Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Microbiological Analyses
2.2.1. Escherichia coli
2.2.2. Salmonella
2.3. Minimum Inhibitory Concentration (MIC)
2.4. Minimum Bactericidal Concentration (MBC)
3. Results
3.1. Microbiological Analysis
3.2. Antibacterial Activity
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Balali, G.I.; Yar, D.D.; Dela, V.G.A.; Adjei-Kusi, P. Microbial contamination, an increasing threat to the consumption of fresh fruits and vegetables in today’s world. Int. J. Microbiol. 2020, 2020, 3029295. [Google Scholar]
- de Oliveira, V.C.; do Amaral, M.J.; Gonçalves, D.J.R.; de Almeida Costa, N.; Vieira, É.N.R.; Júnior, B.R.D.C.L. Minimally processed fruits with added probiotics: A review. J. Eng. Exact Sci. 2022, 8, 14894-01e. [Google Scholar] [CrossRef]
- Mir, S.A.; Shah, M.A.; Mir, M.M.; Dar, B.N.; Greiner, R.; Roohinejad, S. Microbiological contamination of ready-to-eat vegetable salads in developing countries and potential solutions in the supply chain to control microbial pathogens. Food Control 2018, 85, 235–244. [Google Scholar]
- Corato, U.D. Improving the shelf-life and quality of fresh and minimally-processed fruits and vegetables for a modern food industry: A comprehensive critical review from the traditional technologies into the most promising advancements. Crit. Rev. Food Sci. Nutr. 2019, 60, 940–975. [Google Scholar] [PubMed]
- Tresseler, J.F.M.; De Figueiredo, E.A.T.; Figueiredo, R.W.; Machado, T.F.; Delfino, C.M.; De Sousa, P.H.M. Avaliação da qualidade microbiológica de hortaliças minimamente processadas. Ciênc. Agrotec. 2009, 33, 1722–1727. [Google Scholar]
- Bergamini, A.M.M.; Capuano, D.M.; Okino, M.H.T.; Oliveira, C.A.D.; Oliveira, M.A.; Castro e Silva, A.A.; Ribeiro, E.G.A.; Takayanagui, A.M.M.; Takayanagui, O.M. Análise da cadeia de produção de verduras em Ribeirão Preto, SP. Rev. Soc. Bras. Med. Trop. 2006, 39, 224–226. [Google Scholar]
- World Health Organization [WHO]. WHO Estimates of the Global Burden of Foodborne Diseases. Available online: https://www.who.int/data/gho/data/themes/who-estimates-of-the-global-burden-of-foodborne-diseases (accessed on 26 February 2025).
- Lee, H.; Yoon, Y. Etiological Agents Implicated in Foodborne Illness World Wide. Food Sci. Anim. Resour. 2021, 41, 1–7. [Google Scholar]
- Grace, D. Burden of foodborne disease in low-income and middle-income countries and opportunities for scaling food safety interventions. Food Secur. 2023, 15, 1475–1488. [Google Scholar]
- Anvisa. Agência Nacional De Vigilância Sanitária. Resolução da Diretoria Colegiada-RDC n° 12, de 2 de Janeiro de 2001. Available online: https://anvisalegis.datalegis.net/action/ActionDatalegis.php?acao=abrirTextoAto&tipo=RDC&numeroAto=00000012&seqAto=002&valorAno=2001&orgao=RDC/DC/ANVISA/MS&codTipo=&desItem=&desItemFim=&cod_menu=9434&cod_modulo=310&pesquisa=true (accessed on 20 January 2025).
- Welker, C.A.D.; Both, J.M.C.; Longaray, S.M.; Haas, S.; Soeiro, M.L.T.; Ramos, R.C. Análise microbiológica dos alimentos envolvidos em surtos de doenças transmitidas por alimentos (DTA) ocorridos no estado do Rio Grande do Sul, Brasil. Rev. Bras. Biociências 2010, 8, 44–48. [Google Scholar]
- Ferreira, C.C.; Gregório, E.L.; Costa, J.D.; De Paula, R.B.O.; De Araujo Neta, H.A.G.; Fontes, M.D. Análise de coliformes termotolerantes e Salmonella sp. em hortaliças minimamente processadas comercializadas em Belo Horizonte-MG. HU Rev. 2016, 42, 307–313. [Google Scholar]
- Pinheiro, N.M.D.S.; Figueiredo, E.A.T.D.; Figueiredo, R.W.D.; Maia, G.A.; Souza, P.H.M.D. Avaliação da qualidade microbiológica de frutos minimamente processados comercializados em supermercados de Fortaleza. Rev. Bras. Frutic. 2005, 27, 153–156. [Google Scholar] [CrossRef]
- Bruno, L.M.; Queiroz, A.D.; Andrade, A.D.; Vasconcelos, N.D.; Borges, M.D.F. Avaliação microbiológica de hortaliças e frutas minimamente processadas comercializadas em Fortaleza (CE). B. CEPPA Curitiba 2005, 26, 75–84. [Google Scholar] [CrossRef]
- Santos, T.S.; Campos, F.B.; Padovani, N.F.A.; Dias, M.; Mendes, M.A.; Maffei, D.F. Assessment of the microbiological quality and safety of minimally processed vegetables sold in Piracicaba, SP, Brazil. Appl. Microbiol. 2020, 71, 187–194. [Google Scholar] [CrossRef]
- Ministério da Saúde. Surtos de Doenças de Transmissão Hídrica e Alimentar no Brasil–Informe 2024. Available online: https://www.gov.br/saude/pt-br/assuntos/saude-de-a-a-z/d/dtha/publicacoes/surtos-de-doencas-de-transmissao-hidrica-e-alimentar-no-brasil-informe-2024/view (accessed on 15 December 2024).
- Murbach Teles Andrade, B.F.; Nunes Barbosa, L.; da Silva Probst, I.; Fernandes Júnior, A. Antimicrobial activity of essencial oils. J. Essent. Oil Res. 2014, 26, 34–40. [Google Scholar] [CrossRef]
- Ju, J.; Xie, Y.; Guo, Y.; Cheng, Y.; Qian, H.; Yao, W. The inhibitory effect of plant essential oils on foodborne pathogenic bacteria in food. Crit. Rev. Food Sci. Nutr. 2018, 59, 3281–3292. [Google Scholar] [CrossRef]
- Da Silva, N.; Junqueira, V.C.A.; de Arruda Silveira, N.F.; Taniwaki, M.H.; Gomes, R.A.R.; Okazaki, M.M. Capítulo 9. Contagem de coliformes totais, coliformes termotolerantes e Escherichia coli. In Manual de Métodos de Análise Microbiológica de Alimentos e Água, 5th ed.; Edgard Blücher Ltda, Blucher: São Paulo, Brazil, 2017; pp. 117–137. [Google Scholar]
- Da Silva, N.; Junqueira, V.C.A.; de Arruda Silveira, N.F.; Taniwaki, M.H.; Gomes, R.A.R.; Okazaki, M.M. Capítulo 19. Salmonella. In Manual de Métodos de Análise Microbiológica de Alimentos e Água, 5th ed.; Edgard Blücher Ltda, Blucher: São Paulo, Brazil, 2017; pp. 291–323. [Google Scholar]
- ISO 6579-1:2017; Microbiology of the Food Chain—Horizontal Method for the Detection, Enumeration and Serotyping of Salmonella—Part 1: Detection of Salmonella spp. ISO (International Organization for Standardization): Geneva, Switzerland, 2017.
- Clinical Laboratory Standards Institute. Methods for Dilution Antimicrobial Susceptibility Test for Bacteria That Grow Aerobically; Approved Standard M7-A10; Clinical Laboratory Standards Institute: Wayne, PA, USA, 2015. [Google Scholar]
- Smanioto, T.F.; Pirolo, N.J.; Simionato, E.M.R.S.; Arruda, M.C. Qualidade microbiológica de frutas e hortaliças minimamente processadas. Rev. Inst. Adolfo Lutz 2009, 68, 150–154. [Google Scholar] [CrossRef]
- Rani, A.; Ravindran, V.B.; Surapaneni, A.; Mantri, N.; Ball, A.S. Review: Trends in point-of-care diagnosis for Escherichia coli O157:H7 in food and water. Int. J. Food Microbiol. 2021, 349, 109233. [Google Scholar] [CrossRef]
- Angane, M.; Swift, S.; Huang, K.; Butts, C.A.; Quek, S.Y. Essential Oils and Their Major Components: An Updated Review on Antimicrobial Activities, Mechanism of Action and Their Potential Application in the Food Industry. Foods 2022, 11, 464. [Google Scholar] [CrossRef]
- Dannenberg, G.d.S.; Funck, G.D.; da Silva, W.P.; Fiorentini, A.M. Essential oil from pink pepper (Schinus terebinthifolius Raddi): Chemical composition, antibacterial activity and mechanism of action. Food Control 2019, 95, 115–120. [Google Scholar] [CrossRef]
- Oliveira, K.C.; Franciscato, L.M.S.S.; Mendes, S.S.; Barizon, F.M.A.; Gonçalves, D.D.; Barbosa, L.N.; Faria, M.G.I.; Valle, J.S.; Casalvara, R.F.A.; Gonçalves, J.E.; et al. Essential Oil from the Leaves, Fruits and Twigs of Schinus terebinthifolius: Chemical Composition, Antioxidant and Antibacterial Potential. Molecules 2024, 29, 469. [Google Scholar] [CrossRef]
- Tatu, C.; Tănasie, G.; Tulcan, C.; Gaspar, C.; Păunescu, V.; Tatu, R.-F.; Păunescu, C. Essential Oils and Plants Extracts with Antibacterial and Anti-Biofilm Activities against Multidrug Resistant Bacteria. Proceedings 2021, 68, 3202. [Google Scholar] [CrossRef]
- Bai, J.; Li, J.; Chen, Z.; Bai, X.; Yang, Z.; Wang, Z.; Yang, Y. Antibacterial activity and mechanism of clove essential oil against foodborne pathogens. Food Sci. Technol. 2023, 173, 114249. [Google Scholar] [CrossRef]
- De Aquino, L.C.L.; Santos, G.G.; Trindade, R.D.C.; Alves, J.A.B.; Santos, P.O.; Alves, P.B.; Blank, A.F.; de Carvalho, L.M. Atividade antimicrobiana dos óleos essenciais de erva-cidreira e manjericão frente a bactérias de carnes bovinas. Alim. Nutr. 2010, 21, 529–535. [Google Scholar]
- Elansary, H.O.; Szopa, A.; Kubica, P.; Ekiert, H.; El-Ansary, D.O.; Al-Mana, F.A.; Mahmoud, E.A. Saudi Rosmarinus offcinalis and Ocimum basilicum L. Polyphenols and Biological Activities. Processes 2020, 8, 446. [Google Scholar]
- Hassanpouraghdam, M.B.; Hassani, A.; Shalamzari, M.S. Menthone- and estragole-rich essential oil of cultivated Ocimum basilicum L. from Northwest Iran. Chemija 2010, 21, 59–62. [Google Scholar]
- Zhao, W.; Yang, C.; Zhang, N.; Peng, Y.; Ma, Y.; Gu, K.; Liu, X.; Liu, X.; Liu, X.; Liu, Y.; et al. Menthone Exerts its Antimicrobial Activity Against Methicillin Resistant Staphylococcus aureus by Affecting Cell Membrane Properties and Lipid Profile. Drug Des. Dev. Ther. 2023, 17, 219–236. [Google Scholar]
- Alam, A.; Rehman, N.U.; Ansari, M.N.; Palla, A.H. Effects of Essential Oils of Elettaria cardamomum Grown in India and Guatemala on Gram-Negative Bacteria and Gastrointestinal Disorders. Molecules 2021, 26, 2546. [Google Scholar] [CrossRef]
- Molaveisi, M.; Noktehsanj, A.M.; Shahidi, N.M.; Mohammadi, M. Chemical Composition, Antioxidant Potential, and Antimicrobial Activity of Elettaria cardamomum Essential Oil. Infect. Epidemiol. Microbiol. 2020, 6, 51–62. [Google Scholar]
- Moo, C.-L.; Osman, M.A.; Yang, A.-K.; Yap, W.-S.; Ismail, S.; Lim, S.-H.-E.; Chongo, C.-M.; Lai, K.-S. Antimicrobial activity and mode of action of 1,8-cineol against carbapenemase-producing Klebsiella pneumoniae. Nat./Sci. Rep. 2021, 11, 20824. [Google Scholar]
- Gupta, A.; Jeyakumar, E.; Lawrence, R. Strategic approach of multifaceted antibacterial mechanism of limonene traced in Escherichia coli. Nat./Sci. Rep. 2021, 11, 13816. [Google Scholar]
- Pinheiro, R.E.E.; Chaves, T.P.; Melo, E.S.; Ali, S.; Ali, S.W.; Umer, M.; Gama, G.S.P.; Lira, D.N.S.; Souza, J.S.N.; Soares, M.J.d.S.; et al. Modulatory-antibiotic activity of the essential oil from Eucalyptus citriodora against MDR bacterial strains. Cell. Mol. Biol. 2020, 66, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Yamaguchi, M.H.; Garcia, R.F. Óleo de copaíba e suas propriedades medicinais: Revisão bibliográfica. Saúde e Pesqui. 2012, 5, 137–146. [Google Scholar]
- Peng, J.; Chen, G.; Guo, S.; Lin, Z.; Zeng, Y.; Ren, J.; Wang, Q.; Yang, W.; Liang, Y.; Li, J. Anti-Bacterial and Anti-Biofilm Activities of Essential Oil from Citrus reticulata Blanco cv. Tankan Peel Against Listeria monocytogenes. Foods 2024, 13, 3841. [Google Scholar] [CrossRef] [PubMed]
Essential Oil | E. coli | Salmonella spp. |
---|---|---|
MIC (% v/v) | MIC (% v/v) | |
MBC (% v/v) | MBC (% v/v) | |
Copaifera langsdorffii | >25 | >25 |
>25 | >25 | |
Citrus reticulata v. tangerine | >25 | >25 |
>25 | >25 | |
Schinus terebinthifolius | 3.125 | 3.125 |
>25 | >25 | |
Eucalyptus citriodora | 1.562 | 1.562 |
>25 | >25 | |
Elettaria cardamomum | 0.78 | 0.78 |
0.78 | 0.78 | |
Eugenia cariofila | 0.19 | 0.19 |
0.19 | 0.19 | |
Ocimum basilicum | 0.39 | 0.39 |
0.39 | 0.39 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sitowski, A.; Ribeiro, G.A.; Murphy, E.J.; Fehrenbach, G.W. Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods. Bacteria 2025, 4, 20. https://doi.org/10.3390/bacteria4020020
Sitowski A, Ribeiro GA, Murphy EJ, Fehrenbach GW. Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods. Bacteria. 2025; 4(2):20. https://doi.org/10.3390/bacteria4020020
Chicago/Turabian StyleSitowski, Aline, Gladis Aver Ribeiro, Emma J. Murphy, and Gustavo Waltzer Fehrenbach. 2025. "Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods" Bacteria 4, no. 2: 20. https://doi.org/10.3390/bacteria4020020
APA StyleSitowski, A., Ribeiro, G. A., Murphy, E. J., & Fehrenbach, G. W. (2025). Antibacterial Potential of Essential Oils Against E. coli and Salmonella spp. in Minimally Processed Foods. Bacteria, 4(2), 20. https://doi.org/10.3390/bacteria4020020