Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic
Abstract
:1. Introduction
2. Different Cardamom Products, Their Extractions, Handling, and Storage
3. Overview of Cardamom in Health and Disease
Ethnobotanical Uses as | References |
---|---|
As an abortifacient, diuretic, stomachic, laxative, and carminative; in asthma, hemorrhoids, bronchitis, scabies, strangury, pruritis; diseases of the bladder, kidney, rectum, and throat; earache, snake bite, inflammation, headache, and scorpion sting | [38] |
CNS-depressant and anticonvulsant activities | [31] |
Treating sore throat, asthma, colds, coughs, bladder and kidney diseases, burning sensations, flatulence, scanty urine, heart weakness, indigestion, and piles | [39] |
As an anti-flatulent and to stimulate the appetite | [40] |
Neutralize poisons, reduce Kapha (one of the three doshas in Ayurveda), enhance skin complexion, and alleviate itching | [41] |
4. Medicinal Properties and Pharmacological Uses of Cardamom
Activities | Tested Using | References |
---|---|---|
Anti-inflammatory | Cardamom oil | [42] |
The antidote to snake venom | Cardamom crude extract | [41] |
Gastroprotective | Cardamom oil and crude extract | [43] |
Inhibitor of Human Platelet Aggregation | Cardamom crude extract | [44] |
Anti-bacterial | Cardamom seed extract and oil | [45,46] |
Inhibition of viral inhibition | [47] | |
Anti-cancer | Cardamom crude extract | [48] |
Antioxidant | Cardamom extracts and oil | [45,46,49] |
Insecticidal activity | Cardamom oil | [35] |
Analgesic | Cardamom oil | [50] |
Anti-fungal | Cardamom oil | [51] |
Anti-diabetic | Cardamom crude extract | [52] |
Post-Operative Nausea and Vomiting | Cardamom oil | [53] |
5. The Bioactive Compounds of Cardamom and Their Signaling Targets
6. Anti-Cancer Activity of Cardamom
7. Cellular Effects of Cardamom in the Prevention and Treatment of Cancer
7.1. Anti-Oxidative Effects of Cardamom
7.2. Anti-Inflammatory Activity of Cardamom
7.3. Anti-Microbial Effects of Cardamom
7.4. Metabolic Effects of Cardamom
7.5. Cardamom as a Chemoprotectant
7.6. Cardamom for Reducing Chemotherapeutic Drug Resistance
8. Study the Therapeutic Effects of Cardamom in Different Cancer Types
8.1. Effects of Cardamom on Breast Cancer
8.2. Effects of Cardamom on Cervical Cancer
8.3. Effects of Cardamom on Colon Cancer
8.4. Effects of Cardamom on Gastric Cancer
8.5. Effects of Cardamom on Glioblastoma Cancer
8.6. Effects of Cardamom on Leukemia
8.7. Effects of Cardamom on Lung Cancer
8.8. Effects of Cardamom on Multiple Myeloma
8.9. Effects of Cardamom on Ovarian Cancer
8.10. Effects of Cardamom in Prostate Cancer
9. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Majumder, A. HER3: Toward the Prognostic Significance, Therapeutic Potential, Current Challenges, and Future Therapeutics in Different Types of Cancer. Cells 2023, 12, 2517. [Google Scholar] [CrossRef]
- Majumder, A. Evolving CAR-T-Cell Therapy for Cancer Treatment: From Scientific Discovery to Cures. Cancers 2023, 16, 39. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Singh, M.; Tyagi, S.C. Post-menopausal breast cancer: From estrogen to androgen receptor. Oncotarget 2017, 8, 102739–102758. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Sandhu, M.; Banerji, D.; Steri, V.; Olshen, A.; Moasser, M.M. The role of HER2 and HER3 in HER2-amplified cancers beyond breast cancers. Sci. Rep. 2021, 11, 9091. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Bano, S. How the Western Diet Thwarts the Epigenetic Efforts of Gut Microbes in Ulcerative Colitis and Its Association with Colorectal Cancer. Biomolecules 2024, 14, 633. [Google Scholar] [CrossRef]
- Pandey, M.M.; Rastogi, S.; Rawat, A.K. Indian traditional ayurvedic system of medicine and nutritional supplementation. Evid. Based Complement. Altern. Med. 2013, 2013, 376327. [Google Scholar] [CrossRef] [PubMed]
- Arnold, J.T. Integrating ayurvedic medicine into cancer research programs part 1: Ayurveda background and applications. J. Ayurveda Integr. Med. 2023, 14, 100676. [Google Scholar] [CrossRef]
- Maqbool, M.; Chaudhary, K.; Chalotra, R.; Chauhan, S.; Dahiya, R.S. Phyto-pharmacology of Most Common Indian Culinary Spices and their Potential in Developing New Pharmaceutical Therapies. Curr. Tradit. Med. 2024, 10, 117–140. [Google Scholar] [CrossRef]
- Jain, R.; Kosta, S.; Tiwari, A. Ayurveda and cancer. Pharmacogn. Res. 2010, 2, 393–394. [Google Scholar] [CrossRef]
- Ekor, M. The growing use of herbal medicines: Issues relating to adverse reactions and challenges in monitoring safety. Front. Pharmacol. 2014, 4, 177. [Google Scholar] [CrossRef]
- Cragg, G.M.; Newman, D.J. Biodiversity: A continuing source of novel drug leads. Pure Appl. Chem. 2005, 77, 7–24. [Google Scholar] [CrossRef]
- Arnold, J.T. Integrating ayurvedic medicine into cancer research programs part 2: Ayurvedic herbs and research opportunities. J. Ayurveda Integr. Med. 2023, 14, 100677. [Google Scholar] [CrossRef] [PubMed]
- Panche, A.N.; Diwan, A.D.; Chandra, S.R. Flavonoids: An overview. J. Nutr. Sci. 2016, 5, e47. [Google Scholar] [CrossRef] [PubMed]
- Nawaz, J.; Rasul, A.; Shah, M.A.; Hussain, G.; Riaz, A.; Sarfraz, I.; Zafar, S.; Adnan, M.; Khan, A.H.; Selamoglu, Z. Cardamonin: A new player to fight cancer via multiple cancer signaling pathways. Life Sci. 2020, 250, 117591. [Google Scholar] [CrossRef] [PubMed]
- Goel, A.; Kunnumakkara, A.B.; Aggarwal, B.B. Curcumin as “Curecumin”: From kitchen to clinic. Biochem. Pharmacol. 2008, 75, 787–809. [Google Scholar] [CrossRef]
- Sreedharan, S.; Nair, V.; Cisneros-Zevallos, L. Protective Role of Phenolic Compounds from Whole Cardamom (Elettaria cardamomum (L.) Maton) against LPS-Induced Inflammation in Colon and Macrophage Cells. Nutrients 2023, 15, 2965. [Google Scholar] [CrossRef]
- Abdullah; Asghar, A.; Butt, M.S.; Shahid, M.; Huang, Q. Evaluating the antimicrobial potential of green cardamom essential oil focusing on quorum sensing inhibition of Chromobacterium violaceum. J. Food Sci. Technol. 2017, 54, 2306–2315. [Google Scholar] [CrossRef]
- Abdullah; Ahmad, N.; Tian, W.; Zengliu, S.; Zou, Y.; Farooq, S.; Huang, Q.; Xiao, J. Recent advances in the extraction, chemical composition, therapeutic potential, and delivery of cardamom phytochemicals. Front. Nutr. 2022, 9, 1024820. [Google Scholar] [CrossRef]
- Al-Hilphy, A.R.; Ahmed, A.-H.K.; Gavahian, M.; Chen, H.-H.; Chemat, F.; Al-Behadli, T.-K.M.; Mohd Nor, M.Z.; Ahmad, S.b. Solar energy-based extraction of essential oils from cloves, cinnamon, orange, lemon, eucalyptus, and cardamom: A clean energy technology for green extraction. J. Food Process Eng. 2022, 45, e14038. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, M.; Ju, R.; Chen, K.; Bhandari, B.; Wang, H. Advances in efficient extraction of essential oils from spices and its application in food industry: A critical review. Crit. Rev. Food Sci. Nutr. 2023, 63, 11482–11503. [Google Scholar] [CrossRef]
- Lin, L.J.; Huang, X.B.; Lv, Z.C. Isolation and identification of flavonoids components from Pteris vittata L. SpringerPlus 2016, 5, 1649. [Google Scholar] [CrossRef] [PubMed]
- de Sousa, A.F.L.; Paim, R.T.T. Food habits of different worker categories: An integrative review. Rev. Bras. de Med. do Trab. 2022, 20, 624–632. [Google Scholar] [CrossRef] [PubMed]
- Bhagat, N.; Chaturvedi, A. Spices as an alternative therapy for cancer treatment. Syst. Rev. Pharm. 2016, 7, 46–56. [Google Scholar] [CrossRef]
- Lampe, J.W. Spicing up a vegetarian diet: Chemopreventive effects of phytochemicals. Am. J. Clin. Nutr. 2003, 78, 579s–583s. [Google Scholar] [CrossRef]
- Basnet, P.; Skalko-Basnet, N. Curcumin: An anti-inflammatory molecule from a curry spice on the path to cancer treatment. Molecules 2011, 16, 4567–4598. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, Y.; Li, Y.; Xu, D.P.; Li, S.; Li, H.B. Spices for Prevention and Treatment of Cancers. Nutrients 2016, 8, 495. [Google Scholar] [CrossRef] [PubMed]
- Kumar, K.M.; Asish, G.R.; Sabu, M.; Balachandran, I. Significance of gingers (Zingiberaceae) in Indian System of Medicine—Ayurveda: An overview. Anc. Sci. Life 2013, 32, 253–261. [Google Scholar] [CrossRef]
- Shabana, B.; Asif, J.; Nashrah, A.; Sharma, A.K.; Md, A. A Comparative Antibacterial Activity of Three Common Spices Extract and their Anti-Proliferative and Apoptotic Effectiveness against Human Breast Adenocarcinoma Cells. Pharmacogn. J. 2019, 11, 88–93. [Google Scholar]
- Sengottuvelu, S. Cardamom (Elettaria cardamomum Linn. Maton) seeds in health. In Nuts and Seeds in Health and Disease Prevention; Elsevier: Amsterdam, The Netherlands, 2011; pp. 285–291. [Google Scholar]
- Balachandran, P.; Govindarajan, R. Cancer--an ayurvedic perspective. Pharmacol. Res. 2005, 51, 19–30. [Google Scholar] [CrossRef]
- Barah, B. Hill agriculture: Problems and prospects for mountain agriculture. Indian J. Agric. Econ. 2010, 65, 584–601. [Google Scholar]
- Ravindran, P.; Madhusoodanan, K. Cardamom: The Genus Elettaria; Medicinal and Aromatic Plants Industrial Series; CRC Press: Boca Raton, FL, USA; Taylor and Francis Group: London, UK, 2002. [Google Scholar]
- Ravindran, P.; Divakaran, M.; Pillai, G. Handbook of Herbs and Spice; Woodhead Publishing: Sawston, UK, 2012; Volume 1, pp. 86–115. [Google Scholar]
- Monti, D.; Chetoni, P.; Burgalassi, S.; Najarro, M.; Saettone, M.F.; Boldrini, E. Effect of different terpene-containing essential oils on permeation of estradiol through hairless mouse skin. Int. J. Pharm. 2002, 237, 209–214. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Lam, S.; Ho, S. Bioactivities of essential oil from Elletaria cardamomum (L.) Maton. to Sitophilus zeamais Motschulsky and: Tribolium castaneum (Herbst). J. Stored Prod. Res. 2000, 36, 107–117. [Google Scholar] [CrossRef]
- Samanta, A.; Dobhal, K.; Singh, A.; Verma, S.; Jakhmola, V. Potential action of cardamom (Elettaria cardamomum) against triple-negative breast cancer. BLDE Univ. J. Health Sci. 2023, 8, 210. [Google Scholar] [CrossRef]
- Govindarajan, V.S.; Narasimhan, S.; Raghuveer, K.G.; Lewis, Y.S. Cardamom—Production, technology, chemistry, and quality. Crit. Rev. Food Sci. Nutr. 1982, 16, 229–326. [Google Scholar] [CrossRef]
- Kirtikar, K.R.; Basu, B.D. Indian Medicinal Plants; Publisher Not Identified Basu, Bhuwaneśwari Âśrama, 1918; Volume 2. Available online: https://www.biodiversitylibrary.org/item/124087#page/9/mode/1up (accessed on 24 July 2024).
- Korikanthimathm, V.; Prasath, D.; Rao, G. Medicinal properties of Elettaria cardamomum. J. Med. Aromat. Plant Sci. 2001, 22, 683–685. [Google Scholar]
- Polunin, M.; Robbins, C. The Natural Pharmacy: An Encyclopedic Illustrated Guide to Medicine from Nature; Dorling Kindersley Publishers Ltd.: London, UK, 1992. [Google Scholar]
- Krishnamurthy, K.H. The Wealth of Susruta; International Institute of Ayurveda: Gualala, CA, USA, 1991. [Google Scholar]
- El-Bastawesy, A.M.; Mohamed, R.H. Evaluation of cardamom oil role as antimicrobial anticarcenogenic and anti-inflammatory agents. Egypt. J. Agric. Res. 2005, 83, 789–809. [Google Scholar] [CrossRef]
- Jamal, A.; Javed, K.; Aslam, M.; Jafri, M.A. Gastroprotective effect of cardamom, Elettaria cardamomum Maton. fruits in rats. J. Ethnopharmacol. 2006, 103, 149–153. [Google Scholar] [CrossRef] [PubMed]
- Suneetha, W.J.; Krishnakantha, T.P. Cardamom extract as inhibitor of human platelet aggregation. Phytother. Res. PTR 2005, 19, 437–440. [Google Scholar] [CrossRef]
- Bano, S.; Ahmad, N.; Sharma, A. Phytochemical screening and evaluation of anti-microbial and anti-oxidant activity of Elettaria cardamom (Cardamom). J. Appl. Nat. Sci. 2016, 8, 1966–1970. [Google Scholar] [CrossRef]
- Badei, A.; Morsi, H.; El-Akel, A. Chemical Composition and Antioxidant Properties of Cardamom Essential Oil. 1991. Available online: https://www.cabidigitallibrary.org/doi/full/10.5555/19920314104 (accessed on 30 August 2024).
- Kaur, S.D. Dietary and Nutritional Guidelines for Cancer Prevention and Recovery. Available online: https://mammalive.net/wp-content/uploads/2016/05/Dietary-and-Nutritional-Guidelines-for-Cancer-Prevention-and-Recovery.pdf (accessed on 30 August 2024).
- Majdalawieh, A.F.; Carr, R.I. In vitro investigation of the potential immunomodulatory and anti-cancer activities of black pepper (Piper nigrum) and cardamom (Elettaria cardamomum). J. Med. Food 2010, 13, 371–381. [Google Scholar] [CrossRef]
- Amma, K.P.; Sasidharan, I.; Sreekumar, M.; Sumathykutty, M.; Arumughan, C. Total antioxidant capacity and change in phytochemicals of four major varieties of cardamom oils during decortication. Int. J. Food Prop. 2015, 18, 1317–1325. [Google Scholar] [CrossRef]
- Al-Zuhair, H.; El-Sayeh, B.; Ameen, H.A.; Al-Shoora, H. Pharmacological studies of cardamom oil in animals. Pharmacol. Res. 1996, 34, 79–82. [Google Scholar] [CrossRef] [PubMed]
- Kalemba, D.; Kunicka, A. Antibacterial and antifungal properties of essential oils. Curr. Med. Chem. 2003, 10, 813–829. [Google Scholar] [CrossRef] [PubMed]
- Winarsi, H.; Yuniaty, A.; Nuraeni, I. Improvement of antioxidant and immune status of atherosclerotic rats adrenaline and egg-yolks-induced using cardamom-rhizome-ethanolic-extract: An initial study of functional food. Agric. Agric. Sci. Procedia 2016, 9, 264–270. [Google Scholar] [CrossRef]
- De Pradier, E. Trial of a mixture of three essential oils in the treatment of postoperative nausea and vomiting. Phytothérapie 2006, 4, 181–187. [Google Scholar] [CrossRef]
- Dormán, G.; Flachner, B.; Hajdú, I.; András, C.D. Chapter 21—Target Identification and Polypharmacology of Nutraceuticals. In Nutraceuticals; Gupta, R.C., Ed.; Academic Press: Boston, MA, USA, 2016; pp. 263–286. [Google Scholar] [CrossRef]
- Dzoyem, J.P.; McGaw, L.J.; Kuete, V.; Bakowsky, U. Chapter 9—Anti-inflammatory and Anti-nociceptive Activities of African Medicinal Spices and Vegetables. In Medicinal Spices and Vegetables from Africa; Kuete, V., Ed.; Academic Press: Cambridge, MA, USA, 2017; pp. 239–270. [Google Scholar] [CrossRef]
- Botsaris, A.S. Plants used traditionally to treat malaria in Brazil: The archives of Flora Medicinal. J. Ethnobiol. Ethnomed. 2007, 3, 18. [Google Scholar] [CrossRef]
- Qin, B.; Liu, J.; Liu, S.; Li, B.-j.; Ren, J. Kaempferol targets estrogen-related receptor α and inhibits cell proliferation and invasion in retinoblastoma via Wnt/β-catenin signaling pathway. Int. J. Clin. Exp. Med. 2016, 9, 21415–21423. [Google Scholar]
- Lin, Y.; Shi, R.; Wang, X.; Shen, H.M. Luteolin, a flavonoid with potential for cancer prevention and therapy. Curr. Cancer Drug Targets 2008, 8, 634–646. [Google Scholar] [CrossRef]
- Brglez Mojzer, E.; Knez Hrnčič, M.; Škerget, M.; Knez, Ž.; Bren, U. Polyphenols: Extraction Methods, Antioxidative Action, Bioavailability and Anticarcinogenic Effects. Molecules 2016, 21, 901. [Google Scholar] [CrossRef]
- Manjeet, K.R.; Ghosh, B. Quercetin inhibits LPS-induced nitric oxide and tumor necrosis factor-alpha production in murine macrophages. Int. J. Immunopharmacol. 1999, 21, 435–443. [Google Scholar] [CrossRef]
- Fontecave, M.; Lepoivre, M.; Elleingand, E.; Gerez, C.; Guittet, O. Resveratrol, a remarkable inhibitor of ribonucleotide reductase. FEBS Lett. 1998, 421, 277–279. [Google Scholar] [CrossRef] [PubMed]
- Moreno, J.J. Resveratrol modulates arachidonic acid release, prostaglandin synthesis, and 3T6 fibroblast growth. J. Pharmacol. Exp. Ther. 2000, 294, 333–338. [Google Scholar] [PubMed]
- Greiner, J.F.W.; Müller, J.; Zeuner, M.-T.; Hauser, S.; Seidel, T.; Klenke, C.; Grunwald, L.-M.; Schomann, T.; Widera, D.; Sudhoff, H.; et al. 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity. Biochim. Biophys. Acta (BBA)—Mol. Cell Res. 2013, 1833, 2866–2878. [Google Scholar] [CrossRef] [PubMed]
- Yang, F.; Chen, R.; Li, W.Y.; Zhu, H.Y.; Chen, X.X.; Hou, Z.F.; Cao, R.S.; Zang, G.; Li, Y.X.; Zhang, W. D-Limonene Is a Potential Monoterpene to Inhibit PI3K/Akt/IKK-α/NF-κB p65 Signaling Pathway in Coronavirus Disease 2019 Pulmonary Fibrosis. Front. Med. 2021, 8, 591830. [Google Scholar] [CrossRef] [PubMed]
- Santos, W.B.R.; Melo, M.A.O.; Alves, R.S.; de Brito, R.G.; Rabelo, T.K.; Prado, L.d.S.; Silva, V.K. dos S.; Bezerra, D.P.; de Menezes-Filho, J.E.R.; Souza, D.S.; et al. p-Cymene attenuates cancer pain via inhibitory pathways and modulation of calcium currents. Phytomedicine 2019, 61, 152836. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.S.; Lee, H.J.; Jeon, Y.D.; Han, Y.H.; Kee, J.Y.; Kim, H.J.; Shin, H.J.; Kang, J.; Lee, B.S.; Kim, S.H.; et al. Alpha-Pinene Exhibits Anti-Inflammatory Activity Through the Suppression of MAPKs and the NF-κB Pathway in Mouse Peritoneal Macrophages. Am. J. Chin. Med. 2015, 43, 731–742. [Google Scholar] [CrossRef]
- Gunaseelan, S.; Balupillai, A.; Govindasamy, K.; Ramasamy, K.; Muthusamy, G.; Shanmugam, M.; Thangaiyan, R.; Robert, B.M.; Nagarajan, R.P.; Ponniresan, V.K.; et al. Linalool prevents oxidative stress activated protein kinases in single UVB-exposed human skin cells. PLOS ONE 2017, 12, e0176699. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Q.; Xia, L.; Li, X.; Sun, C.; Wang, Q.; Cai, X.; Yang, G. Borneol promotes apoptosis of Human Glioma Cells through regulating HIF-1a expression via mTORC1/eIF4E pathway. J. Cancer 2020, 11, 4810–4822. [Google Scholar] [CrossRef]
- Aronchik, I.; Chen, T.; Durkin, K.A.; Horwitz, M.S.; Preobrazhenskaya, M.N.; Bjeldanes, L.F.; Firestone, G.L. Target protein interactions of indole-3-carbinol and the highly potent derivative 1-benzyl-I3C with the C-terminal domain of human elastase uncouples cell cycle arrest from apoptotic signaling. Mol. Carcinog. 2012, 51, 881–894. [Google Scholar] [CrossRef]
- Banerjee, S.; Kong, D.; Wang, Z.; Bao, B.; Hillman, G.G.; Sarkar, F.H. Attenuation of multi-targeted proliferation-linked signaling by 3,3′-diindolylmethane (DIM): From bench to clinic. Mutat. Res. 2011, 728, 47–66. [Google Scholar] [CrossRef]
- Majumder, A. Targeting Homocysteine and Hydrogen Sulfide Balance as Future Therapeutics in Cancer Treatment. Antioxidants 2023, 12, 1520. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A. ploiting Methionine Addiction as a Potential Treatment Strategy for Cancer. 2023. Available online: http://research.sdpublishers.net/id/eprint/3430/ (accessed on 30 August 2024).
- Majumder, A.; Steri, V.; Salangsang, F.; Moasser, M. Abstract LB-326: The role of HER3 in HER2-amplified cancers other than breast cancers. Cancer Res. 2020, 80, LB–326. [Google Scholar] [CrossRef]
- George, A.K.; Majumder, A.; Ice, H.; Homme, R.P.; Eyob, W.; Tyagi, S.C.; Singh, M. Genes and genetics in hyperhomocysteinemia and the “1-carbon metabolism”: Implications for retinal structure and eye functions. Can. J. Physiol. Pharmacol. 2020, 98, 51–60. [Google Scholar] [CrossRef]
- Majumder, A.; Behra, J.; Singh, M.; Tyagi, N.; Tyagi, S.C. Hyperhomocysteinemia-Mediated Endoplasmic Reticulum Stress in Skeletal Muscle Dysfunction via JNK/pro-inflammatory Pathway. FASEB J. 2018, 32, 538-4. [Google Scholar] [CrossRef]
- Majumder, A.; Singh, M.; George, A.K.; Tyagi, S.C. Hydrogen Sulfide Improves Hyperhomocysteinemia-Mediated Impairment of Angiogenesis in Skeletal Muscle. FASEB J. 2018, 32, 573-2. [Google Scholar] [CrossRef]
- Newman, A.C.; Maddocks, O.D.K. One-carbon metabolism in cancer. Br. J. Cancer 2017, 116, 1499–1504. [Google Scholar] [CrossRef]
- Majumder, A. Effects of Hydrogen Sulfide in Hyperhomocysteinemia-Mediated Skeletal Muscle Myopathy. Ph. D. Thesis, University of Louisville, Louisville, KY, USA, 2018. [Google Scholar]
- Majumder, A.; Singh, M.; George, A.K.; Tyagi, S.C. Restoration of skeletal muscle homeostasis by hydrogen sulfide during hyperhomocysteinemia-mediated oxidative/ER stress condition (1). Can. J. Physiol. Pharmacol. 2019, 97, 441–456. [Google Scholar] [CrossRef]
- Majumder, A.; Singh, M.; Behera, J.; Theilen, N.T.; George, A.K.; Tyagi, N.; Metreveli, N.; Tyagi, S.C. Hydrogen sulfide alleviates hyperhomocysteinemia-mediated skeletal muscle atrophy via mitigation of oxidative and endoplasmic reticulum stress injury. Am. J. Physiol. Cell Physiol. 2018, 315, C609–C622. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Behera, J.; Jeremic, N.; Tyagi, S.C. Hypermethylation: Causes and Consequences in Skeletal Muscle Myopathy. J. Cell Biochem. 2017, 118, 2108–2117. [Google Scholar] [CrossRef]
- George, A.K.; Master, K.; Majumder, A.; Homme, R.P.; Laha, A.; Sandhu, H.S.; Tyagi, S.C.; Singh, M. Circular RNAs constitute an inherent gene regulatory axis in the mammalian eye and brain (1). Can. J. Physiol. Pharmacol. 2019, 97, 463–472. [Google Scholar] [CrossRef]
- Singh, M.; George, A.K.; Homme, R.P.; Majumder, A.; Laha, A.; Sandhu, H.S.; Tyagi, S.C. Expression Analysis of the Circular RNA Molecules in the Human Retinal Cells Treated with Homocysteine. Curr. Eye Res. 2019, 44, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; George, A.K.; Homme, R.P.; Majumder, A.; Laha, A.; Sandhu, H.S.; Tyagi, S.C. Circular RNAs profiling in the cystathionine-β-synthase mutant mouse reveals novel gene targets for hyperhomocysteinemia induced ocular disorders. Exp. Eye Res. 2018, 174, 80–92. [Google Scholar] [CrossRef] [PubMed]
- Molina-Montes, E.; Salamanca-Fernández, E.; Garcia-Villanova, B.; Sánchez, M.J. The Impact of Plant-Based Dietary Patterns on Cancer-Related Outcomes: A Rapid Review and Meta-Analysis. Nutrients 2020, 12, 2010. [Google Scholar] [CrossRef] [PubMed]
- Asma, S.T.; Acaroz, U.; Imre, K.; Morar, A.; Shah, S.R.A.; Hussain, S.Z.; Arslan-Acaroz, D.; Demirbas, H.; Hajrulai-Musliu, Z.; Istanbullugil, F.R.; et al. Natural Products/Bioactive Compounds as a Source of Anticancer Drugs. Cancers 2022, 14, 6203. [Google Scholar] [CrossRef] [PubMed]
- Ramchandani, S.; Naz, I.; Dhudha, N.; Garg, M. An overview of the potential anticancer properties of cardamonin. Explor. Target. Antitumor Ther. 2020, 1, 413–426. [Google Scholar] [CrossRef]
- Qiblawi, S.; Kausar, A.; Shahid, S.; Saeed, M.; Alazzeh, A. Therapeutic Interventions of Cardamom in Cancer and Other Human Diseases. J. Pharm. Res. Int. 2020, 32, 74–78. [Google Scholar] [CrossRef]
- Bhattacharjee, S.; Rana, T.; Sengupta, A. Inhibition of lipid peroxidation and enhancement of GST activity by cardamom and cinnamon during chemically induced colon carcinogenesis in Swiss albino mice. Asian Pac. J. Cancer Prev. 2007, 8, 578–582. [Google Scholar]
- Qiblawi, S.; Al-Hazimi, A.; Al-Mogbel, M.; Hossain, A.; Bagchi, D. Chemopreventive Effects of Cardamom (Elettaria cardamomum L.) on Chemically Induced Skin Carcinogenesis in Swiss Albino Mice. J. Med. Food 2012, 15, 576–580. [Google Scholar] [CrossRef]
- Qiblawi, S.; Dhanarasu, S.; Faris, M.A. Chemopreventive Effect of Cardamom (Elettaria cardamomum L.) Against Benzo(α)Pyrene-Induced Forestomach Papillomagenesis in Swiss Albino Mice. J. Environ. Pathol. Toxicol. Oncol. 2015, 34, 95–104. [Google Scholar] [CrossRef]
- Vutakuri, N.; Somara, S. Natural and herbal medicine for breast cancer using Elettaria cardamomum (L.) Maton. Int. J. Herbal. Med. 2018, 6, 91–96. [Google Scholar]
- Kamada, N.; Chen, G.Y.; Inohara, N.; Núñez, G. Control of pathogens and pathobionts by the gut microbiota. Nat. Immunol. 2013, 14, 685–690. [Google Scholar] [CrossRef]
- Lee, G.-A.; Hwang, K.-A.; Choi, K.-C. Roles of Dietary Phytoestrogens on the Regulation of Epithelial-Mesenchymal Transition in Diverse Cancer Metastasis. Toxins 2016, 8, 162. [Google Scholar] [CrossRef] [PubMed]
- Fasril, T.; Hilbertina, N.; Elliyanti, A. Treatment Problems In Triple Negative Breast Cancer. Int. Islam. Med. J. 2023, 4, 51–58. [Google Scholar] [CrossRef]
- Jia, D.; Tan, Y.; Liu, H.; Ooi, S.; Li, L.; Wright, K.; Bennett, S.; Addison, C.L.; Wang, L. Cardamonin reduces chemotherapy-enriched breast cancer stem-like cells in vitro and in vivo. Oncotarget 2016, 7, 771–785. [Google Scholar] [CrossRef] [PubMed]
- Khairani, S.P.; Cuandra, K.N.; Ramadhannisa, Z.D.; Rahman, A.T.; Arisanty, D.; Hilbertina, N. Unravelling the apoptosis induction potential of Amomum cardamomum seed: A combination in silico and in vitro approach. J. Herbmed Pharmacol. 2024, 13, 427–438. [Google Scholar] [CrossRef]
- Park, S.; Gwak, J.; Han, S.J.; Oh, S. Cardamonin suppresses the proliferation of colon cancer cells by promoting β-catenin degradation. Biol. Pharm. Bull. 2013, 36, 1040–1044. [Google Scholar] [CrossRef]
- Yue, Y.; Liu, L.; Liu, P.; Li, Y.; Lu, H.; Li, Y.; Zhang, G.; Duan, X. Cardamonin as a potential treatment for melanoma induces human melanoma cell apoptosis. Oncol. Lett. 2020, 19, 1393–1399. [Google Scholar] [CrossRef]
- Niu, P.; Shi, D.; Zhang, S.; Zhu, Y.; Zhou, J. Cardamonin enhances the anti-proliferative effect of cisplatin on ovarian cancer. Oncol. Lett. 2018, 15, 3991–3997. [Google Scholar] [CrossRef]
- Zhang, J.; Sikka, S.; Siveen, K.S.; Lee, J.H.; Um, J.Y.; Kumar, A.P.; Chinnathambi, A.; Alharbi, S.A.; Basappa; Rangappa, K.S.; et al. Cardamonin represses proliferation, invasion, and causes apoptosis through the modulation of signal transducer and activator of transcription 3 pathway in prostate cancer. Apoptosis 2017, 22, 158–168. [Google Scholar] [CrossRef]
- Lee, J.; Kim, J.H. Kaempferol Inhibits Pancreatic Cancer Cell Growth and Migration through the Blockade of EGFR-Related Pathway In Vitro. PLoS ONE 2016, 11, e0155264. [Google Scholar] [CrossRef]
- Das, I.; Acharya, A.; Berry, D.L.; Sen, S.; Williams, E.; Permaul, E.; Sengupta, A.; Bhattacharya, S.; Saha, T. Antioxidative effects of the spice cardamom against non-melanoma skin cancer by modulating nuclear factor erythroid-2-related factor 2 and NF-κB signalling pathways. Br. J. Nutr. 2011, 108, 984–997. [Google Scholar] [CrossRef] [PubMed]
- Zaki, M.; Farag, H.; Abd El Wahed, S. Investigation Of The Apoptotic Effect Of Cardamom Oil On Laryngeal Cancer Cell Line (A Non-Randomized In Vitro Study). Egypt. Dent. J. 2024, 70, 189–198. [Google Scholar] [CrossRef]
- Zhang, P.; Song, D.; Fang, Z.; Sun, D.; Wang, L.; Shi, L.; Gao, L.; Jiang, X. Cardamomin Inhibits the Proliferation and Tumorigenesis of Bladder Cancer by ESR1 in PI3K/AKT Pathway. Biochem. Genet. 2024, 1–21. [Google Scholar] [CrossRef] [PubMed]
- Majumder, A.; Sheth, F.; Patel, M.; Doshi, B.; Shah, N.; Thankor, P.; Vaidya, R.; Sheth, J. Effect of PPAR-γ2 Gene Pro12Ala polymorphism (Rs1801282) and Vitamin D(3) on glucose homeostasis in Type 2 diabetic subjects from Gujarat-India. Mol. Cytogenet. 2014, 7 (Suppl. S1), P37. [Google Scholar] [CrossRef]
- Shah, A.; Sheth, F.; Majumder, A.; Doshi, B.; Shah, N.; Thakor, P.; Vaidya, R.; Sheth, J. Effect of PPAR-γ2 gene Pro12Ala and ADR-β3 gene Trp64AArg polymorphism on glucose homeostasis in Type 2 diabetes subjects from Western India. Mol. Cytogenet. 2014, 7 (Suppl. S1), P101. [Google Scholar] [CrossRef]
- Kaefer, C.M.; Milner, J.A. Herbs and Spices in Cancer Prevention and Treatment. In Herbal Medicine: Biomolecular and Clinical Aspects; Benzie, I.F.F., Wachtel-Galor, S., Eds.; CRC Press: Boca Raton, FL, USA; Taylor & Francis: Boca Raton, FL, USA, 2011. [Google Scholar]
- Steward, W.P.; Brown, K. Cancer chemoprevention: A rapidly evolving field. Br. J. Cancer 2013, 109, 1–7. [Google Scholar] [CrossRef]
- Gonçalves, L.M.; Valente, I.M.; Rodrigues, J.A. An overview on cardamonin. J. Med. Food 2014, 17, 633–640. [Google Scholar] [CrossRef]
- Shrivastava, S.; Jeengar, M.K.; Thummuri, D.; Koval, A.; Katanaev, V.L.; Marepally, S.; Naidu, V.G.M. Cardamonin, a chalcone, inhibits human triple negative breast cancer cell invasiveness by downregulation of Wnt/β-catenin signaling cascades and reversal of epithelial-mesenchymal transition. Biofactors 2017, 43, 152–169. [Google Scholar] [CrossRef]
- Nayak, K.B.; Sajitha, I.S.; Kumar, T.R.S.; Chakraborty, S. Ecotropic viral integration site 1 promotes metastasis independent of epithelial mesenchymal transition in colon cancer cells. Cell Death Dis. 2018, 9, 18. [Google Scholar] [CrossRef]
- Kumar, P.; Aggarwal, R. An overview of triple-negative breast cancer. Arch. Gynecol. Obstet. 2016, 293, 247–269. [Google Scholar] [CrossRef]
- Sukumar, J.; Gast, K.; Quiroga, D.; Lustberg, M.; Williams, N. Triple-negative breast cancer: Promising prognostic biomarkers currently in development. Expert. Rev. Anticancer Ther. 2021, 21, 135–148. [Google Scholar] [CrossRef] [PubMed]
- Hamzaa, R.; Nour, N. Using of Coffee and Cardamom Mixture to Ameliorate Oxidative Stress Induced in γ-irradiated Rats. Biochem. Anal. Biochem. 2012, 1, 2161-1009. [Google Scholar] [CrossRef]
- Umamaheswari, M.; Chatterjee, T.K. In vitro antioxidant activities of the fractions of Coccinia grandis L. leaf extract. Afr. J. Tradit. Complement. Altern. Med. 2007, 5, 61–73. [Google Scholar] [CrossRef] [PubMed]
- Bhattacharjee, B.; Chatterjee, J. Identification of proapoptopic, anti-inflammatory, anti- proliferative, anti-invasive and anti-angiogenic targets of essential oils in cardamom by dual reverse virtual screening and binding pose analysis. Asian Pac. J. Cancer Prev. 2013, 14, 3735–3742. [Google Scholar] [CrossRef] [PubMed]
- Saed, A.; Sultana, B.; Anwar, F.; Mushtaq, M.; Gilani, A.-H.; Alkharfy, K.; Gilani, A. Antioxidant and Antimutagenic Potential of Seeds and Pods of Green Cardamom (Elettaria cardamomum). Int. J. Pharmacol. 2014, 10, 461–469. [Google Scholar] [CrossRef]
- Nair, S.C.; Salomi, M.J.; Varghese, C.D.; Panikkar, B.; Panikkar, K.R. Effect of saffron on thymocyte proliferation, intracellular glutathione levels and its antitumor activity. Biofactors 1992, 4, 51–54. [Google Scholar]
- Vellosa, J.C. Antioxidant and cytotoxic studies for kaempferol, quercetin and isoquercitrin. Eclética Química 2011, 36, 07. [Google Scholar] [CrossRef]
- Yashin, A.; Yashin, Y.; Xia, X.; Nemzer, B. Antioxidant Activity of Spices and Their Impact on Human Health: A Review. Antioxidants 2017, 6, 70. [Google Scholar] [CrossRef]
- Farooq, S.; Sehgal, A. Evaluation of antioxidant and antigenotoxic effects of kahwa. Indian J. Tradit. Knowl. 2017, 16, 277–283. [Google Scholar]
- Ahmed, A.S.; Ahmed, Q.; Saxena, A.K.; Jamal, P. Evaluation of in vitro antidiabetic and antioxidant characterizations of Elettaria cardamomum (L.) Maton (Zingiberaceae), Piper cubeba L. f. (Piperaceae), and Plumeria rubra L. (Apocynaceae). Pak. J. Pharm. Sci. 2017, 30, 113–126. [Google Scholar]
- Kandikattu, H.K.; Rachitha, P.; Jayashree, G.V.; Krupashree, K.; Sukhith, M.; Majid, A.; Amruta, N.; Khanum, F. Anti-inflammatory and anti-oxidant effects of Cardamom (Elettaria repens (Sonn.) Baill) and its phytochemical analysis by 4D GCXGC TOF-MS. Biomed. Pharmacother. 2017, 91, 191–201. [Google Scholar] [CrossRef] [PubMed]
- Nithya, S. Anti-inflammatory effect of elettaria cardamom oil on carrageenan-induced paw edema using rats based on tumor necrosis factor α, interleukin 6, and interleukin 1 levels in serum. Asian J. Pharm. Clin. Res. 2018, 11, 207. [Google Scholar] [CrossRef]
- Hämäläinen, M.; Nieminen, R.; Vuorela, P.; Heinonen, M.; Moilanen, E. Anti-Inflammatory Effects of Flavonoids: Genistein, Kaempferol, Quercetin, and Daidzein Inhibit STAT-1 and NF-B Activations, Whereas Flavone, Isorhamnetin, Naringenin, and Pelargonidin Inhibit only NF-B Activation along with Their Inhibitory Effect on iNOS Expression and NO Production in Activated Macrophages. Mediat. Inflamm. 2007, 2007, 45673. [Google Scholar] [CrossRef]
- Naveed, R.; Hussain, I.; Tawab, A.; Tariq, M.; Rahman, M.; Hameed, S.; Mahmood, M.S.; Siddique, A.B.; Iqbal, M. Antimicrobial activity of the bioactive components of essential oils from Pakistani spices against Salmonella and other multi-drug resistant bacteria. BMC Complement. Altern. Med. 2013, 13, 265. [Google Scholar] [CrossRef] [PubMed]
- Balière, C.; Rincé, A.; Delannoy, S.; Fach, P.; Gourmelon, M. Molecular Profiling of Shiga Toxin-Escherichia coli and Enteropathogenic E. coli Strains Isolated from French Coastal Environments. Appl. Environ. Microbiol. 2016, 82, 3913–3927. [Google Scholar] [CrossRef]
- Shegarfi, H.; Naper, C.; Rolstad, B.; Inngjerdingen, M. Listeria monocytogenes infection affects a subset of Ly49-expressing NK cells in the rat. PLoS ONE 2010, 5, e15579. [Google Scholar] [CrossRef]
- Grass, G.; Bierbaum, G.; Molitor, E.; Götte, N.; Antwerpen, M. Genome Sequence of Bacillus pumilus Strain Bonn, Isolated from an Anthrax-Like Necrotic Skin Infection Site of a Child. Genome Announc. 2016, 4, 10–1128. [Google Scholar] [CrossRef]
- Jebur, M.H.; Yasri, A.A.; Khazal, N.; Hindi, K.; Universi, B.; Province, B. Antimicrobial Effect of Seed Extracts, Leaves and Crude oil of Cardamom (elettariacardamomum) against Different Types of Bacteriain Hilla City, Iraq. World J. Pharm. Res. 2014, 3, 710–2277. [Google Scholar]
- Alemdar, S. Antimicrobial Effect of Seed Extract of Cardamom (Elettaria cardamomum Maton). YYÜ Vet Fak Derg 2005, 16, 99–101. [Google Scholar]
- Dehghan, M.; Noorizadeh, E.; latifi Navid, M. Survey of anti-bacterial effects of turmeric, ginger, clove and cardamom on Helicobacter pylori. J. Ardabil Univ. Med. Sci. 2002, 2, 19–26. [Google Scholar]
- Kaushik, P.; Goyal, P.; Chauhan, A.; Chauhan, G. In Vitro Evaluation of Antibacterial Potential of Dry FruitExtracts of Elettaria cardamomum Maton (Chhoti Elaichi). Iran. J. Pharm. Res. 2010, 9, 287–292. [Google Scholar] [PubMed]
- Akrayi, H.F.S. Antibacterial Effect of Seed Extracts of Cardamom (Elettaria cardamomum) against Staphylococcus aureus and Proteus mirabilis. Tikrit J. Pure Sci. 2012, 17, 14–18. [Google Scholar]
- Islam, M.; Rahman, M.; Sheikh, M.M.I.; Rahman; Jamal, M.A.; Firoz, A. In vitro Antibacterial Activity of Methanol Seed Extract of Elettaria cardamomum (L.) Maton. Agric. Conspec. Sci. (ACS) 2010, 75. [Google Scholar]
- Mishra, N.; Behal, K.K. Antimicrobial activity of some spices against selected microbes. Int. J. Pharm. Pharm. Sci. 2010, 2, 187–196. [Google Scholar]
- Fernandez, C.J.; George, A.S.; Subrahmanyan, N.A.; Pappachan, J.M. Epidemiological link between obesity, type 2 diabetes mellitus and cancer. World J. Methodol. 2021, 11, 23–45. [Google Scholar] [CrossRef]
- Homme, R.P.; Anewesha, L.; Majumder, A.; George, A.; Singh, M.; Tyagi, S. NF-kB p65 Subunit Inhibitor: JSH-23 Mitigates Diabetic Retinopathy via Reducing Oxidative Stress. FASEB J. 2019, 33, 685-5. [Google Scholar] [CrossRef]
- Homme, R.P.; Singh, M.; Majumder, A.; George, A.K.; Nair, K.; Sandhu, H.S.; Tyagi, N.; Lominadze, D.; Tyagi, S.C. Remodeling of Retinal Architecture in Diabetic Retinopathy: Disruption of Ocular Physiology and Visual Functions by Inflammatory Gene Products and Pyroptosis. Front. Physiol. 2018, 9, 1268. [Google Scholar] [CrossRef]
- Majumder, A.; Singh, M.; George, A.K.; Behera, J.; Tyagi, N.; Tyagi, S.C. Hydrogen sulfide improves postischemic neoangiogenesis in the hind limb of cystathionine-β-synthase mutant mice via PPAR-γ/VEGF axis. Physiol. Rep. 2018, 6, e13858. [Google Scholar] [CrossRef]
- Majumder, A.; Doshi, B.; Sheth, F.; Patel, M.; Shah, N.; Premal, T.; Vaidya, R.; Sheth, J. Association of Vitamin D(3) levels with glycemic control in Type 2 diabetes subjects from Gujarati population-India. Mol. Cytogenet. 2014, 7 (Suppl. S1), P36. [Google Scholar] [CrossRef]
- George, A.K.; Singh, M.; Homme, R.P.; Majumder, A.; Sandhu, H.S.; Tyagi, S.C. A hypothesis for treating inflammation and oxidative stress with hydrogen sulfide during age-related macular degeneration. Int. J. Ophthalmol. 2018, 11, 881–887. [Google Scholar] [CrossRef]
- Laha, A.; Majumder, A.; Singh, M.; Tyagi, S.C. Connecting homocysteine and obesity through pyroptosis, gut microbiome, epigenetics, peroxisome proliferator-activated receptor γ, and zinc finger protein 407. Can. J. Physiol. Pharmacol. 2018, 96, 971–976. [Google Scholar] [CrossRef] [PubMed]
- George, A.K.; Homme, R.P.; Majumder, A.; Laha, A.; Metreveli, N.; Sandhu, H.S.; Tyagi, S.C.; Singh, M. Hydrogen sulfide intervention in cystathionine-β-synthase mutant mouse helps restore ocular homeostasis. Int. J. Ophthalmol. 2019, 12, 754–764. [Google Scholar] [CrossRef]
- George, A.K.; Singh, M.; Homme, R.P.; Majumder, A.; Tyagi, S. Role of Hydrogen Sulfide (H2S) on Homocysteine Mediated Glutamate Excitotoxicity, Endoplasmic Reticulum Stress and Pyroptosis in Retina. FASEB J. 2018, 32, 748-5. [Google Scholar] [CrossRef]
- Majumder, A.; Singh, M.; George, A.K.; Homme, R.P.; Laha, A.; Tyagi, S.C. Remote ischemic conditioning as a cytoprotective strategy in vasculopathies during hyperhomocysteinemia: An emerging research perspective. J. Cell Biochem. 2019, 120, 77–92. [Google Scholar] [CrossRef]
- Rahman, M.M.; Alam, M.N.; Ulla, A.; Sumi, F.A.; Subhan, N.; Khan, T.; Sikder, B.; Hossain, H.; Reza, H.M.; Alam, M.A. Cardamom powder supplementation prevents obesity, improves glucose intolerance, inflammation and oxidative stress in liver of high carbohydrate high fat diet induced obese rats. Lipids Health Dis. 2017, 16, 151. [Google Scholar] [CrossRef] [PubMed]
- Fatemeh, Y.; Siassi, F.; Rahimi, A.; Koohdani, F.; Doostan, F.; Qorbani, M.; Sotoudeh, G. The effect of cardamom supplementation on serum lipids, glycemic indices and blood pressure in overweight and obese pre-diabetic women: A randomized controlled trial. J. Diabetes Metab. Disord. 2017, 16, 40. [Google Scholar] [CrossRef] [PubMed]
- Aghasi, M.; Koohdani, F.; Qorbani, M.; Nasli-Esfahani, E.; Ghazi-Zahedi, S.; Khoshamal, H.; Keshavarz, A.; Sotoudeh, G. Beneficial effects of green cardamom on serum SIRT1, glycemic indices and triglyceride levels in patients with type 2 diabetes mellitus: A randomized double-blind placebo controlled clinical trial. J. Sci. Food Agric. 2019, 99, 3933–3940. [Google Scholar] [CrossRef]
- Paul, K.; Chakraborty, S.; Mallick, P.; Bhattacharjee, P.; Pal, T.K.; Chatterjee, N.; Chakrabarti, S. Supercritical carbon dioxide extracts of small cardamom and yellow mustard seeds have fasting hypoglycaemic effects: Diabetic rat, predictive iHOMA2 models and molecular docking study. Br. J. Nutr. 2021, 125, 377–388. [Google Scholar] [CrossRef]
- Mohamed, E.A.; Siddiqui, M.J.; Ang, L.F.; Sadikun, A.; Chan, S.H.; Tan, S.C.; Asmawi, M.Z.; Yam, M.F. Potent α-glucosidase and α-amylase inhibitory activities of standardized 50% ethanolic extracts and sinensetin from Orthosiphon stamineus Benth as anti-diabetic mechanism. BMC Complement. Altern. Med. 2012, 12, 176. [Google Scholar] [CrossRef]
- Yahyazadeh, R.; Ghasemzadeh Rahbardar, M.; Razavi, B.M.; Karimi, G.; Hosseinzadeh, H. The effect of Elettaria cardamomum (cardamom) on the metabolic syndrome: Narrative review. Iran. J. Basic. Med. Sci. 2021, 24, 1462–1469. [Google Scholar] [CrossRef]
- Links, M.; Lewis, C. Chemoprotectants: A review of their clinical pharmacology and therapeutic efficacy. Drugs 1999, 57, 293–308. [Google Scholar] [CrossRef] [PubMed]
- Basu, A.; Bhattacharjee, A.; Bhattacharya, S. Chemoprotectants in cancer chemotherapy: An update. Biomed. Res. J. 2016, 3, 157–181. [Google Scholar]
- Rohilla, S.; Dureja, H.; Chawla, V. Cytoprotective Agents to Avoid Chemotherapy Induced Sideeffects on Normal Cells: A Review. Curr. Cancer Drug Targets 2019, 19, 765–781. [Google Scholar] [CrossRef]
- Roszkowski, S. Application of Polyphenols and Flavonoids in Oncological Therapy. Molecules 2023, 28, 4080. [Google Scholar] [CrossRef]
- Singh, M.; George, A.K.; Homme, R.P.; Majumder, A.; Laha, A.; Metreveli, N.; Pushpakumar, S.B.; Tyagi, S.C. Probiotic Supplementation Mitigates Vascular Remodeling in the Retina. FASEB J. 2019, 33, 484-11. [Google Scholar] [CrossRef]
- Singh, M.; George, A.K.; Homme, R.P.; Majumder, A.; Metreveli, N.; Laha, A.; Pushpakumar, S.B.; Tyagi, S.C. Studying Long-term Effects of a Probiotic on Neuroretinal Health. Investig. Ophthalmol. Vis. Sci. 2019, 60, 4885. [Google Scholar]
- George, A.K.; Singh, M.; Majumder, A.; Homme, R.P.; Metreveli, N.; Pushpakumar, S.B.; Tyagi, S.C. Hyperhomocysteinemia and the effects of Lactobacillus rhamnosus GG on cardiac functions in CBS+/− mice. FASEB J. 2019, 33, 531-7. [Google Scholar] [CrossRef]
- Majumder, A.; Singh, M.; George, A.K.; Homme, R.P.; Metreveli, N.; Tyagi, S.C. Lactobacillus rhamnosus GG improves skeletal muscle fatigability in a mouse model of hyperhomocysteinemia. FASEB J. 2019, 33, 592-12. [Google Scholar] [CrossRef]
- Prakash, J.; Kumar, C.; Kujur, A.; Kumar, S.; Kumar, D.A. Anti-cancerous Effect of Amomum subulatum Against DMBA Induced Breast Cancer in Rats. J. Cancer Sci. Clin. Ther. 2023, 8, 1–9. [Google Scholar] [CrossRef]
- Ali, M.L.; Noushin, F.; Sadia, Q.A.; Metu, A.F.; Meem, J.N.; Chowdhury, M.T.; Rasel, M.H.; Suma, K.J.; Alim, M.A.; Jalil, M.A.; et al. Spices and culinary herbs for the prevention and treatment of breast cancer: A comprehensive review with mechanistic insights. Cancer Pathog. Ther. 2024, 2, E082–E142. [Google Scholar] [CrossRef]
- Kong, W.; Li, C.; Qi, Q.; Shen, J.; Chang, K. Cardamonin induces G2/M arrest and apoptosis via activation of the JNK-FOXO3a pathway in breast cancer cells. Cell Biol. Int. 2020, 44, 177–188. [Google Scholar] [CrossRef] [PubMed]
- Jin, J.; Qiu, S.; Wang, P.; Liang, X.; Huang, F.; Wu, H.; Zhang, B.; Zhang, W.; Tian, X.; Xu, R.; et al. Cardamonin inhibits breast cancer growth by repressing HIF-1α-dependent metabolic reprogramming. J. Exp. Clin. Cancer Res. 2019, 38, 377. [Google Scholar] [CrossRef] [PubMed]
- Shinde, A.; Hardy, S.D.; Kim, D.; Akhand, S.S.; Jolly, M.K.; Wang, W.H.; Anderson, J.C.; Khodadadi, R.B.; Brown, W.S.; George, J.T.; et al. Spleen Tyrosine Kinase-Mediated Autophagy Is Required for Epithelial-Mesenchymal Plasticity and Metastasis in Breast Cancer. Cancer Res. 2019, 79, 1831–1843. [Google Scholar] [CrossRef] [PubMed]
- Libring, S.; Shinde, A.; Chanda, M.K.; Nuru, M.; George, H.; Saleh, A.M.; Abdullah, A.; Kinzer-Ursem, T.L.; Calve, S.; Wendt, M.K.; et al. The Dynamic Relationship of Breast Cancer Cells and Fibroblasts in Fibronectin Accumulation at Primary and Metastatic Tumor Sites. Cancers 2020, 12, 1270. [Google Scholar] [CrossRef]
- Ningegowda, R.; Shivananju, N.S.; Rajendran, P.; Basappa; Rangappa, K.S.; Chinnathambi, A.; Li, F.; Achar, R.R.; Shanmugam, M.K.; Bist, P.; et al. A novel 4,6-disubstituted-1,2,4-triazolo-1,3,4-thiadiazole derivative inhibits tumor cell invasion and potentiates the apoptotic effect of TNFα by abrogating NF-κB activation cascade. Apoptosis 2017, 22, 145–157. [Google Scholar] [CrossRef]
- Niu, P.; Li, J.; Chen, H.; Zhu, Y.; Zhou, J.; Shi, D. Anti-proliferative effect of cardamonin on mTOR inhibitor-resistant cancer cells. Mol. Med. Rep. 2020, 21, 1399–1407. [Google Scholar] [CrossRef]
- Xi, Y.; Xu, P. Global colorectal cancer burden in 2020 and projections to 2040. Transl. Oncol. 2021, 14, 101174. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Lin, C.; Cheng, X.; Hua, H.; Xiang, T.; Huang, Y.; Huang, X. Cardamonin reduces chemotherapy resistance of colon cancer cells via the TSP50/NF-κB pathway in vitro. Oncol. Lett. 2018, 15, 9641–9646. [Google Scholar] [CrossRef]
- Manu, K.A.; Shanmugam, M.K.; Ramachandran, L.; Li, F.; Siveen, K.S.; Chinnathambi, A.; Zayed, M.E.; Alharbi, S.A.; Arfuso, F.; Kumar, A.P.; et al. Isorhamnetin augments the anti-tumor effect of capecitabine through the negative regulation of NF-κB signaling cascade in gastric cancer. Cancer Lett. 2015, 363, 28–36. [Google Scholar] [CrossRef]
- Kostelecka, K.; Bryliński, Ł.; Komar, O.; Michalczyk, J.; Miłosz, A.; Biłogras, J.; Woliński, F.; Forma, A.; Baj, J. An Overview of the Spices Used for the Prevention and Potential Treatment of Gastric Cancer. Cancers 2024, 16, 1611. [Google Scholar] [CrossRef]
- Wang, Z.; Tang, X.; Wu, X.; Yang, M.; Wang, W.; Wang, L.; Tang, D.; Wang, D. Cardamonin exerts anti-gastric cancer activity via inhibiting LncRNA-PVT1-STAT3 axis. Biosci. Rep. 2019, 39, 357. [Google Scholar] [CrossRef] [PubMed]
- Hou, G.; Yuan, X.; Li, Y.; Hou, G.; Liu, X. Cardamonin, a natural chalcone, reduces 5-fluorouracil resistance of gastric cancer cells through targeting Wnt/β-catenin signal pathway. Investig. New Drugs 2020, 38, 329–339. [Google Scholar] [CrossRef]
- Shabnam, B.; Padmavathi, G.; Banik, K.; Girisa, S.; Monisha, J.; Sethi, G.; Fan, L.; Wang, L.; Mao, X.; Kunnumakkara, A.B. Sorcin a Potential Molecular Target for Cancer Therapy. Transl. Oncol. 2018, 11, 1379–1389. [Google Scholar] [CrossRef] [PubMed]
- Wu, N.; Liu, J.; Zhao, X.; Yan, Z.; Jiang, B.; Wang, L.; Cao, S.; Shi, D.; Lin, X. Cardamonin induces apoptosis by suppressing STAT3 signaling pathway in glioblastoma stem cells. Tumour Biol. 2015, 36, 9667–9676. [Google Scholar] [CrossRef] [PubMed]
- George, A.K.; Homme, R.P.; Majumder, A.; Tyagi, S.C.; Singh, M. Effect of MMP-9 gene knockout on retinal vascular form and function. Physiol. Genom. 2019, 51, 613–622. [Google Scholar] [CrossRef]
- Liao, N.C.; Shih, Y.L.; Chou, J.S.; Chen, K.W.; Chen, Y.L.; Lee, M.H.; Peng, S.F.; Leu, S.J.; Chung, J.G. Cardamonin Induces Cell Cycle Arrest, Apoptosis and Alters Apoptosis Associated Gene Expression in WEHI-3 Mouse Leukemia Cells. Am. J. Chin. Med. 2019, 47, 635–656. [Google Scholar] [CrossRef]
- Wang, L.; Syn, N.L.; Subhash, V.V.; Any, Y.; Thuya, W.L.; Cheow, E.S.H.; Kong, L.; Yu, F.; Peethala, P.C.; Wong, A.L.; et al. Pan-HDAC inhibition by panobinostat mediates chemosensitization to carboplatin in non-small cell lung cancer via attenuation of EGFR signaling. Cancer Lett. 2018, 417, 152–160. [Google Scholar] [CrossRef]
- Zhou, X.; Zhou, R.; Li, Q.; Jie, X.; Hong, J.; Zong, Y.; Dong, X.; Zhang, S.; Li, Z.; Wu, G. Cardamonin inhibits the proliferation and metastasis of non-small-cell lung cancer cells by suppressing the PI3K/Akt/mTOR pathway. Anticancer Drugs 2019, 30, 241–250. [Google Scholar] [CrossRef]
- He, W.; Jiang, Y.; Zhang, X.; Zhang, Y.; Ji, H.; Zhang, N. Anticancer cardamonin analogs suppress the activation of NF-kappaB pathway in lung cancer cells. Mol. Cell Biochem. 2014, 389, 25–33. [Google Scholar] [CrossRef]
- Uzunalli, G.; Dieterly, A.M.; Kemet, C.M.; Weng, H.Y.; Soepriatna, A.H.; Goergen, C.J.; Shinde, A.B.; Wendt, M.K.; Lyle, L.T. Dynamic transition of the blood-brain barrier in the development of non-small cell lung cancer brain metastases. Oncotarget 2019, 10, 6334–6348. [Google Scholar] [CrossRef]
- Kim, C.; Lee, J.H.; Ko, J.H.; Chinnathambi, A.; Alharbi, S.A.; Shair, O.H.M.; Sethi, G.; Ahn, K.S. Formononetin Regulates Multiple Oncogenic Signaling Cascades and Enhances Sensitivity to Bortezomib in a Multiple Myeloma Mouse Model. Biomolecules 2019, 9, 262. [Google Scholar] [CrossRef] [PubMed]
- Qin, Y.; Sun, C.Y.; Lu, F.R.; Shu, X.R.; Yang, D.; Chen, L.; She, X.M.; Gregg, N.M.; Guo, T.; Hu, Y. Cardamonin exerts potent activity against multiple myeloma through blockade of NF-κB pathway in vitro. Leuk. Res. 2012, 36, 514–520. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Qiu, R.; Yuan, L.; Meng, F.; Tang, Q. Analysis on the Alpinia katsumadai components of Zingiberaceae plants and their functions on myeloma resistance. Pak. J. Pharm. Sci. 2015, 28, 1065–1068. [Google Scholar] [PubMed]
- Charkhchi, P.; Cybulski, C.; Gronwald, J.; Wong, F.O.; Narod, S.A.; Akbari, M.R. CA125 and Ovarian Cancer: A Comprehensive Review. Cancers 2020, 12, 3730. [Google Scholar] [CrossRef] [PubMed]
- Shi, D.; Zhao, D.; Niu, P.; Zhu, Y.; Zhou, J.; Chen, H. Glycolysis inhibition via mTOR suppression is a key step in cardamonin-induced autophagy in SKOV3 cells. BMC Complement. Altern. Med. 2018, 18, 317. [Google Scholar] [CrossRef]
- Rawla, P. Epidemiology of Prostate Cancer. World J. Oncol. 2019, 10, 63–89. [Google Scholar] [CrossRef]
- Pascoal, A.C.; Ehrenfried, C.A.; Lopez, B.G.; de Araujo, T.M.; Pascoal, V.D.; Gilioli, R.; Anhê, G.F.; Ruiz, A.L.; Carvalho, J.E.; Stefanello, M.E.; et al. Antiproliferative activity and induction of apoptosis in PC-3 cells by the chalcone cardamonin from Campomanesia adamantium (Myrtaceae) in a bioactivity-guided study. Molecules 2014, 19, 1843–1855. [Google Scholar] [CrossRef]
Number | Name and Structure | Targets | Reference |
---|---|---|---|
1 | Kaempferol | Increase the activity of PGC-1α and estrogen-related receptor α and inhibits cell proliferation and invasion in retinoblastoma via the Wnt/β-catenin signaling pathway | [56,57] |
2 | Luteolin | Phosphatidylinositol 3′-kinase (PI3K)/Akt, nuclear factor kappa B (NF-kappaB), and X-linked inhibitor of apoptosis protein (XIAP) | [58] |
3 | Pelargonidin | Inhibitors of NF-κB | [59] |
4 | Quercetin | Quercetin inhibits lipopolysaccharide (LPS)-induced tumor necrosis factor α (TNF-α) production in macrophages | [60] |
5 | Resveratrol | Inhibit ribonuclease reductase [1] or COX-2 activity [2] | [61,62] |
6 | Eucalyptol | 1,8-Cineol inhibits nuclear translocation of NF-κB p65 and NF-κB-dependent transcriptional activity | [63] |
7 | D-Limonene | Inhibit PI3K/Akt/IKK-α/NF-κB p65 Signalling | [64] |
8 | Cymene | Modulate the calcium channel currents | [65] |
9 | α-Pinene | Suppress MAPKs and the NF-κB Pathways | [66] |
10 | Linalool | Modulate MAPK and NF-κB signaling | [67] |
11 | Borneol | Regulate HIF-1a expression via mTORC1/eIF4E pathway | [68] |
12 | Cardamonin | Target mTOR, NF-κB, Akt, STAT3, Wnt/β-catenin and COX-2 | [14] |
13 | Indole-3-carbinol | Disrupt of NFκB nuclear localization and transcriptional activity, and induction of a G1 cell cycle arrest. | [69] |
14 | Diindolylmethane | Modulate NF-κB/Wnt/Akt/mTOR pathways | [70] |
Type of Cancer | Tested Using | Reference |
---|---|---|
Breast cancers | Cardamonin and cardamom seed extract | [36,95,96,97] |
Colon Carcinogenesis | Cardamom crude extract and cardamonin | [89,98] |
Melanoma | Cardamonin | [99] |
Ovarian cancers | Cardamonin | [100] |
Prostate cancers | Cardamonin | [101] |
Forestomach papillomagenesis | Cardamom crude extract | [91] |
Pancreatic cancer | Kaempferol | [102] |
Skin carcinogenesis | Cardamom powder | [90] |
non-melanoma skin cancer | Cardamom crude extract | [103] |
Head and Neck Squamous Cell Carcinoma | Cardamom oil | [104] |
Bladder Cancer | Cardamomin | [105] |
Measurement of Anti-Oxidative Property of Cardamom | Tested Using | Reference |
---|---|---|
2, 2,-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging activity | Cardamom seed extract and total extract | [45,118] |
NO radical scavenging assay | Cardamom crude extract | [122] |
FRAP assay | Cardamom crude extract | [123] |
Reducing power assay | Cardamom crude extract | [124] |
ABTS Radical Cation Decolourisation Assay | Cardamom oil | [49] |
Name of Bacteria | Reference |
---|---|
Helicobacter pylori | [133] |
Escherichia coli, Salmonella typhi, Bacillus cereus, Bacillus subtilis, Streptococcus pyogenes, and Staphylococcus aureus | [134] |
Staphylococcus aureus and Proteus Mirabilis | [135] |
Klebsiella pneumoniae, Pseudomonas aeruginosa, Salmonella typhi, Shigella dysenteriae, Shigella sonnei, Staphylococcus aureus, Streptococcus-β-haemolytica, Bacillus subtilis, B. megaterium, and Sarcina lutea | [136] |
Staphylococcus aureus, Streptococcus pneumonia, S.epidermidis, P. aeroginosa, K. pneumonia, Proteus mirabilis, Enterobacter spp. Acinetobacter, E. coli, Serretia spp. and Salmonella typhi | [131] |
E. coli | [137] |
EPEC, L. monocytogenes, B. pumilus and E. coli | [45] |
E. coli, S. typhi, S. pyogenes, S. aureus, B. subtilis and B. cereus | [134] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bano, S.; Majumder, A.; Srivastava, A.; Nayak, K.B. Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic. Biomolecules 2024, 14, 1166. https://doi.org/10.3390/biom14091166
Bano S, Majumder A, Srivastava A, Nayak KB. Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic. Biomolecules. 2024; 14(9):1166. https://doi.org/10.3390/biom14091166
Chicago/Turabian StyleBano, Shabana, Avisek Majumder, Ayush Srivastava, and Kasturi Bala Nayak. 2024. "Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic" Biomolecules 14, no. 9: 1166. https://doi.org/10.3390/biom14091166
APA StyleBano, S., Majumder, A., Srivastava, A., & Nayak, K. B. (2024). Deciphering the Potentials of Cardamom in Cancer Prevention and Therapy: From Kitchen to Clinic. Biomolecules, 14(9), 1166. https://doi.org/10.3390/biom14091166