (CAs). The roots of Vicia faba were treated for 24 and 48 h with varying concentrations of ATCBRA pesticide (0.1%, 0.3%, 0.5%, and 0.7%), aqueous cardamom extract (3%, 4%, 5%, and 6%), and green-synthesized cardamom–AgNPs (12, 25, and 60 mg). The cytogenetic analysis of MI and CA in the meristematic root tips indicated an improvement in the evaluated parameters with the cardamom extract. However, a marked reduction in mitotic activity was observed with both ATCBRA and cardamom–AgNP treatments across both time points, highlighting potential cytotoxic and genotoxic effects. Full article
Show Figures

Figure 1

21 pages, 2955 KiB  
Article
Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays
by Himadri Sharma, Hyewon Yang, Niti Sharma and Seong Soo A. An
Pharmaceuticals 2025, 18(1), 2; https://doi.org/10.3390/ph18010002 - 24 Dec 2024
Viewed by 1032
Abstract
Background: Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) are well-known spices and are also used as natural mouth fresheners. This study was performed to evaluate their neuroprotective ability based on certain acellular and cellular assays. Methods: Hexane and ethyl acetate extracts were prepared [...] Read more.
Background: Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) are well-known spices and are also used as natural mouth fresheners. This study was performed to evaluate their neuroprotective ability based on certain acellular and cellular assays. Methods: Hexane and ethyl acetate extracts were prepared using cardamom and fennel seeds. GC/MS was performed for the identification of important bioactive compounds. Cell-based assays were performed using SH-SY5Y cells. Hydrogen peroxide was used for the induction of oxidative stress, and evaluation was done based on neuroprotection, reduced reactive oxygen species, and restoration of mitochondrial membrane potential (MMP). Additionally, anti-Aβ fibrillization/oligomerization activities were also analyzed along with anti-acetylcholinesterase activity. Results: α-Terpinyl acetate and anethol were identified as major phytocompounds in cardamom and fennel, respectively. Cardamom extracts and α-terpinyl acetate were more potent acetylcholinesterase (AChE) inhibitors than fennel extracts and anethol [IC50 cardamom extracts, 130–150 μg/mL; α-terpinyl acetate, 61.87 μg/mL; anethol, 374.2 μg/mL; fennel extracts, >1 mg/mL] and showed mixed-type inhibition. Only the extracts displayed potent anti-Aβ fibrilization activity (>50%). Anethol showed potent anti-Aβ oligomerization activity (>50%), followed by α-terpinyl acetate and fennel-H (~36%). The neuroprotective potential of the spice extracts/phytochemicals was evaluated in SH-SY5Y cells by using H2O2-induced oxidative stress. Cardamom-EA displayed the best neuroprotection (0.01 to 30 μg/mL). No neuroprotection was observed by α-terpinyl acetate and anethol. Cardamom extracts and fennel-H restored the normal reactive oxygen species (ROS) levels at 30 µg/mL and 1 µg/mL, respectively. Conclusion: Overall, the extracts provided better neuroprotection than the pure compounds in cellular assays and displayed strong anti-Aβ fibrilization activity. Full article
(This article belongs to the Special Issue Neuropharmacology of Plant Extracts and Their Active Compounds)
Show Figures

Figure 1

20 pages, 2554 KiB  
Article
Comprehensive Evaluation and Selection of Cardamom (Elettaria cardamomum (L.) Maton) Germplasm Using Morphological Traits
by Martha Patricia Herrera-González, Alejandra Zamora-Jerez, Rolando Cifuentes-Velasquez, Luis Andrés Arévalo-Rodríguez and Santiago Pereira-Lorenzo
Plants 2024, 13(19), 2786; https://doi.org/10.3390/plants13192786 - 4 Oct 2024
Cited by 1 | Viewed by 1907
Abstract
Cardamom (Elettaria cardamomum (L.) Maton) plays a crucial role in Guatemala’s agriculture, supporting local families and covering 169,429.29 ha (making it the world’s leading producer). Since its introduction to Guatemala in 1910, limited research has focused on unraveling the diversity and defining [...] Read more.
Cardamom (Elettaria cardamomum (L.) Maton) plays a crucial role in Guatemala’s agriculture, supporting local families and covering 169,429.29 ha (making it the world’s leading producer). Since its introduction to Guatemala in 1910, limited research has focused on unraveling the diversity and defining morphological traits critical for selecting excellent accessions. In this study, we examined 17 morphological traits across 288 accessions to identify key features associated with the germplasm. The comprehensive analysis employed principal component analysis, a morphological composite value (F-value), linear regression, and hierarchical clustering. The Shannon–Wiener diversity index ranged from 0.10 to 2.02, indicating the variation in diversity among traits. Principal component analysis and hierarchical clustering revealed six distinct germplasm groups. The comprehensive analysis facilitated the selection of 14 excellent accessions, and the regression equation incorporating criteria such as plant height, capsule color, panicle number per plant, panicle length, rhizome color, cluster number per panicle, cluster node length, and capsule number per cluster to identify cardamom germplasm. To develop a conservation strategy for the two putative foreign varieties (‘Malabar’ and ‘Mysore’/’Vazhukka’) introduced in Guatemala based on plant height, another 12 accessions were selected with a second comprehensive evaluation. This information offers insights into cardamom diversity for informed selection enhancing national utilization, productivity, and conservation. Full article
(This article belongs to the Section Plant Genetic Resources)
Show Figures

Graphical abstract

21 pages, 2421 KiB  
Review
Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic
by Shabana Bano, Avisek Majumder, Ayush Srivastava and Kasturi Bala Nayak
Biomolecules 2024, 14(9), 1166; https://doi.org/10.3390/biom14091166 - 18 Sep 2024
Cited by 5 | Viewed by 5252
Abstract
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer [...] Read more.
Cardamom (cardamum) is a spice produced from the seeds of several Elettaria and Amomum plants of the Zingiberaceae family. Cardamom has been demonstrated to offer numerous benefits, including its antioxidant, antimicrobial, anti-inflammatory, and other metabolic (anti-diabetic) properties, and its potential to reduce cancer risk. Recently, researchers have extracted and tested multiple phytochemicals from cardamom to assess their potential effectiveness against various types of human malignancy. These studies have indicated that cardamom can help overcome drug resistance to standard chemotherapy and protect against chemotherapy-induced toxicity due to its scavenging properties. Furthermore, chemical compounds in cardamom, including limonene, cymene, pinene, linalool, borneol, cardamonin, indole-3-carbinol, and diindolylmethane, primarily target the programmed cell death lignin-1 gene, which is more prevalent in cancer cells than in healthy cells. This review provides the medicinal properties and pharmacological uses of cardamom, its cellular effects, and potential therapeutic uses in cancer prevention and treatment, as well as its use in reducing drug resistance and improving the overall health of cancer patients. Based on previous preclinical studies, cardamom shows significant potential as an anti-cancer agent, but further exploration for clinical use is warranted due to its diverse mechanisms of action. Full article
(This article belongs to the Section Natural and Bio-derived Molecules)
Show Figures

Figure 1

15 pages, 2725 KiB  
Article
Chemical Compositions and Fumigation Effects of Essential Oils Derived from Cardamom, Elettaria cardamomum (L.) Maton, and Galangal, Alpinia galanga (L.) Willd, against Red Flour Beetle, Tribolium castaneum (Herbst) (Coleoptera: Tenebrionidae)
by Ruchuon Wanna, Parinda Khaengkhan and Hakan Bozdoğan
Plants 2024, 13(13), 1845; https://doi.org/10.3390/plants13131845 - 4 Jul 2024
Cited by 1 | Viewed by 1636
Abstract
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were [...] Read more.
This study explores the use of essential oils from cardamom (Elettaria cardamomum (L.) Maton) and galangal (Alpinia galanga (L.) Willd) as alternatives to synthetic insecticides for controlling the red flour beetle, Tribolium castaneum (Herbst). The chemical compositions of these oils were analyzed using GC-MS, and their fumigation effects were tested in a vapor-phase bioassay. The experiment followed a factorial design with four types of essential oils, namely, those manually extracted from cardamom leaves (MCL) and galangal leaves (MGL) and those commercially produced from cardamom seeds (CCS) and galangal rhizomes (CGR), at seven concentrations (0, 50, 100, 150, 200, 250, and 300 µL/L air). The manually extracted oils yielded 0.6% from cardamom leaves and 0.25% from galangal leaves. MCL contained 28 components, with eucalyptol (25.2%) being the most abundant, while CCS had 34 components, primarily α-terpinyl acetate (46.1%) and eucalyptol (31.2%). MGL included 25 components, mainly caryophyllene (28.7%) and aciphyllene (18.3%), whereas CGR comprised 27 components, with methyl cis-cinnamate (47.3%) and safrole (19.8%) as the major constituents. The fumigation bioassay results revealed that CGR was the most effective, demonstrating the highest mortality rates of T. castaneum across all the tested periods and concentrations, achieving up to 96% mortality at 168 h with a concentration of 300 µL/L air. Statistical analyses showed significant differences in mortality based on the type and concentration of essential oil, particularly after 96 h. These findings highlight the potential of CGR, with its advantages and differences in chemical composition, as an effective biopesticide against T. castaneum, with increasing efficacy over time and at higher concentrations. Full article
(This article belongs to the Special Issue Emerging Topics in Botanical Biopesticides—2nd Edition)
Show Figures

Figure 1

26 pages, 43920 KiB  
Article
Herbal Spices as Food and Medicine: Microscopic Authentication of Commercial Herbal Spices
by Amjad Khan, Mushtaq Ahmad, Amir Sultan, Raees Khan, Jamil Raza, Sheikh Zain Ul Abidin, Siraj Khan, Muhammad Zafar, Mohammad N. Uddin and Mohsin Kazi
Plants 2024, 13(8), 1067; https://doi.org/10.3390/plants13081067 - 10 Apr 2024
Cited by 10 | Viewed by 4459
Abstract
Herbal spices are an agricultural commodity, economically very important and beneficial in primary healthcare in the food and medicine sectors. Herbal spices are used as food flavoring agents as well as in phytotherapies throughout the world and have nutritive benefits. The food and [...] Read more.
Herbal spices are an agricultural commodity, economically very important and beneficial in primary healthcare in the food and medicine sectors. Herbal spices are used as food flavoring agents as well as in phytotherapies throughout the world and have nutritive benefits. The food and medicine industries widely employ artificial or natural adulteration to retard the deterioration and utilization of these adulterants in food and medicine products has given rise to significant apprehension among consumers, primarily stemming from the potential health risks that they pose. Thus, their characterization for the purpose of identification, origin, and quality assurance is mandatory for safe human consumption. Here, we studied 22 samples of commonly traded herbal spices that belong to 20 different genera and 21 species comprising 14 families, investigated macroscopically or organoleptically as well as histologically under microscopic examination. In this study, we provide details on organoleptic features including appearance, taste, odor, color, shape, size, fractures, types of trichomes, and the presence of lenticels among the examined herbal spices and these features have great significance in the detection of both natural as well as artificial deterioration. In terms of microscopic characterization, each examined plant part comprising different anatomical characteristics has taxonomic importance and also provides useful information for authentication from natural adulterants. Furthermore, the studied taxa were also described with nutritive and therapeutic properties. For condiments, herbal beverages and medicinal purposes, different herbal parts such as leaves, floral buds, seeds, fruit, and accessory parts like mericarp, rhizome, bulbs, and bark were used and commercially traded. Similarly, in this study, the leaves of Cinnamomum tamala and Mentha spicata, the floral buds of Syzygium aromaticum, the seeds of Amomum subulatum, Brassica nigra, Punica granatum, Myristica fragrans, Phyllanthus emblica, and Elettaria cardamomum, the mericarp of Coriandrum sativum, and Cuminum cyminum were observed. As a result, we show the potential of herbal spices as a source of many valuable phytochemicals and essential nutrients for food, nutraceutical, and homoeopathic medicine. Full article
(This article belongs to the Section Phytochemistry)
Show Figures

Figure 1

18 pages, 2405 KiB  
Article
Extraction of Active Compounds from Mixtures of Hemp (Cannabis sativa) with Plants of the Zingiberaceae Family
by Vesna Postružnik, Taja Žitek Makoter, Darko Goričanec, Petra Kotnik, Željko Knez and Maša Knez Marevci
Molecules 2023, 28(23), 7826; https://doi.org/10.3390/molecules28237826 - 28 Nov 2023
Cited by 1 | Viewed by 1997
Abstract
Hemp is probably one of the most studied plants for its health-promoting properties, with countless documented and patented extraction methods, but literature is scarce on the simultaneous extraction of mixture of raw materials. Hemp, along with other plant materials, could represent a potentially [...] Read more.
Hemp is probably one of the most studied plants for its health-promoting properties, with countless documented and patented extraction methods, but literature is scarce on the simultaneous extraction of mixture of raw materials. Hemp, along with other plant materials, could represent a potentially highly valuable source material with resulting reciprocal effects. In this study, hemp (Cannabis sativa) and three members of the Zingiberaceae family, ginger (Zingiber officinale), turmeric (Curcuma longa), and cardamom (Elettaria cardamomum), were extracted simultaneously, and their bioactive component values were investigated. Two extraction methods were used, namely ultrasound-assisted extraction with ethanol and supercritical fluid extraction with carbon dioxide. First, extracts were obtained from separate plant materials. Then, hemp was extracted in combination with ginger, turmeric, and cardamom in a 1:1 ratio. The extracts obtained were evaluated for their antioxidant activity and total phenolic content using UV/VIS spectrophotometry; cannabinoid content, 6-gingerol, and 6-shogaol were measured using liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS); volatile components such as 1,8-cineole, alpha-terpinyl acetate, linalool, and aR-turmerone were measured using gas chromatography with mass spectrometry (GC/MS). Full article
Show Figures

Graphical abstract

11 pages, 792 KiB  
Article
Elettaria cardamomum (L.) Maton Essential Oil: An Interesting Source of Bioactive Specialized Metabolites as Inhibitors of Acetylcholinesterase and Butyrylcholinesterase
by Marta Pavarino, Arianna Marengo, Cecilia Cagliero, Carlo Bicchi, Patrizia Rubiolo and Barbara Sgorbini
Plants 2023, 12(19), 3463; https://doi.org/10.3390/plants12193463 - 2 Oct 2023
Cited by 4 | Viewed by 2361
Abstract
Elettaria cardamomum (L.) Maton (Zingiberaceae family) is a plant traditionally used in Ayurvedic and Chinese medicine. In this work, the essential oil of E. cardamomum was found to inhibit the enzymes AChE (62.6% of inhibition, IC50 24.9 μg/mL) and BChE (55.8% of [...] Read more.
Elettaria cardamomum (L.) Maton (Zingiberaceae family) is a plant traditionally used in Ayurvedic and Chinese medicine. In this work, the essential oil of E. cardamomum was found to inhibit the enzymes AChE (62.6% of inhibition, IC50 24.9 μg/mL) and BChE (55.8% of inhibition, IC50 25.9 μg/mL) by performing an in vitro colorimetric assay using the Ellman method. A bio-guided fractionation approach was used to isolate fractions/pure compounds that were tested individually to evaluate their activity. The resulting oxygenated fraction was found to be active against both AChE (percentage inhibition 42.8%) and BChE (percentage inhibition 63.7%), while the hydrocarbon fraction was inactive. The activity was attributed to a pool of oxygenated terpenes (α-terpinyl acetate, 1,8-cineole, linalool, linalyl acetate, and α-terpineol) that synergistically contributed to the overall activity of the essential oil. Full article
Show Figures

Figure 1

16 pages, 12496 KiB  
Article
Production and Preliminary Characterization of Linseed Mucilage-Based Films Loaded with Cardamom (Elettaria cardamomum) and Copaiba (Copaifera officinalis)
by Mayra Z. Treviño-Garza, Ana Karen Saldívar-Vázquez, Sonia Martha López-Villarreal, María del Refugio Lara-Banda, Joel Horacio Elizondo-Luevano, Abelardo Chávez-Montes, Juan Gabriel Báez-González and Osvelia Esmeralda Rodríguez-Luis
Coatings 2023, 13(9), 1574; https://doi.org/10.3390/coatings13091574 - 9 Sep 2023
Cited by 4 | Viewed by 2380
Abstract
In this research, developed linseed mucilage (M)-based films loaded with E. cardamom (MCA), C. officinalis (MCO), and co-loaded with both compounds (MCACO) were evaluated. The incorporation of the active compounds modified the color (redness–greenness, and yellowness); however, the thickness remained constant in all [...] Read more.
In this research, developed linseed mucilage (M)-based films loaded with E. cardamom (MCA), C. officinalis (MCO), and co-loaded with both compounds (MCACO) were evaluated. The incorporation of the active compounds modified the color (redness–greenness, and yellowness); however, the thickness remained constant in all treatments (0.0042–0.0052 mm). In addition, the solubilization time of the films (in artificial saliva) to release the active compounds fluctuates between 9 and 12 min. Furthermore, the incorporation of bioactive compounds increased the total phenolic content and antioxidant activity (DPPH and ABTS, respectively), mainly in MCA (inhibition of 81.99 and 95.80%, respectively) and MCACO (inhibition of 47.15% and 39.73%, respectively). In addition, the incorporation of these compounds also decreased the hardness (39.50%–70.81%), deformation (49.16%–78.30%), and fracturability (39.58%–82.95%). On the other hand, it did not modify the adhesiveness, except in MCO. Moreover, SEM micrographs showed a more homogeneous structure in the MCO films among the films that contained CA in the formulation (heterogeneous structure with the presence of protuberances). Finally, due to the previously reported pharmacological properties of E. cardamomun and C. officinalis, the films developed in this study could have an application as a wound dressing in dentistry. Full article
(This article belongs to the Special Issue Advanced Coatings and Films for Food Packing and Storage)
Show Figures

Figure 1

19 pages, 4892 KiB  
Article
Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells
by Shareena Sreedharan, Vimal Nair and Luis Cisneros-Zevallos
Nutrients 2023, 15(13), 2965; https://doi.org/10.3390/nu15132965 - 29 Jun 2023
Cited by 10 | Viewed by 4375
Abstract
The chemical profiling of phenolic and terpenoid compounds in whole cardamom, skin, and seeds (Elettaria cardamomum (L.) Maton) showed 11 phenolics and 16 terpenoids, many of which are reported for the first time. Herein, we report the anti-inflammatory properties of a methanolic [...] Read more.
The chemical profiling of phenolic and terpenoid compounds in whole cardamom, skin, and seeds (Elettaria cardamomum (L.) Maton) showed 11 phenolics and 16 terpenoids, many of which are reported for the first time. Herein, we report the anti-inflammatory properties of a methanolic extract of whole cardamom in colon and macrophage cells stimulated with an inflammatory bacteria lipopolysaccharide (LPS). The results show that cardamom extracts lowered the expression of pro-inflammatory genes NFkβ, TNFα, IL-6, and COX2 in colon cells by reducing reactive oxygen species (ROS) while not affecting LXRα. In macrophages, cardamom extracts lowered the expression of pro-inflammatory genes NFkβ, TNFα, IL-6, and COX2 and decreased NO levels through a reduction in ROS and enhanced gene expression of nuclear receptors LXRα and PPARγ. The cardamom extracts in a range of 200–800 μg/mL did not show toxicity effects in colon or macrophage cells. The whole-cardamom methanolic extracts contained high levels of phenolics compounds (e.g., protocatechuic acid, caffeic acid, syringic acid, and 5-O-caffeoylquinic acid, among others) and are likely responsible for the anti-inflammatory and multifunctional effects observed in this study. The generated information suggests that cardamom may play a protective role against low-grade inflammation that can be the basis of future in vivo studies using mice models of inflammation and associated chronic diseases. Full article
(This article belongs to the Special Issue Preventive and Therapeutic Nutraceuticals)
Show Figures

Graphical abstract

21 pages, 872 KiB  
Review
Antioxidant Activity in Extracts from Zingiberaceae Family: Cardamom, Turmeric, and Ginger
by Pura Ballester, Begoña Cerdá, Raúl Arcusa, Ana María García-Muñoz, Javier Marhuenda and Pilar Zafrilla
Molecules 2023, 28(10), 4024; https://doi.org/10.3390/molecules28104024 - 11 May 2023
Cited by 42 | Viewed by 11349
Abstract
An increase in life expectancy leads to a greater impact of chronic non-communicable diseases. This is even more remarkable in elder populations, to whom these become main determinants of health status, affecting mental and physical health, quality of life, and autonomy. Disease appearance [...] Read more.
An increase in life expectancy leads to a greater impact of chronic non-communicable diseases. This is even more remarkable in elder populations, to whom these become main determinants of health status, affecting mental and physical health, quality of life, and autonomy. Disease appearance is closely related to the levels of cellular oxidation, pointing out the importance of including foods in one’s diet that can prevent oxidative stress. Previous studies and clinical data suggest that some plant-based products can slow and reduce the cellular degradation associated with aging and age-related diseases. Many plants from one family present several applications that range from the food to the pharmaceutical industry due to their characteristic flavor and scents. The Zingiberaceae family, which includes cardamom, turmeric, and ginger, has bioactive compounds with antioxidant activities. They also have anti-inflammatory, antimicrobial, anticancer, and antiemetic activities and properties that help prevent cardiovascular and neurodegenerative diseases. These products are abundant sources of chemical substances, such as alkaloids, carbohydrates, proteins, phenolic acids, flavonoids, and diarylheptanoids. The main bioactive compounds found in this family (cardamom, turmeric, and ginger) are 1,8-cineole, α-terpinyl acetate, β-turmerone, and α-zingiberene. The present review gathers evidence surrounding the effects of dietary intake of extracts of the Zingiberaceae family and their underlying mechanisms of action. These extracts could be an adjuvant treatment for oxidative-stress-related pathologies. However, the bioavailability of these compounds needs to be optimized, and further research is needed to determine appropriate concentrations and their antioxidant effects in the body. Full article
(This article belongs to the Special Issue Antioxidant Activity of Natural Products)
Show Figures

Figure 1

22 pages, 10961 KiB  
Article
Cardamom (Elettaria cardamomum (L.) Maton) Seeds Intake Increases Energy Expenditure and Reduces Fat Mass in Mice by Modulating Neural Circuits That Regulate Adipose Tissue Lipolysis and Mitochondrial Oxidative Metabolism in Liver and Skeletal Muscle
by Claudia Delgadillo-Puga, Ivan Torre-Villalvazo, Yonatan Y. Cariño-Cervantes, Cinthia García-Luna, Paulina Soberanes-Chávez, Patricia de Gortari, Lilia G. Noriega, Claudia J. Bautista and Luis Cisneros-Zevallos
Int. J. Mol. Sci. 2023, 24(4), 3909; https://doi.org/10.3390/ijms24043909 - 15 Feb 2023
Cited by 7 | Viewed by 13699
Abstract
Cardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects [...] Read more.
Cardamom seed (Elettaria cardamomum (L.) Maton; EC) is consumed in several countries worldwide and is considered a nutraceutical spice since it exerts antioxidant, anti-inflammatory, and metabolic activities. In obese individuals, EC intake also favors weight loss. However, the mechanism for these effects has not been studied. Here, we identified that EC modulates the neuroendocrine axis that regulates food intake, body weight, mitochondrial activity, and energy expenditure in mice. We fed C57BL/6 mice with diets containing 3%, 6%, or 12% EC or a control diet for 14 weeks. Mice fed the EC-containing diets gained less weight than control, despite slightly higher food intake. The lower final weight of EC-fed mice was due to lesser fat content but increased lean mass than control. EC intake increased lipolysis in subcutaneous adipose tissue, and reduced adipocyte size in subcutaneous, visceral, and brown adipose tissues. EC intake also prevented lipid droplet accumulation and increased mitochondrial content in skeletal muscle and liver. Accordingly, fasting and postprandial oxygen consumption, as well as fasting fat oxidation and postprandial glucose utilization were higher in mice fed with EC than in control. EC intake reduced proopiomelanocortin (POMC) mRNA content in the hypothalamic arcuate nucleus, without an impact on neuropeptide Y (NPY) mRNA. These neuropeptides control food intake but also influence the hypothalamic-pituitary-thyroid (HPT) and hypothalamic-pituitary-adrenal (HPA) axes. Thyrotropin-releasing hormone (TRH) mRNA expression in the hypothalamic paraventricular nucleus (PVN) and circulating triiodothyronine (T3) were lower in EC-fed mice than in control. This effect was linked with decreased circulating corticosterone and weight of adrenal glands. Our results indicate that EC modulates appetite, increases lipolysis in adipose tissue and mitochondrial oxidative metabolism in liver and skeletal muscle, leading to increased energy expenditure and lower body fat mass. These metabolic effects were ascribable to the modulation of the HPT and HPA axes. LC-MS profiling of EC found 11 phenolic compounds among which protocatechuic acid (23.8%), caffeic acid (21.06%) and syringic acid (29.25%) were the most abundant, while GC-MS profiling showed 16 terpenoids among which costunolide (68.11%), ambrial (5.3%) and cis-α-terpineol (7.99%) were identified. Extrapolation of mice-to-human EC intake was performed using the body surface area normalization equation which gave a conversion equivalent daily human intake dose of 76.9–308.4 mg bioactives for an adult of 60 kg that can be obtained from 14.5–58.3 g of cardamom seeds (18.5–74.2 g cardamom pods). These results support further exploration of EC as a coadjuvant in clinical practice. Full article
(This article belongs to the Special Issue Natural Products and Obesity)
Show Figures

Figure 1

Back to TopTop