Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays
Abstract
:1. Introduction
2. Results
2.1. GC-MS Analysis
2.2. Phytochemical Assessment
2.3. Anti-Acetyl Cholinesterase Activity
2.4. Aβ-Fibrilization and Oligomerization Inhibition
2.5. Cytotoxicity Evaluation
2.6. Neuroprotective Activity
2.7. Effect on Intracellular Reactive Oxygen Species (ROS) Generation
2.8. Effect on Mitochondrial Membrane Potential (MMP, ΔΨm)
3. Discussion
4. Materials and Methods
4.1. Chemicals
4.2. Plant Material and Extraction
4.3. Gas Chromatography-Mass Spectrometry (GC-MS) Method
4.4. Determination of Total Phenolic Content (TPC) and Total Flavonoid Content (TFC)
4.5. Antioxidant Capacity Determination
- ABTS Radical Scavenging Assay
- 2.
- DPPH Radical Scavenging Assay
- 3.
- FRAP Assay
4.6. Anti-Acetylcholinesterase Activity
4.7. Thioflavin T (ThT) Assay
4.8. Anti-Aβ1-42 Oligomerization Activity
4.9. Cell Culture
4.10. Cell Viability and Neuroprotection Assay
4.11. Measurement of Intracellular Reactive Oxygen Species (ROS)
4.12. Mitochondrial Membrane Potential (ΔΨm) Assay
4.13. Data and Statistical Analysis
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Sharma, H.; Yang, H.; Sharma, N.; An, S.S.A. Trachyspermum ammi Bioactives Promote Neuroprotection by Inhibiting Acetylcholinesterase, Aβ-Oligomerization/Fibrilization, and Mitigating Oxidative Stress In Vitro. Antioxidants 2024, 13, 9. [Google Scholar] [CrossRef]
- Teleanu, D.M.; Niculescu, A.G.; Lungu, I.I.; Radu, C.I.; Vladâcenco, O.; Roza, E.; Costăchescu, B.; Grumezescu, A.M.; Teleanu, R.I. An Overview of Oxidative Stress, Neuroinflammation, and Neurodegenerative Diseases. Int. J. Mol. Sci. 2022, 23, 5938. [Google Scholar] [CrossRef]
- Cassidy, L.; Fernandez, F.; Johnson, J.B.; Naiker, M.; Owoola, A.G.; Broszczak, D.A. Oxidative stress in alzheimer’s disease: A review on emergent natural polyphenolic therapeutics. Complement. Ther. Med. 2020, 49, 102294. [Google Scholar] [CrossRef]
- Calabrese, V.; Mancuso, C.; Calvani, M.; Rizzarelli, E.; Butterfield, D.A.; Stella, A.M. Nitric oxide in the central nervous system: Neuroprotection versus neurotoxicity. Nat. Rev. Neurosci. 2007, 8, 766–775. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Kim, D.Y.; Shim, K.H.; Sharma, N.; An, S.S.A. Multi-Targeting Neuroprotective Effects of Syzygium aromaticum Bud Extracts and Their Key Phytocompounds Against Neurodegenerative Diseases. Int. J. Mol. Sci. 2023, 24, 8148. [Google Scholar] [CrossRef]
- Ward, J.; Evans, J.; Limoli, C.; Calabro-Jones, P. Radiation and hydrogen peroxide induced free radical damage to DNA. Br. J. Cancer Suppl. 1987, 8, 105. [Google Scholar] [PubMed]
- Obrador, E.; Salvador, R.; López-Blanch, R.; Jihad-Jebbar, A.; Vallés, S.L.; Estrela, J.M. Oxidative Stress, Neuroinflammation and Mitochondria in the Pathophysiology of Amyotrophic Lateral Sclerosis. Antioxidants 2020, 9, 901. [Google Scholar] [CrossRef]
- Kumar, G.P.; Khanum, F. Neuroprotective potential of phytochemicals. Pharmacogn. Rev. 2012, 6, 81–90. [Google Scholar] [CrossRef]
- Moreira, J.; Machado, M.; Dias-Teixeira, M.; Ferraz, R.; Delerue-Matos, C.; Grosso, C. The neuroprotective effect of traditional Chinese medicinal plants-A critical review. Acta Pharm. Sin. B 2023, 13, 3208–3237. [Google Scholar] [CrossRef]
- Market Research Report. Herbal Medicine Market Overview. Available online: https://www.polarismarketresearch.com/industry-analysis/herbal-medicine-market (accessed on 15 September 2024).
- Cárdenas Garza, G.R.; Elizondo Luévano, J.H.; Bazaldúa Rodríguez, A.F.; Chávez Montes, A.; Pérez Hernández, R.A.; Martínez Delgado, A.J.; López Villarreal, S.M.; Rodríguez Rodríguez, J.; Sánchez Casas, R.M.; Castillo Velázquez, U.; et al. Benefits of Cardamom (Elettaria cardamomum (L.) Maton) and Turmeric (Curcuma longa L.) Extracts for Their Applications as Natural Anti-Inflammatory Adjuvants. Plants 2021, 10, 1908. [Google Scholar] [CrossRef] [PubMed]
- Ivanović, M.; Makoter, K.; Islamčević Razboršek, M. Comparative Study of Chemical Composition and Antioxidant Activity of Essential Oils and Crude Extracts of Four Characteristic Zingiberaceae Herbs. Plants 2021, 10, 501. [Google Scholar] [CrossRef] [PubMed]
- Ashokkumar, K.; Murugan, M.; Dhanya, M.K.; Warkentin, T.D. Botany, traditional uses, phytochemistry and biological activities of cardamom [Elettaria cardamomum (L.) Maton]—A critical review. J. Ethnopharmacol. 2020, 246, 112244. [Google Scholar] [CrossRef] [PubMed]
- Souissi, M.; Azelmat, J.; Chaieb, K.; Grenier, D. Antibacterial and anti-inflammatory activities of cardamom (Elettaria cardamomum) extracts: Potential therapeutic benefits for periodontal infections. Anaerobe 2020, 61, 102089. [Google Scholar] [CrossRef]
- Auti, S.T.; Kulkarni, Y.A. Neuroprotective Effect of Cardamom Oil Against Aluminum Induced Neurotoxicity in Rats. Front. Neurol. 2019, 10, 399. [Google Scholar] [CrossRef]
- Abdel-Rasoul, A.A.; Saleh, N.A.; Hosny, E.N.; El-Gizawy, M.M.; Ibrahim, E.A. Cardamom oil ameliorates behavioral and neuropathological disorders in a rat model of depression induced by reserpine. J. Ethnopharmacol. 2023, 308, 116254. [Google Scholar] [CrossRef]
- Gomaa, A.A.; Makboul, R.M.; El-Mokhtar, M.A.; Abdel-Rahman, E.A.; Ahmed, I.A.; Nicola, M.A. Terpenoid-rich Elettaria cardamomum extract prevents Alzheimer-like alterations induced in diabetic rats via inhibition of GSK3β activity, oxidative stress and pro-inflammatory cytokines. Cytokine 2019, 113, 405–416. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, S.; Kumar, S. Alpha-terpinyl acetate: A natural monoterpenoid from Elettaria cardamomum as multi-target directed ligand in Alzheimer’s disease. J. Funct. Foods 2020, 68, 103892. [Google Scholar] [CrossRef]
- Badgujar, S.B.; Patel, V.V.; Bandivdekar, A.H. Foeniculum vulgare Mill: A review of its botany, phytochemistry, pharmacology, contemporary application, and toxicology. Biomed. Res. Int. 2014, 2014, 842674. [Google Scholar] [CrossRef] [PubMed]
- Malini, T.; Vanithakumari, G.; Megala, N.; Anusya, S.; Devi, K.; Elango, V. Effect of Foeniculum vulgare Mill. seed extract on the genital organs of male and female rats. Indian. J. Physiol. Pharmacol. 1985, 29, 21–26. [Google Scholar] [PubMed]
- Pradhan, M.; Sribhuwaneswari, S.; Karthikeyan, D.; Minz, S.; Sure, P.; Chandu, A.N.; Mishra, U.; Kamalakannan, K.; Saravanankumar, A.; Sivakumar, T. In-vitro cytoprotection activity of Foeniculum vulgare and Helicteres isora in cultured human blood lymphocytes and antitumour activity against B16F10 melanoma cell line. Res. J. Pharm. Technol. 2008, 1, 450–452. [Google Scholar]
- El-Soud, N.; El-Laithy, N.; El-Saeed, G.; Wahby, M.S.; Khalil, M.; Morsy, F.; Shaffie, N. Antidiabetic activities of Foeniculum vulgare Mill. essential oil in streptozotocin-induced diabetic rats. Maced. J. Med. Sci. 2011, 150173, 139–146. [Google Scholar]
- Cioanca, O.; Hancianu, M.; Mircea, C.; Trifan, A.; Hritcu, L. Essential oils from Apiaceae as valuable resources in neurological disorders: Foeniculi vulgare aetheroleum. Ind. Crop. Prod. 2016, 88, 51–57. [Google Scholar] [CrossRef]
- Joshi, H.; Parle, M. Cholinergic Basis of Memory-Strengthening Effect of Foeniculum vulgare Linn. J. Med. Food 2006, 9, 413–417. [Google Scholar] [CrossRef]
- Vastegani, S.M.; Khoshnam, S.E.; Mansouri, E.; Hajipour, S.; Ghafouri, S.; Bakhtiari, N.; Sarkaki, A.; Farbood, Y. Neuroprotective effect of anethole against rotenone induced non-motor deficits and oxidative stress in rat model of Parkinson’s disease. Behav. Brain Res. 2023, 437, 114100. [Google Scholar] [CrossRef] [PubMed]
- Moradi Vastegani, S.; Khoshnam, S.E.; Ghafouri, S.; Bakhtiari, N.; Farbood, Y.; Sarkaki, A. Anethole attenuates motor dysfunctions, striatal neuronal activity deficiency and blood brain barrier permeability by decreasing striatal α-synuclein and oxidative stress in rotenone-induced Parkinson’s disease of male rats. PLoS ONE 2023, 18, e0294612. [Google Scholar] [CrossRef] [PubMed]
- Raman, S.; Asle-Rousta, M.; Rahnema, M. Protective effect of fennel, and its major component trans-anethole against social isolation induced behavioral deficits in rats. Physiol. Int. 2020, 107, 30–39. [Google Scholar] [CrossRef]
- Bhatti, S.; Ali Shah, S.A.; Ahmed, T.; Zahid, S. Neuroprotective effects of Foeniculum vulgare seeds extract on lead-induced neurotoxicity in mice brain. Drug Chem. Toxicol. 2018, 41, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Sharma, H.; Yang, H.; Sharma, N.; An, S.S.A. Neuroprotection by Anethum graveolens (Dill) Seeds and Its Phytocompounds in SH-SY5Y Neuroblastoma Cell Lines and Acellular Assays. Int. J. Mol. Sci. 2024, 25, 7104. [Google Scholar] [CrossRef] [PubMed]
- Kumar, N.; Goel, N. Phenolic acids: Natural versatile molecules with promising therapeutic applications. Biotechnol. Rep. 2019, 24, e00370. [Google Scholar] [CrossRef] [PubMed]
- Zeb, A. Concept, mechanism, and applications of phenolic antioxidants in foods. J. Food Biochem. 2020, 44, e13394. [Google Scholar] [CrossRef]
- Kanthlal, S.; Joseph, J.; Paul, B.P.; Vijayakumar, M.; Rema Shree, A.; Uma, D. Assessment of Phytochemicals, Total Phenol, Flavonoid Content and in Vitro Antioxidant Property of Large Cardamom Extracts. Indian Drugs 2021, 58, 34–41. [Google Scholar]
- Hinneburg, I.; Damien Dorman, H.J.; Hiltunen, R. Antioxidant activities of extracts from selected culinary herbs and spices. Food Chem. 2006, 97, 122–129. [Google Scholar] [CrossRef]
- Ali, A.; Wu, H.; Ponnampalam, E.N.; Cottrell, J.J.; Dunshea, F.R.; Suleria, H.A.R. Comprehensive Profiling of Most Widely Used Spices for Their Phenolic Compounds through LC-ESI-QTOF-MS2 and Their Antioxidant Potential. Antioxidants 2021, 10, 721. [Google Scholar] [CrossRef] [PubMed]
- Noreen, S.; Tufail, T.; Bader Ul Ain, H.; Ali, A.; Aadil, R.M.; Nemat, A.; Manzoor, M.F. Antioxidant activity and phytochemical analysis of fennel seeds and flaxseed. Food Sci. Nutr. 2023, 11, 1309–1317. [Google Scholar] [CrossRef] [PubMed]
- Lal, M.; Begum, T.; Gogoi, R.; Sarma, N.; Munda, S.; Pandey, S.K.; Baruah, J.; Tamang, R.; Saikia, S. Anethole rich Clausena heptaphylla (Roxb.) Wight Arn., essential oil pharmacology and genotoxic efficiencies. Sci. Rep. 2022, 12, 9978. [Google Scholar] [CrossRef] [PubMed]
- Debabhuti, N.; Neogi, S.; Mukherjee, S.; Dhar, A.; Sharma, P.; Vekariya, R.L.; Sarkar, M.P.; Tudu, B.; Bhattacharyya, N.; Bandyopadhyay, R.; et al. Development of QCM sensor to detect α-terpinyl acetate in cardamom. Sens. Actuators A Phys. 2021, 319, 112521. [Google Scholar] [CrossRef]
- Gochev, V.; Girova, T.; Stoilova, I.; Atanasova, T.; Nenov, N.; Stanchev, V.; Soyanova, A. Low temperature extraction of essential oil bearing plants by liquefied gases. 7. Seeds from cardamom (Elettaria cardamomum (L.) Maton). J. BioScience Biotechnol. 2012, 1. [Google Scholar]
- Amma, K.; Rani, M.P.; Sasidharan, I.; Nisha, V.N.P. Chemical composition, flavonoid-phenolic contents and radical scavenging activity of four major varieties of cardamom. Int. J. Biol. Med. Res. 2010, 1, 20–24. [Google Scholar]
- Alam, A.; Majumdar, R.S.; Alam, P. Development of HPTLC method for determination of α-terpinyl acetate, and evaluation of antioxidant properties of essential oils in Elettaria cardamomum. Trop. J. Pharm. Res. 2019, 18, 2139–2145. [Google Scholar] [CrossRef]
- Castillo, N.E.T.; Teresa-Martínez, G.D.; Alonzo-Macías, M.; Téllez-Pérez, C.; Rodríguez-Rodríguez, J.; Sosa-Hernández, J.E.; Parra-Saldívar, R.; Melchor-Martínez, E.M.; Cardador-Martínez, A. Antioxidant Activity and GC-MS Profile of Cardamom (Elettaria cardamomum) Essential Oil Obtained by a Combined Extraction Method—Instant Controlled Pressure Drop Technology Coupled with Sonication. Molecules 2023, 28, 1093. [Google Scholar] [CrossRef] [PubMed]
- Marnett, L.J.; Cohen, S.M.; Fukushima, S.; Gooderham, N.J.; Hecht, S.S.; Rietjens, I.M.C.M.; Smith, R.L.; Adams, T.B.; Bastaki, M.; Harman, C.L.; et al. GRAS evaluation of aliphatic acyclic and alicyclic terpenoid tertiary alcohols and structurally related substances used as flavouring ingredients. J. Food Sci. Concise Rev. Food Sci. 2014, 79, R428–R441. [Google Scholar]
- FEMA. TERPINYL ACETATE (ISOMER MIXTURE). 2024. Available online: https://www.femaflavor.org/flavor-library/terpinyl-acetate-isomer-mixture\ (accessed on 11 September 2024).
- Vaičiulytė, V.; Ložienė, K.; Švedienė, J.; Raudonienė, V.; Paškevičius, A. α-Terpinyl Acetate: Occurrence in Essential Oils Bearing Thymus pulegioides, Phytotoxicity, and Antimicrobial Effects. Molecules 2021, 26, 1065. [Google Scholar] [CrossRef] [PubMed]
- Alam, A.; Jawaid, T.; Alam, P. In vitro antioxidant and anti-inflammatory activities of green cardamom essential oil and in silico molecular docking of its major bioactives. J. Taibah Univ. Sci. 2021, 15, 757–768. [Google Scholar] [CrossRef]
- Duță, D.E.; Culețu, A.; Negoiță, M.; Ionescu, V. Quantification of anethole in fennel and anise essential oils using gas chromatography and 1H-NMR-spectroscopy. Bull. Univ. Agric. Sci. Vet. Med. Cluj-Napoca Food Sci. Technol. 2019, 76, 105. [Google Scholar] [CrossRef]
- Nam, J.H.; Lee, D.-U. Foeniculum vulgare extract and its constituent, trans-anethole, inhibit UV-induced melanogenesis via ORAI1 channel inhibition. J. Dermatol. Sci. 2016, 84, 305–313. [Google Scholar] [CrossRef]
- Foudah, A.I.; Shakeel, F.; Alqarni, M.H.; Yusufoglu, H.S.; Salkini, M.A.; Alam, P. Determination of trans-anethole in essential oil, methanolic extract and commercial formulations of Foeniculum vulgare mill using a green RP-HPTLC-densitometry method. Separations 2020, 7, 51. [Google Scholar] [CrossRef]
- Seo, J.W.; Habiba, S.U.; Munni, Y.A.; Choi, H.J.; Aktar, A.; Mazumder, K.; Nah, D.-Y.; Yang, I.-J.; Moon, I.S. Protective Effects of Anethole in Foeniculum vulgare Mill. Seed Ethanol Extract on Hypoxia/Reoxygenation Injury in H9C2 Heart Myoblast Cells. Antioxidants 2024, 13, 1161. [Google Scholar] [CrossRef]
- Newberne, P.; Smith, R.; Doull, J.; Goodman, J.; Munro, I.; Portoghese, P.; Wagner, B.; Weil, C.; Woods, L.; Adams, T. The FEMA GRAS assessment of trans-anethole used as a flavouring substance. Food Chem. Toxicol. 1999, 37, 789–811. [Google Scholar] [CrossRef] [PubMed]
- Senatore, F.; Oliviero, F.; Scandolera, E.; Taglialatela-Scafati, O.; Roscigno, G.; Zaccardelli, M.; De Falco, E. Chemical composition, antimicrobial and antioxidant activities of anethole-rich oil from leaves of selected varieties of fennel [Foeniculum vulgare Mill. ssp. vulgare var. azoricum (Mill.) Thell]. Fitoterapia 2013, 90, 214–219. [Google Scholar] [CrossRef]
- Medeiros, M.; Alves, M.; Santos, B.; Silva, E.; Araújo, F.; Bezerra, M.; Silva, P.; Rêgo, V.; Pessôa, H.; Oliveira Filho, A. Evaluation of the antibacterial activity of trans-anethole against Enterococcus cloacae and Enterococcus faecalis strains of food origin. Braz. J. Biol. 2023, 83, e269245. [Google Scholar] [CrossRef]
- El-Sesy, M.E.; Othman, S.A. Promising antibacterial activities of anethole and green-synthesized magnetite nanoparticles against multiple antibiotic-resistant bacteria. Water Sci. Technol. 2023, 87, 729–747. [Google Scholar] [CrossRef]
- Chen, J.; Yang, J.; Ma, L.; Li, J.; Shahzad, N.; Kim, C.K. Structure-antioxidant activity relationship of methoxy, phenolic hydroxyl, and carboxylic acid groups of phenolic acids. Sci. Rep. 2020, 10, 2611. [Google Scholar] [CrossRef]
- Krátký, M.; Štěpánková, Š.; Houngbedji, N.H.; Vosátka, R.; Vorčáková, K.; Vinšová, J. 2-Hydroxy-N-phenylbenzamides and Their Esters Inhibit Acetylcholinesterase and Butyrylcholinesterase. Biomolecules 2019, 9, 698. [Google Scholar] [CrossRef] [PubMed]
- Kumar, S.; Brijeshlata; Dixit, S. Screening of traditional Indian spices for inhibitory activity of acetylcholinesterase and butyrylcholinesterase enzymes. Int. J. Pharma Bio Sci. 2012, 3, P59–P65. [Google Scholar]
- Chen, S.X.; Xiang, J.Y.; Han, J.X.; Li, H.Z.; Chen, H.; Xu, M. Essential oils from spices inhibit cholinesterase activity and improve behavioral disorder in AlCl3 induced dementia. Chem. Biodivers. 2022, 19, e202100443. [Google Scholar] [CrossRef]
- Koppula, S.; Kumar, H. Foeniculum vulgare Mill (Umbelliferae) attenuates stress and improves memory in wister rats. Trop. J. Pharm. Res. 2013, 12. [Google Scholar] [CrossRef]
- Ghosh, U.; Thurber, K.R.; Yau, W.-M.; Tycko, R. INAUGURAL ARTICLE by a Recently Elected Academy Member: Molecular structure of a prevalent amyloid-β fibril polymorph from Alzheimer’s disease brain tissue. Proc. Natl. Acad. Sci. USA 2021, 118, e2023089118. [Google Scholar] [CrossRef] [PubMed]
- Sedov, I.; Khaibrakhmanova, D. Molecular Mechanisms of Inhibition of Protein Amyloid Fibril Formation: Evidence and Perspectives Based on Kinetic Models. Int. J. Mol. Sci. 2022, 23, 13428. [Google Scholar] [CrossRef]
- Im, D.; Kim, S.; Yoon, G.; Hyun, D.G.; Eom, Y.-G.; Lee, Y.E.; Sohn, C.H.; Choi, J.-M.; Kim, H.I. Decoding the Roles of Amyloid-β (1–42)’s Key Oligomerization Domains toward Designing Epitope-Specific Aggregation Inhibitors. JACS Au 2023, 3, 1065–1075. [Google Scholar] [CrossRef] [PubMed]
- Alipour, H.-R.; Yaghmaei, P.; Ahmadian, S.; Ghobeh, M.; Ebrahim-Habibi, A. A study on alpha-terpineol in Alzheimer’s disease with the use of rodent in vivo model, restraint stress effect and in vitro Amyloid beta fibrils. Braz. J. Pharm. Sci. 2022, 58, e19090. [Google Scholar] [CrossRef]
- El-Shebini, S.; Abdel-Moaty, M.; Kazem, Y.; Ahmed, N.; Fouad, S.; Mohamed, M.; Hussein, A.; Hanna, L.; Tapozada, S. Relation between obesity, cognition and serum amyloid β protein level and potential role of Foeniculum vulgare in reducing weight and improving cognitive functions. J. Biol. Sci. 2017, 17, 202–212. [Google Scholar] [CrossRef]
- Paul, K.; Ganguly, U.; Chakrabarti, S.; Bhattacharjee, P. Is 1, 8-cineole-rich extract of small cardamom seeds more effective in preventing Alzheimer’s disease than 1, 8-cineole alone? Neuromolecular Med. 2020, 22, 150–158. [Google Scholar] [CrossRef]
- Yu, Z.; Guo, W.; Patel, S.; Cho, H.J.; Sun, L.; Mirica, L.M. Amphiphilic stilbene derivatives attenuate the neurotoxicity of soluble Aβ(42) oligomers by controlling their interactions with cell membranes. Chem. Sci. 2022, 13, 12818–12830. [Google Scholar] [CrossRef]
- Singh, A.; Kukreti, R.; Saso, L.; Kukreti, S. Oxidative stress: A key modulator in neurodegenerative diseases. Molecules 2019, 24, 1583. [Google Scholar] [CrossRef]
- Rudrapal, M.; Khairnar, S.J.; Khan, J.; Dukhyil, A.B.; Ansari, M.A.; Alomary, M.N.; Alshabrmi, F.M.; Palai, S.; Deb, P.K.; Devi, R. Dietary Polyphenols and Their Role in Oxidative Stress-Induced Human Diseases: Insights Into Protective Effects, Antioxidant Potentials and Mechanism(s) of Action. Front. Pharmacol. 2022, 13, 806470. [Google Scholar] [CrossRef]
- Timoumi, R.; Amara, I.; Salem, I.B.; Annabi, E.; Souid, G.; Bennour, E.E.; Zaied, C.; Abid-Essefi, S. Fennel Essential Oil Prevents Cytotoxicity and Genotoxicity Induced by Triflumuron in Two Human Cell Lines. Adv. Clin. Toxicol. 2021, 6, 000207. [Google Scholar] [CrossRef]
- Timoumi, R.; Salem, I.B.; Amara, I.; Annabi, E.; Abid-Essefi, S. Protective effects of fennel essential oil against oxidative stress and genotoxicity induced by the insecticide triflumuron in human colon carcinoma cells. Environ. Sci. Pollut. Res. 2020, 27, 7957–7966. [Google Scholar] [CrossRef]
- Ryu, S.; Seol, G.H.; Park, H.; Choi, I.-Y. Trans-anethole protects cortical neuronal cells against oxygen–glucose deprivation/reoxygenation. Neurol. Sci. 2014, 35, 1541–1547. [Google Scholar] [CrossRef]
- Singleton, V.L.; Orthofer, R.; Lamuela-Raventós, R.M. [14] Analysis of total phenols and other oxidation substrates and antioxidants by means of folin-ciocalteu reagent. In Methods in Enzymology; Elsevier: Amsterdam, The Netherlands, 1999; Volume 299, pp. 152–178. [Google Scholar]
- Ribarova, F.; Atanassova, M.; Marinova, D.; Ribarova, F.; Atanassova, M. Total phenolics and flavonoids in Bulgarian fruits and vegetables. JU Chem. Met. 2005, 40, 255–260. [Google Scholar]
- Re, R.; Pellegrini, N.; Proteggente, A.; Pannala, A.; Yang, M.; Rice-Evans, C. Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Radic. Biol. Med. 1999, 26, 1231–1237. [Google Scholar] [CrossRef]
- Koleva, I.I.; Van Beek, T.A.; Linssen, J.P.; Groot, A.d.; Evstatieva, L.N. Screening of plant extracts for antioxidant activity: A comparative study on three testing methods. Phytochem. Anal. Int. J. Plant Chem. Biochem. Tech. 2002, 13, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Aktumsek, A.; Zengin, G.; Guler, G.O.; Cakmak, Y.S.; Duran, A. Antioxidant potentials and anticholinesterase activities of methanolic and aqueous extracts of three endemic Centaurea L. species. Food Chem. Toxicol. 2013, 55, 290–296. [Google Scholar] [CrossRef] [PubMed]
- Ellman, G.L.; Courtney, K.D.; Andres, V., Jr.; Featherstone, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef] [PubMed]
Extracts | Total Phenolic Content (mg GAE/g) | Total Flavonoid Content (mg QE/g) | FRAP (µM Fe2+/g) | DPPH (% RSA) | ABTS (% RSA) |
---|---|---|---|---|---|
Cardamom-H | 7.95 ± 0.94 | 4.49 ± 1.01 | 15.07 ± 5.17 | 3.72 ± 0.0 | 15.10 ± 0.94 |
Cardamom-EA | 10.21 ± 1.44 | 42.19 ± 0.94 | 2.23 ± 0.15 | 6.44 ± 0.0 | 17.55 ± 2.52 |
Fennel-H | 26.91 ± 7.31 | 10.82 ± 0.80 | 64.70 ± 2.06 | 4.06 ± 0.0 | 6.58 ± 0.59 |
Fennel-EA α-Terpinyl acetate Anethol | 32.43 ± 0.08 | 13.63 ± 0.50 | 76.78 ± 4.31 31.61 ± 1.17 59.11 ± 1.57 | 9.83 ± 0.47 4.01 ± 0.84 5.49 ± 1.89 | 24.59 ± 1.09 13.46 ± 0.01 15.87 ± 0.15 |
Positive control | 230.56 ± 4.55 (10 μg/mL Ascorbic acid) | 100 ± 0.35 (10 μg/mL Ascorbic acid) | 97.61 ± 0.88 (10 μg/mL Quercetin) |
Vmax (μmol/min/mg) | Km (mM) | Inhibition Type | |
---|---|---|---|
No inhibitor | 1.129 | 1.648 | |
Cardamom-H (100 μg/mL) | 1.105 | 2.117 | Mixed |
Cardamom-H (200 μg/mL) | 1.1033 | 2.595 | |
Cardamom-EA (100 μg/mL) | 1.117 | 2.379 | Mixed |
Cardamom-EA (200 μg/mL) | 1.176 | 3.821 | |
α-Terpinyl acetate (100 μg/mL) | 1.082 | 4.887 | Mixed |
α-Terpinyl acetate (200 μg/mL) | 1.034 | 7.882 | |
Anethol (100 μg/mL) | 1.047 | 1.899 | Mixed |
Anethol (200 μg/mL) | 1.041 | 2.258 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sharma, H.; Yang, H.; Sharma, N.; An, S.S.A. Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays. Pharmaceuticals 2025, 18, 2. https://doi.org/10.3390/ph18010002
Sharma H, Yang H, Sharma N, An SSA. Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays. Pharmaceuticals. 2025; 18(1):2. https://doi.org/10.3390/ph18010002
Chicago/Turabian StyleSharma, Himadri, Hyewon Yang, Niti Sharma, and Seong Soo A. An. 2025. "Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays" Pharmaceuticals 18, no. 1: 2. https://doi.org/10.3390/ph18010002
APA StyleSharma, H., Yang, H., Sharma, N., & An, S. S. A. (2025). Multivalent Neuroprotective Activity of Elettaria cardamomum (Cardamom) and Foeniculum vulgare (Fennel) in H2O2-Induced Oxidative Stress in SH-SY5Y Cells and Acellular Assays. Pharmaceuticals, 18(1), 2. https://doi.org/10.3390/ph18010002