Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology
2.2. Structure
2.3. Electrochemical Performance
2.4. Discussion of Electrochemical Performance
- (1)
- Aerogel formation (ECNF vs. ECNA)
- (2)
- HF acid treatment (F-ECNF vs. ECNF-F)
- (3)
- Synergistic effects from the combination of Type II HF acid treatment and aerogel formation
3. Materials and Methods
3.1. Materials
3.2. Preparation of Electrospun PAN Nanofibers
3.3. Preparation of Electrospun Carbon Nanofibers
3.4. Preparation of Fluorinated Carbon Nanofibers
3.5. Preparation of Fluorinated Carbon Nanofibrous Aerogel
3.6. Electrochemical Properties
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Simon, P.; Gogotsi, Y. Perspectives for electrochemical capacitors and related devices. Nat. Mater. 2020, 19, 1151–1163. [Google Scholar] [CrossRef] [PubMed]
- Shao, H.; Wu, Y.-C.; Lin, Z.; Taberna, P.-L.; Simon, P. Nanoporous carbon for electrochemical capacitive energy storage. Chem. Soc. Rev. 2020, 49, 3005–3039. [Google Scholar] [CrossRef]
- Jayaraman, S.; Rawson, T.J.; Belyustina, M.A. Designing supercapacitor electrolyte via ion counting. Energy Environ. Sci. 2022, 15, 2948–2957. [Google Scholar] [CrossRef]
- Gou, Q.; Zhao, S.; Wang, J.; Li, M.; Xue, J. Recent Advances on Boosting the Cell Voltage of Aqueous Supercapacitors. Nano-Micro Lett. 2020, 12, 98. [Google Scholar] [CrossRef]
- Lee, J.-H.; Yang, G.; Kim, C.-H.; Mahajan, R.L.; Lee, S.-Y.; Park, S.-J. Flexible solid-state hybrid supercapacitors for the internet of everything (IoE). Energy Environ. Sci. 2022, 15, 2233–2258. [Google Scholar] [CrossRef]
- Kumar, N.; Kim, S.-B.; Lee, S.-Y.; Park, S.-J. Recent Advanced Supercapacitor: A Review of Storage Mechanisms, Electrode Materials, Modification, and Perspectives. Nanomaterials 2022, 12, 3708. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Park, M.; Kim, H.Y.; Park, S.-J. Moderated surface defects of Ni particles encapsulated with NiO nanofibers as supercapacitor with high capacitance and energy density. J. Colloid Interface Sci. 2017, 500, 155–163. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, L.; Hou, H.; Xu, W.; Duan, G.; He, S.; Liu, K.; Jiang, S. Recent progress in carbon-based materials for supercapacitor electrodes: A review. J. Mater. Sci. 2021, 56, 173–200. [Google Scholar] [CrossRef]
- Li, H.; Cao, L.; Zhang, H.; Tian, Z.; Zhang, Q.; Yang, F.; Yang, H.; He, S.; Jiang, S. Intertwined carbon networks derived from Polyimide/Cellulose composite as porous electrode for symmetrical supercapacitor. J. Colloid Interface Sci. 2022, 609, 179–187. [Google Scholar] [CrossRef]
- Asare, K.; Hasan, F.; Shahbazi, A.; Zhang, L. A comparative study of porous and hollow carbon nanofibrous structures from electrospinning for supercapacitor electrode material development. Surf. Interfaces 2021, 26, 101386. [Google Scholar] [CrossRef]
- Yang, X.; Kong, L.; Ma, J.; Liu, X. Facile construction of hierarchically porous carbon nanofiber aerogel for high-performance supercapacitor. J. Appl. Electrochem. 2018, 49, 241–250. [Google Scholar] [CrossRef]
- Hasan, F.; Asare, K.; Mantripragada, S.; Charles, V.; Shahbazi, A.; Zhang, L. Meso-microporous carbon nanofibrous aerogel electrode material with fluorine-treated wood biochar for high-performance supercapacitor. Gels 2024, 10, 82. [Google Scholar] [CrossRef] [PubMed]
- Wen, Z.; Wang, X.; Mao, S.; Bo, Z.; Kim, H.; Cui, S.; Lu, G.; Feng, X.; Chen, J. Crumpled nitrogen-doped graphene nanosheets with ultrahigh pore volume for high-performance supercapacitor. Adv. Mater. 2012, 24, 5610–5616. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Zang, X.; Wang, X.; Gu, X.; Shao, Q.; Cao, N. Recent advances in fluorine-doped/fluorinated carbon-based materials for supercapacitors. Energy Storage Mater. 2020, 30, 367–384. [Google Scholar] [CrossRef]
- Liu, Y.; Jiang, L.; Wang, H.; Wang, H.; Jiao, W.; Chen, G.; Zhang, P.; Hui, D.; Jian, X. A brief review for fluorinated carbon: Synthesis, properties and applications. Nanotechnol. Rev. 2019, 8, 573–586. [Google Scholar] [CrossRef]
- Zhang, L.; Aboagye, A.; Kelkar, A.; Lai, C.; Fong, H. A review: Carbon nanofibers from electrospun polyacrylonitrile and their applications. J. Mater. Sci. 2013, 49, 463–480. [Google Scholar] [CrossRef]
- Tiwari, S.; Bijwe, J. Surface Treatment of Carbon Fibers—A Review. Procedia Technol. 2014, 14, 505–512. [Google Scholar] [CrossRef]
- Hamwi, A.; Alvergnat, H.; Bonnamy, S.; Béguin, F. Fluorination of carbon nanotubes. Carbon 1997, 35, 723–728. [Google Scholar] [CrossRef]
- Arab, M.; Picaud, F.; Ramseyer, C.; Babaa, M.R.; Valsaque, F.; McRae, E. Characterization of single wall carbon nanotubes by means of rare gas adsorption. J. Chem. Phys. 2007, 126, 054709. [Google Scholar] [CrossRef]
- Mantripragada, S.; Deng, D.; Zhang, L. Algae-enhanced electrospun polyacrylonitrile nanofibrous membrane for high-performance short-chain PFAS remediation from water. Nanomaterials 2023, 13, 2646. [Google Scholar] [CrossRef]
- Nansé, G.; Papirer, E.; Fioux, P.; Moguet, F.; Tressaud, A. Fluorination of carbon blacks: An X-ray photoelectron spectroscopy study: I. A literature review of XPS studies of fluorinated carbons. XPS investigation of some reference compounds. Carbon 1997, 35, 175–194. [Google Scholar] [CrossRef]
- Long, C.L.; Chen, X.; Jiang, L.L.; Zhi, L.J.; Fan, Z.J. Porous layer-stacking carbon derived from in-built template in biomass for high volumetric performance supercapacitors. Nano Energy 2015, 12, 141–151. [Google Scholar] [CrossRef]
- Zhao, G.; Chen, C.; Yu, D.; Sun, L.; Yang, C.; Zhang, H.; Sun, Y.; Besenbacher, F.; Yu, M. One-step production of O-N-S co-doped three-dimensional hierarchical porous carbons for high-performance supercapacitors. Nano Energy 2018, 47, 547–555. [Google Scholar] [CrossRef]
- Pal, B.; Yang, S.; Ramesh, S.; Thangadurai, V.; Jose, R. Electrolyte selection for supercapacitive devices: A critical review. Nanoscale Adv. 2019, 1, 3807–3835. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.-H.; Liu, T.-Y.; Song, Y.; Li, Y.; Liu, X.-X. Balancing the electrical double layer capacitance and pseudocapacitance of hetero-atom doped carbon. Nanoscale 2017, 9, 13119–13127. [Google Scholar] [CrossRef]
- Zhao, G.; Li, Y.; Zhu, G.; Shi, J.; Lu, T.; Pan, L. Biomass-based N, P, and S self-doped porous carbon for high-performance supercapacitors. ACS Sustain. Chem. Eng. 2019, 7, 12052–12060. [Google Scholar] [CrossRef]
- An, H.; Li, Y.; Long, P.; Gao, Y.; Qin, C.; Cao, C.; Feng, Y.; Feng, W. Hydrothermal preparation of fluorinated graphene hydrogel for high-performance supercapacitors. J. Power Sources 2016, 312, 146–155. [Google Scholar] [CrossRef]
- Myeong, S.; Ha, S.; Lim, C.; Min, C.G.; Lee, Y.-S. Effect of fluorine functional groups introduced into activated carbon aerogel by carbon tetrafluoride plasmas in supercapacitors. Carbon Lett. 2023, 34, 65–74. [Google Scholar] [CrossRef]
- Jin, T.; Chen, J.; Wang, C.; Qian, Y.; Lu, L. Facile synthesis of fluorine-doped graphene aerogel with rich semi-ionic C–F bonds for high-performance supercapacitor application. J. Mater. Sci. 2020, 55, 12103–12113. [Google Scholar] [CrossRef]
- Jokar, E.; Shahrokhian, S.; Zad, A.I.; Asadian, E.; Hosseini, H. An efficient two-step approach for improvement of graphene aerogel characteristics in preparation of supercapacitor electrodes. J. Energy Storage 2018, 17, 465–473. [Google Scholar] [CrossRef]
- Lee, J.-H.; Lee, S.-Y.; Park, S.-J. Highly porous carbon aerogels for high-performance supercapacitor electrodes. Nanomaterials 2023, 13, 817. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Fan, Q.; Zhang, Y.; Ren, G.; Huang, X.; Fu, P. Hierarchical porous carbon aerogels as a versatile electrode material for high-stability supercapacitors. RSC Adv. 2024, 14, 1123–1133. [Google Scholar] [CrossRef] [PubMed]
Sample Name | BET Surface Area | Average Pore Size | Vmicro (cm3/g) | Vmeso (cm3/g) | Vmacro (cm3/g) | Vtotal (cm3/g) |
---|---|---|---|---|---|---|
ECNF | 329 | 5.4 | 0.00453 | 0.0287 | 0.0158 | 0.0491 |
F-ECNF | 469 | 5.1 | 0.00474 | 0.0207 | 0.0131 | 0.0338 |
ECNF-F | 539 | 4.98 | 0.00795 | 0.0399 | 0.0207 | 0.0685 |
ECNA | 559 | 4.77 | 0.0111 | 0.0491 | 0.0271 | 0.0873 |
ECNA-F | 703 | 3.92 | 0.0181 | 0.0568 | 0.0198 | 0.0947 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Charles, V.; Asare, K.; Hasan, M.F.; Zhang, L. Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors. Molecules 2025, 30, 2282. https://doi.org/10.3390/molecules30112282
Charles V, Asare K, Hasan MF, Zhang L. Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors. Molecules. 2025; 30(11):2282. https://doi.org/10.3390/molecules30112282
Chicago/Turabian StyleCharles, Victor, Kingsford Asare, Md Faruque Hasan, and Lifeng Zhang. 2025. "Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors" Molecules 30, no. 11: 2282. https://doi.org/10.3390/molecules30112282
APA StyleCharles, V., Asare, K., Hasan, M. F., & Zhang, L. (2025). Fluorinated Carbon Nanofibrous Aerogel Electrode Material Derived from Hydrofluoric Acid Treatment on Stabilized Polyacrylonitrile for High-Performance Supercapacitors. Molecules, 30(11), 2282. https://doi.org/10.3390/molecules30112282