Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (365)

Search Parameters:
Keywords = electrospinning current

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
20 pages, 4256 KiB  
Review
Recent Progress and Future Perspectives of MNb2O6 Nanomaterials for Photocatalytic Water Splitting
by Parnapalle Ravi and Jin-Seo Noh
Materials 2025, 18(15), 3516; https://doi.org/10.3390/ma18153516 - 27 Jul 2025
Viewed by 178
Abstract
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band [...] Read more.
The transition to clean and renewable energy sources is critically dependent on efficient hydrogen production technologies. This review surveys recent advances in photocatalytic water splitting, focusing on MNb2O6 nanomaterials, which have emerged as promising photocatalysts due to their tunable band structures, chemical robustness, and tailored morphologies. The objectives of this work are to (i) encompass the current synthesis strategies for MNb2O6 compounds; (ii) assess their structural, electronic, and optical properties in relation to photocatalytic performance; and (iii) elucidate the mechanisms underpinning enhanced hydrogen evolution. Main data collection methods include a literature review of experimental studies reporting bandgap measurements, structural analyses, and hydrogen production metrics for various MNb2O6 compositions—especially those incorporating transition metals such as Mn, Cu, Ni, and Co. Novelty stems from systematically detailing the relationships between synthesis routes (hydrothermal, solvothermal, electrospinning, etc.), crystallographic features, conductivity type, and bandgap tuning in these materials, as well as by benchmarking their performance against more conventional photocatalyst systems. Key findings indicate that MnNb2O6, CuNb2O6, and certain engineered heterostructures (e.g., with g-C3N4 or TiO2) display significant visible-light-driven hydrogen evolution, achieving hydrogen production rates up to 146 mmol h−1 g−1 in composite systems. The review spotlights trends in heterojunction design, defect engineering, co-catalyst integration, and the extension of light absorption into the visible range, all contributing to improved charge separation and catalytic longevity. However, significant challenges remain in realizing the full potential of the broader MNb2O6 family, particularly regarding efficiency, scalability, and long-term stability. The insights synthesized here serve as a guide for future experimental investigations and materials design, advancing the deployment of MNb2O6-based photocatalysts for large-scale, sustainable hydrogen production. Full article
Show Figures

Figure 1

19 pages, 3281 KiB  
Article
Production of Self-Supporting Hollow Carbon Nanofiber Membranes with Co/Co2P Heterojunctions via Continuous Coaxial Co-Spinning for Efficient Overall Water Splitting
by Ruidan Duan, Jianhang Ding, Jiawei Fan and Linzhou Zhuang
Coatings 2025, 15(7), 772; https://doi.org/10.3390/coatings15070772 - 30 Jun 2025
Viewed by 367
Abstract
To address mass transport limitations in carbon nanofiber membrane electrodes for overall water splitting, a self-supporting nitrogen-doped hollow carbon nanofiber membrane embedded with Co/Co2P heterojunctions (Co/Co2P-NCNFs-H) was fabricated via continuous coaxial electrospinning. The architecture features uniform hollow channels (200–250 [...] Read more.
To address mass transport limitations in carbon nanofiber membrane electrodes for overall water splitting, a self-supporting nitrogen-doped hollow carbon nanofiber membrane embedded with Co/Co2P heterojunctions (Co/Co2P-NCNFs-H) was fabricated via continuous coaxial electrospinning. The architecture features uniform hollow channels (200–250 nm diameter, 30–50 nm wall thickness) and a high specific surface area (254 m2 g−1), as confirmed by SEM, TEM, and BET analysis. The Co/Co2P heterojunction was uniformly dispersed on nitrogen-doped hollow carbon nanofibers through electrospinning, leverages interfacial electronic synergy to accelerate charge transfer and optimize the hydrogen evolution reaction (HER) and the oxygen evolution reaction (OER). Electrochemical tests demonstrated exceptional catalytic activity, achieving current densities of 100 mA cm−2 at ultralow overpotentials of 405.6 mV (OER) and 247.9 mV (HER) in 1.0 M KOH—surpassing most reported transition metal catalysts for both half-reactions. Moreover, the electrode exhibited robust long-term stability, maintaining performance for nearly 20 h at 0.6 V (vs. Ag/AgCl) (OER) and over 250 h at −1.5 V (vs. Ag/AgCl) (HER), attributed to the mechanical integrity of the hollow architecture and strong metal–carbon interactions. This work demonstrates that integrating hollow nanostructures (enhanced mass transport) and heterojunction engineering (optimized electronic configurations) creates a scalable strategy for designing efficient bifunctional catalysts, offering significant promise for sustainable hydrogen production via water electrolysis. Full article
(This article belongs to the Special Issue Coatings as Key Materials in Catalytic Applications)
Show Figures

Figure 1

10 pages, 3184 KiB  
Communication
High-Performance Triboelectric Nanogenerator Based on PVDF Nanofibers Modified by a Charge Control Agent n-Propyl Gallate
by Chao Li, Xueying Yang, Xin Tang, Ying Yang, Linjiang Shen, Dawei Gu and Mustafa Eginligil
Materials 2025, 18(13), 3089; https://doi.org/10.3390/ma18133089 - 30 Jun 2025
Viewed by 346
Abstract
Triboelectric nanogenerators (TENGs), as an emerging energy harvesting device, can efficiently convert the weak mechanical energy in the environment into electrical energy, demonstrating significant potential in self-powered systems. In this study, polyvinylidene fluoride (PVDF) nanofiber films mixed with a small amount of n-propyl [...] Read more.
Triboelectric nanogenerators (TENGs), as an emerging energy harvesting device, can efficiently convert the weak mechanical energy in the environment into electrical energy, demonstrating significant potential in self-powered systems. In this study, polyvinylidene fluoride (PVDF) nanofiber films mixed with a small amount of n-propyl gallate (PG) were prepared by using the electrospinning technique, and TENGs were fabricated based on these films. Unexpectedly, experimental results showed that PG (with 0.5–2.5 wt%) did not affect the β phase of the PVDF. However, the TENG based on PVDF/PG composite nanofiber film with 1 wt% PG (PG1-TENG) exhibited large output values of 334 V, 4.36 μA, and 78.4 nC for output voltage, current, and transferred charge, respectively, with a power density of 5.27 W/m2, which highlights ~60% improvement in output voltage over pristine PVDF-TENG. This observation was attributed to the unique charge regulation ability of PG, without altering PVDF’s β phase. Furthermore, application potential of PG1-TENG was demonstrated by powering up an LCD calculator and 480 LEDs. Full article
(This article belongs to the Section Advanced Nanomaterials and Nanotechnology)
Show Figures

Figure 1

24 pages, 7913 KiB  
Review
From Waste to Value: Advances in Recycling Textile-Based PET Fabrics
by Fatemeh Mohtaram and Peter Fojan
Textiles 2025, 5(3), 24; https://doi.org/10.3390/textiles5030024 - 28 Jun 2025
Viewed by 836
Abstract
The environmental burden of textile waste has become a critical challenge for sustainable development. This review explores recent developments in the recycling of textiles, especially polyethylene tereph-2 thalate (PET)-based fabrics, with a focus on fiber-to-fiber regeneration as a pathway toward circular textile production. [...] Read more.
The environmental burden of textile waste has become a critical challenge for sustainable development. This review explores recent developments in the recycling of textiles, especially polyethylene tereph-2 thalate (PET)-based fabrics, with a focus on fiber-to-fiber regeneration as a pathway toward circular textile production. Recent developments in PET recycling, such as mechanical and chemical recycling methods, are critically examined, highlighting the potential of chemical depolymerization for recovering high-purity monomers suitable for textile-grade PET synthesis. Special attention is given to electrospinning as an emerging technology for converting recycled PET into high-value nanofibers, offering functional properties suitable for advanced applications in filtration, medical textiles, and smart fabrics. The integration of these innovations, alongside improved sorting technologies and circular design strategies, is essential for overcoming current limitations and enabling scalable, high-quality recycling systems. This review aims to support the development of a more resource efficient textile industry by outlining key challenges, technologies, and future directions in PET recycling. Full article
Show Figures

Figure 1

17 pages, 1560 KiB  
Review
Revolutionizing Electrospinning: A Review of Alternating Current and Pulsed Voltage Techniques for Nanofiber Production
by Yasir Al Saif and Richárd Cselkó
Processes 2025, 13(7), 2048; https://doi.org/10.3390/pr13072048 - 27 Jun 2025
Viewed by 358
Abstract
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing [...] Read more.
Electrospinning has evolved into a vital nanofiber production technique with broad applications across biomedical, environmental, and industrial sectors. Alternating current (AC) and pulsed voltage (PV) electrospinning offer transformative alternatives by utilizing time-varying electric fields to overcome the drawbacks of DC electrospinning by employing an oscillating electric field that facilitates balanced charge dynamics, improved jet stability, and collectorless operation, leading to enhanced fiber alignment and significantly higher production rates, with reports exceeding 20 g/h. Conversely, PV electrospinning applies intermittent high-voltage pulses, offering precise control over jet initiation and termination. This method enables the fabrication of ultrafine, bead-free, and structurally uniform fibers, making it particularly suitable for biomedical applications such as controlled drug delivery and tissue scaffolds. Both techniques support tunable fiber morphology, reduced diameter variability, and improved structural uniformity, contributing to the advancement of high-performance nanofiber materials. This review examines the underlying electrohydrodynamic mechanisms, charge transport behavior, equipment configurations, and performance metrics associated with AC and PV electrospinning. It further highlights key innovations, current limitations in scalability and standardization, and prospective research directions. Full article
(This article belongs to the Special Issue Advances in Properties and Applications of Electrospun Fibers)
Show Figures

Figure 1

31 pages, 2967 KiB  
Review
Advances in Photothermal Electrospinning: From Fiber Fabrication to Biomedical Application
by Jingwen Liu, Kai Wang, Fengying Jin, Yile Bin, Jiayi Li and Xiaofei Qian
Polymers 2025, 17(13), 1725; https://doi.org/10.3390/polym17131725 - 20 Jun 2025
Viewed by 612
Abstract
Photothermal electrospinning (PTE) represents an innovative fusion of electrospinning (ES) technology and photothermal therapy (PTT), where photothermal agents (PTAs) are incorporated into electrospun fibers to enable localized thermal effects under near-infrared (NIR) irradiation. The high surface area and tunable architecture of electrospun fibers [...] Read more.
Photothermal electrospinning (PTE) represents an innovative fusion of electrospinning (ES) technology and photothermal therapy (PTT), where photothermal agents (PTAs) are incorporated into electrospun fibers to enable localized thermal effects under near-infrared (NIR) irradiation. The high surface area and tunable architecture of electrospun fibers provide an ideal platform for efficient PTA loading, while the precise temperature control and therapeutic efficacy of PTT significantly broaden its biomedical applications, including antibacterial therapy, anticancer treatment, tissue regeneration, and drug delivery. This review mainly focuses on the emerging field of PTE. Following an overview of the basic PTE parts (ES, PTAs, and PTT), the fabrication strategies (one- and two-step methods) of photothermal electrospun fibers and their latest advancements in both antibacterial and non-antibacterial applications are summarized. Furthermore, the current challenges are deliberated at the end of this review. Full article
(This article belongs to the Section Polymer Applications)
Show Figures

Figure 1

45 pages, 2664 KiB  
Review
Converging Electrospinning and 3D-Printing Technologies: From Innovative Design for Tissue Engineering to Global Patent Trends and Technology Transfer
by Karen J. Juarez-Navarro, Vincenzo Guarino and Marco A. Alvarez-Perez
Fibers 2025, 13(6), 83; https://doi.org/10.3390/fib13060083 - 19 Jun 2025
Viewed by 1288
Abstract
Electrospinning is a technique that enables the production of nano- and microfibrillar patterns that mimic the native extracellular matrix. However, these nanofibrous structures often lack mechanical properties suitable for reproducing the behavior of structurally complex tissues. Therefore, achieving more accurate and precise geometric [...] Read more.
Electrospinning is a technique that enables the production of nano- and microfibrillar patterns that mimic the native extracellular matrix. However, these nanofibrous structures often lack mechanical properties suitable for reproducing the behavior of structurally complex tissues. Therefore, achieving more accurate and precise geometric structures be-comes a key challenge. In this context, additive manufacturing techniques such as 3D printing may allow for the development of tailored structures with highly controlled ar-chitecture and improved mechanical strength. However, in contrast with electrospinning, these techniques are commonly considered “low-resolution” techniques, unable to ma-nipulate structural details at the submicrometric scale. Hence, this review aims to intro-duce and discuss recent technological approaches based on combining these technologies for scaffold development in tissue engineering, detailing some distinct integration strate-gies correlating the outcomes to the benefits and drawbacks. Finally, a comprehensive analysis of the current state of the art in the registered intellectual property related to these integrated approaches will be proposed, assessing their distribution by geographic region and analyzing the main trends over time and future fallouts. Full article
Show Figures

Figure 1

30 pages, 1405 KiB  
Review
Preparation Methods and Multifunctional Applications of Functionalized Electrospun Nanofibers for Biomedicine
by Jingwen Liu, Kai Wang, Fengying Jin, Jiayi Li, Yile Bin and Xiaofei Qian
Nanomaterials 2025, 15(12), 909; https://doi.org/10.3390/nano15120909 - 11 Jun 2025
Viewed by 940
Abstract
Electrospinning has emerged as a versatile and cost-effective technique for fabricating nanofibers with a high surface area, tunable morphology, and exceptional mechanical properties, demonstrating significant potential for applications in biomedicine. This review summarizes the main parameters of the electrospinning process and fabrication methods [...] Read more.
Electrospinning has emerged as a versatile and cost-effective technique for fabricating nanofibers with a high surface area, tunable morphology, and exceptional mechanical properties, demonstrating significant potential for applications in biomedicine. This review summarizes the main parameters of the electrospinning process and fabrication methods of functionalized electrospun nanofibers (FENFs) through one-step functionalization and post-functionalization. The applications of FENFs, with their antibacterial activity, anti-inflammatory effects, and tissue regenerative effects, as well as their potential in drug delivery systems and sensors, showcase their capability to address challenges in wound healing, cancer therapy, and health monitoring. Current limitations and future research directions are also identified. This review provides valuable insights for advancing research on nanofiber-based materials and their practical implementations. Full article
(This article belongs to the Section Biology and Medicines)
Show Figures

Graphical abstract

18 pages, 12067 KiB  
Article
Preparation and Performance of PAN/PS/PMMA Ternary Blend-Modified Fiber Membranes via Centrifugal Spinning for Lithium-Ion Batteries
by Shunqi Mei, Feng Luo, Yi Xie, Bin Xu and Quan Zheng
Nanomaterials 2025, 15(11), 789; https://doi.org/10.3390/nano15110789 - 24 May 2025
Cited by 1 | Viewed by 519
Abstract
Addressing the issues of poor thermal resistance in conventional polyolefin separators and the low production efficiency of electrospinning, this study innovatively employed high-efficiency centrifugal spinning technology to fabricate a ternary blended modified fiber membrane composed of polyacrylonitrile (PAN), polystyrene (PS), and polymethyl methacrylate [...] Read more.
Addressing the issues of poor thermal resistance in conventional polyolefin separators and the low production efficiency of electrospinning, this study innovatively employed high-efficiency centrifugal spinning technology to fabricate a ternary blended modified fiber membrane composed of polyacrylonitrile (PAN), polystyrene (PS), and polymethyl methacrylate (PMMA). By precisely adjusting the polymer ratio (8:2:2) and fine-tuning the spinning process parameters, a separator with a three-dimensional network structure was successfully produced. The research results indicate that the separator exhibited excellent overall performance, with a porosity of 75.87%, an electrolyte absorption rate of up to 346%, and a thermal shrinkage of less than 3% after 1 h at 150 °C, along with a tensile strength reaching 23.48 MPa. A lithium-ion battery assembled with this separator delivered an initial discharge capacity of 159 mAh/g at a 0.2 C rate and maintained a capacity retention of 98.11% after 25 cycles. Moreover, under current rates of 0.5, 1.0, and 2.0 C, the battery assembled with the ASM-14 configuration achieved high discharge capacities of 148, 136, and 116 mAh/g, respectively. This study offers a novel design strategy for modifying multi-component polymer battery separators. Full article
(This article belongs to the Section Nanocomposite Materials)
Show Figures

Figure 1

16 pages, 5422 KiB  
Article
Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors
by Victor Charles, Kingsford Asare, Md Faruque Hasan and Lifeng Zhang
Molecules 2025, 30(11), 2282; https://doi.org/10.3390/molecules30112282 - 22 May 2025
Viewed by 443
Abstract
Carbon nanofibrous materials from electrospinning are good candidate electrode materials for supercapacitor applications due to their straightforward processability, chemical stability, high porosity, and large surface area. In this research, a straightforward and effective way was revealed to significantly enhance the electrochemical performance of [...] Read more.
Carbon nanofibrous materials from electrospinning are good candidate electrode materials for supercapacitor applications due to their straightforward processability, chemical stability, high porosity, and large surface area. In this research, a straightforward and effective way was revealed to significantly enhance the electrochemical performance of carbon nanofibrous electrode material from electrospinning of polyacrylonitrile (PAN). Fluorination of the electrospun carbon nanofibers (ECNF) was studied by comparing two types of hydrofluoric acid (HF) treatment, i.e., direct HF acid treatment on ECNF (Type I) vs. HF acid treatment on the stabilized PAN (Type II) followed by carbonization. The latter was found to be an advantageous way to introduce C-F bonds in the resultant carbon nanofibrous electrode material that contributed to pseudocapacitance. Furthermore, the Type II HF acid treatment demonstrated exciting synergistic effects with ECNF aerogel formation on carbon structure and porosity development and generated a superior fluorinated electrospun carbon nanofibrous aerogel (ECNA-F) electrode material for supercapacitor uses. The resultant ECNA-F electrode material demonstrated excellent electrochemical performance with great cyclic stability due to the large improvements in both pseudocapacitance and electrical double-layer capacitance. ECNA-F achieved a specific capacitance of 372 F/g at a current density of 0.5 A/g with 1 M H2SO4 electrolyte, and the device with ECNA-F and 1 M Na2SO4 electrolyte possessed an energy density of 29.1 Wh/kg at a power density of 275 W/kg. This study provided insight into developing high-performance and stable carbon nanofibrous electrode materials for supercapacitors. Full article
(This article belongs to the Special Issue Development and Design of Novel Electrode Materials)
Show Figures

Figure 1

18 pages, 5857 KiB  
Article
Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance
by Quanyu He, Hyunwoo Cho, Inkyum Kim, Jonghwan Lee and Daewon Kim
Polymers 2025, 17(10), 1400; https://doi.org/10.3390/polym17101400 - 20 May 2025
Viewed by 562
Abstract
Electrospinning techniques have been widely applied in diverse applications, such as biocompatible membranes, energy storage systems, and triboelectric nanogenerators (TENGs), with the capability to incorporate other functional materials to achieve specific purposes. Recently, gas sensors incorporating doped semiconducting materials fabricated by electrospinning have [...] Read more.
Electrospinning techniques have been widely applied in diverse applications, such as biocompatible membranes, energy storage systems, and triboelectric nanogenerators (TENGs), with the capability to incorporate other functional materials to achieve specific purposes. Recently, gas sensors incorporating doped semiconducting materials fabricated by electrospinning have been extensively investigated. TENGs, functioning as self-powered energy sources, have been utilized to drive gas sensors without external power supplies. Herein, a self-powered triboelectric ethanol sensor (TEES) is fabricated by integrating a TENG and an ethanol gas sensor into a single device. The proposed TEES exhibits a significantly improved response time and lower detection limit compared to published integrated triboelectric sensors. The device achieves an open-circuit voltage of 51.24 V at 800 rpm and a maximum short-circuit current of 7.94 μA at 800 rpm. Owing to the non-contact freestanding operating mode, the TEES shows no significant degradation after 240,000 operational cycles. Compared with previous studies that integrated TENGs and ethanol sensors, the proposed TEES demonstrated a marked improvement in sensing performance, with a faster response time (6 s at 1000 ppm) and a lower limit of detection (10 ppm). Furthermore, ethanol detection is enabled by modulating the gate terminal of an IRF840 metal-oxide semiconductor field-effect transistor (MOSFET), which controls the illumination of a light-emitting diode (LED). The LED is extinguished when the electrical output decreases below the setting value, allowing for the discrimination of intoxicated states. These results suggest that the TEES provides a promising platform for self-powered, high-performance ethanol sensing. Full article
(This article belongs to the Section Polymer Fibers)
Show Figures

Graphical abstract

26 pages, 6388 KiB  
Review
Cardiac Tissue Engineering for Translational Cardiology: From In Vitro Models to Regenerative Therapies
by Abdullah Jabri, Bader Taftafa, Abdulaziz Mhannayeh, Mohamed Alsharif, Tasnim Abbad, Sana Ahmed, Eman A. Alshehri, Abdulrahman Elsalti, Jibran Khan, Tanveer Ahmad Mir and Ahmed Yaqinuddin
Bioengineering 2025, 12(5), 518; https://doi.org/10.3390/bioengineering12050518 - 14 May 2025
Viewed by 1460
Abstract
Cardiovascular diseases (CVD) are the primary cause of death and disability around the world. Over the past decades, several conventional model systems based on two-dimensional (3D) monolayer cultures or experimental animals have been adopted to dissect and understand heart diseases in order to [...] Read more.
Cardiovascular diseases (CVD) are the primary cause of death and disability around the world. Over the past decades, several conventional model systems based on two-dimensional (3D) monolayer cultures or experimental animals have been adopted to dissect and understand heart diseases in order to develop treatment modalities. However, traditional models exhibit several limitations in recapitulating human-specific key physiological and pathological characteristics, which highlights the necessity of developing physiologically relevant models. In recent years, tissue engineering approaches have been extensively employed to generate revolutionary three-dimensional (3D) cardiac models. In particular, the combined use of various bioengineering strategies and cellular reprogramming approaches has facilitated the development of various models. This review presents an overview of different approaches (bioprinting, scaffolding, and electrospinning) for creating bioengineered cardiac tissue models. Next, a broad survey of recent research related to the modeling of various cardiac diseases is presented. Finally, current challenges and future directions are proposed to foster further developments in the field of cardiac tissue engineering. Full article
(This article belongs to the Section Biomedical Engineering and Biomaterials)
Show Figures

Figure 1

25 pages, 1609 KiB  
Review
Biodegradable Carbohydrate-Based Films for Packaging Agricultural Products—A Review
by Kshanaprava Dhalsamant, Asutosh Dalai, Falguni Pattnaik and Bishnu Acharya
Polymers 2025, 17(10), 1325; https://doi.org/10.3390/polym17101325 - 13 May 2025
Cited by 2 | Viewed by 1295
Abstract
Carbohydrate-based biodegradable films offer an eco-friendly alternative to conventional petroleum-derived packaging for agricultural commodities. Derived from renewable polysaccharides such as starch, cellulose, chitosan, pectin, alginate, pullulan, and xanthan gum, these films exhibit favorable biodegradability, film-forming ability, and compatibility with food systems. This review [...] Read more.
Carbohydrate-based biodegradable films offer an eco-friendly alternative to conventional petroleum-derived packaging for agricultural commodities. Derived from renewable polysaccharides such as starch, cellulose, chitosan, pectin, alginate, pullulan, and xanthan gum, these films exhibit favorable biodegradability, film-forming ability, and compatibility with food systems. This review presents a comprehensive analysis of recent developments in the preparation, functionalization, and application of these polysaccharide-based films for agricultural packaging. Emphasis is placed on emerging fabrication techniques, including electrospinning, extrusion, and layer-by-layer assembly, which have significantly enhanced the mechanical, barrier, and antimicrobial properties of these materials. Furthermore, the incorporation of active compounds such as antioxidants and antimicrobials has improved the performance and shelf-life of packaged goods. Despite notable advancements, key limitations such as moisture sensitivity, poor mechanical durability, and high production costs persist. Strategies including polymer blending, nanofiller incorporation, and surface modification are explored as potential solutions. The applicability of these films in packaging fruits, vegetables, dairy, grains, and meat products is also discussed. By assessing current progress and future prospects, this review underscores the importance of carbohydrate-based films in promoting sustainable agricultural packaging systems, reducing environmental impact through the advancement of circular bioeconomy principles and sustainable development. Full article
(This article belongs to the Section Biobased and Biodegradable Polymers)
Show Figures

Figure 1

10 pages, 1879 KiB  
Article
An Electrospinning Sample Delivery Device for Synchrotron-Based Biomacromolecule Serial Crystallography Research
by Li Yu, Zhijun Wang, Qin Xu, Bo Sun, Qingjie Xiao, Weiwei Wang, Yuzhu Wang, Qisheng Wang and Jianhua He
Quantum Beam Sci. 2025, 9(2), 17; https://doi.org/10.3390/qubs9020017 - 5 May 2025
Viewed by 591
Abstract
Serial crystallography is a rapidly advancing experimental technology that has seen significant development in recent years. This technique enables the continuous delivery of a series of protein crystal samples to the X-ray beam, allowing for the collection of diffraction data from a large [...] Read more.
Serial crystallography is a rapidly advancing experimental technology that has seen significant development in recent years. This technique enables the continuous delivery of a series of protein crystal samples to the X-ray beam, allowing for the collection of diffraction data from a large number of crystals at ambient temperature. Despite its advancements, serial crystallography still possesses considerable potential for further development within synchrotron radiation platforms. Currently, several challenges hinder the progress of this technology, including the preparation of numerous microcrystal samples, methods for sample delivery, data acquisition efficiency, and data processing techniques. The device introduced in this paper is designed to facilitate serial crystallographic experiments at the synchrotron radiation station, employing electrospinning in the vacuum cavity to reduce the average flux, mitigate the effects of air ionization on the Taylor cone, and enhance the stability of Taylor cone during the data acquisition process. The diffraction pattern of lysozyme crystals was successfully acquired with this device at the beamlines of the Shanghai Synchrotron Radiation Facility (SSRF). Full article
(This article belongs to the Section Instrumentation and Facilities)
Show Figures

Figure 1

18 pages, 4825 KiB  
Review
Recent Advances in Polysaccharide-Based Electrospun Nanofibers for Food Safety Detection
by Jie Shi, Junjie Tang, Mengfei Zhang, Yingqi Zou, Jie Pang and Chunhua Wu
Sensors 2025, 25(7), 2220; https://doi.org/10.3390/s25072220 - 1 Apr 2025
Viewed by 971
Abstract
The continuous advancement of food safety analytical technologies is ensuring food safety and regulatory compliance. Electrospinning, a versatile fabrication platform, has emerged as a transformative methodology in materials science due to its unique capacity to generate nanoscale fibrous architectures with tunable morphologies. When [...] Read more.
The continuous advancement of food safety analytical technologies is ensuring food safety and regulatory compliance. Electrospinning, a versatile fabrication platform, has emerged as a transformative methodology in materials science due to its unique capacity to generate nanoscale fibrous architectures with tunable morphologies. When combined with the inherent biodegradability and biocompatibility of polysaccharides, electrospun polysaccharide nanofibers are positioning themselves as crucial components in innovative applications in the fields of food science. This review systematically elucidates the fundamental principles and operational parameters governing electrospinning processes, with particular emphasis on polysaccharide-specific fiber formation mechanisms. Furthermore, it provides a critical analysis of state-of-the-art applications involving representative polysaccharide nanofibers (e.g., starch, chitosan, cellulose, sodium alginate, and others) in food safety detection, highlighting their innovative application in livestock (chicken, pork, beef), aquatic (yellow croaker, Penaeus vannamei, Plectorhynchus cinctus), fruit and vegetable (olive, peanut, coffee), and dairy (milk) products. The synthesis of current findings not only validates the unique advantages of polysaccharide nanofibers but also establishes new paradigms for advancing rapid, sustainable, and intelligent food safety technologies. This work further proposes a roadmap for translating laboratory innovations into industrial-scale applications while addressing existing technological bottlenecks. Full article
(This article belongs to the Special Issue Electrospun Composite Nanofibers: Sensing and Biosensing Applications)
Show Figures

Figure 1

Back to TopTop