Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kalimuldina, G.; Turdakyn, N.; Abay, I.; Medeubayev, A.; Nurpeissova, A.; Adair, D.; Bakenov, Z. A Review of Piezoelectric PVDF Film by Electrospinning and Its Applications. Sensors 2020, 20, 5214. [Google Scholar] [CrossRef] [PubMed]
- Thompson, C.J.; Chase, G.G.; Yarin, A.L.; Reneker, D.H. Effects of Parameters on Nanofiber Diameter Determined from Electrospinning Model. Polymer 2007, 48, 6913–6922. [Google Scholar] [CrossRef]
- Ahmed, F.E.; Lalia, B.S.; Hashaikeh, R. A Review on Electrospinning for Membrane Fabrication: Challenges and Applications. Desalination 2015, 356, 15–30. [Google Scholar] [CrossRef]
- Huang, Z.-M.; Zhang, Y.-Z.; Kotaki, M.; Ramakrishna, S. A Review on Polymer Nanofibers by Electrospinning and Their Applications in Nanocomposites. Compos. Sci. Technol. 2003, 63, 2223–2253. [Google Scholar] [CrossRef]
- Guo, Y.; Wang, X.; Shen, Y.; Dong, K.; Shen, L.; Alzalab, A.A.A. Research Progress, Models and Simulation of Electrospinning Technology: A Review. J. Mater. Sci. 2022, 57, 58–104. [Google Scholar] [CrossRef]
- Wang, J.; Liu, S.; Chen, Z.; Shen, T.; Wang, Y.; Yin, R.; Liu, H.; Liu, C.; Shen, C. Ultrasensitive Electrospinning Fibrous Strain Sensor with Synergistic Conductive Network for Human Motion Monitoring and Human-Computer Interaction. J. Mater. Sci. Technol. 2025, 213, 213–222. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, X.; Qiu, C.; Jia, P.; An, F.; Zhou, L.; Zhu, L.; Zhang, D. Polyaniline/ZnO Heterostructure-Based Ammonia Sensor Self-Powered by Electrospinning of PTFE-PVDF/MXene Piezo-Tribo Hybrid Nanogenerator. Chem. Eng. J. 2024, 496, 154226. [Google Scholar] [CrossRef]
- Zhi, C.; Shi, S.; Si, Y.; Fei, B.; Huang, H.; Hu, J. Recent Progress of Wearable Piezoelectric Pressure Sensors Based on Nanofibers, Yarns, and Their Fabrics via Electrospinning. Adv. Mater. Technol. 2023, 8, 2201161. [Google Scholar] [CrossRef]
- Li, X.; Wang, N.; Fan, G.; Yu, J.; Gao, J.; Sun, G.; Ding, B. Electreted Polyetherimide–Silica Fibrous Membranes for Enhanced Filtration of Fine Particles. J. Colloid Interface Sci. 2015, 439, 12–20. [Google Scholar] [CrossRef]
- Chen, J.-P.; Zhang, Q.-J.; Li, C.-X.; Guo, C.-Y.; Zhong, L.-B.; Zheng, Z.-H.; Zhang, J.-Y.; Shao, Z.-D.; Zheng, Y.-M. Environmentally Durable and Washable Tanghulu-like Amphiphobic Fluorinated PVA/SiO2 Electrospun Nanofibrous Membrane for Efficient and Reusable Oil Aerosol Filtration. Sep. Purif. Technol. 2025, 360, 130887. [Google Scholar] [CrossRef]
- Zheng, J.; Zhou, X.; Wang, B.; Dai, F.; Liu, J. Modified PVDF/PMMA/SiO2 Composite Nanofibrous Membrane in Airborne Filtration: Transparency, Mechanical Properties and Filtration Performance. J. Environ. Chem. Eng. 2024, 12, 114109. [Google Scholar] [CrossRef]
- He, Q.; Chen, W.; Wang, P.; Dou, X. Silicalite-1/PDMS Hybrid Membranes on Porous PVDF Supports: Preparation, Structure and Pervaporation Separation of Dichlorobenzene Isomers. Polymers 2022, 14, 1680. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Li, T.; Zhang, S.; Jiang, L.; Xia, J.; Xie, J.; Chen, K.; Bao, L.; Lei, J.; Wang, J. Room-Temperature, Energy Storage Textile with Multicore-Sheath Structure Obtained via in-Situ Coaxial Electrospinning. Chem. Eng. J. 2022, 436, 135226. [Google Scholar] [CrossRef]
- Zheng, G.; Zeng, Z.; Chen, Y.; Wang, X.; Sun, D.; Cui, C. Versatile Electrospinning Technology on Solid-State Electrolytes for Energy Storage: A Brief Review. J. Energy Storage 2024, 86, 111285. [Google Scholar] [CrossRef]
- Liu, Y.; Luo, H.; Chen, H.; Li, M.; Wan, Y.; Peng, B.; Li, X.; Zhang, D. Gradient Structured All-Organic Dielectrics by Electrospinning for Enhanced Energy Storage Performance. J. Mater. Chem. A 2024, 12, 12501–12514. [Google Scholar] [CrossRef]
- Amrutha, B.; Prasad, G.; Sathiyanathan, P.; Reza, M.S.; Kim, H.; Pathak, M.; Prabu, A.A. Fabrication of CuO-NP-Doped PVDF Composites Based Electrospun Triboelectric Nanogenerators for Wearable and Biomedical Applications. Polymers 2023, 15, 2442. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Wu, Z.; Yu, X.; Wang, M.; Zang, D.; Long, Y.; Guo, N.; Weng, L.; Liu, Y.; Gao, J. Preparation and Properties of Triboelectric Nanogenerator Based on PVDF-TrFE/PMMA Electrospun Film. Adv. Compos. Hybrid Mater. 2025, 8, 19. [Google Scholar] [CrossRef]
- Mi, H.-Y.; Jing, X.; Zheng, Q.; Fang, L.; Huang, H.-X.; Turng, L.-S.; Gong, S. High-Performance Flexible Triboelectric Nanogenerator Based on Porous Aerogels and Electrospun Nanofibers for Energy Harvesting and Sensitive Self-Powered Sensing. Nano Energy 2018, 48, 327–336. [Google Scholar] [CrossRef]
- Mirzaei, R.; Tangestaninejad, S.; Marandi, A.; Moghadam, M.; Mohammadpoor-Baltork, I.; Kardanpour, R.; Abdolvand, H. Innovative Cross-Linked Electrospun PVA/MOF Nanocomposites for Removal of Cefixime Antibiotic. Sci. Rep. 2025, 15, 83. [Google Scholar] [CrossRef]
- Rwei, S.-P.; Huang, C.-C. Electrospinning PVA Solution-Rheology and Morphology Analyses. Fibers Polym. 2012, 13, 44–50. [Google Scholar] [CrossRef]
- Koosha, M.; Mirzadeh, H. Electrospinning, Mechanical Properties, and Cell Behavior Study of Chitosan/ PVA Nanofibers. J. Biomed. Mater. Res. 2015, 103, 3081–3093. [Google Scholar] [CrossRef] [PubMed]
- Tang, R.; Xiao, Y.; Luo, H.; Qiao, X.; Hou, J. One-Step Electrospinning PMMA-SPO with Hierarchical Architectures as a Multi-Functional Transparent Screen Window. New J. Chem. 2022, 46, 16675–16683. [Google Scholar] [CrossRef]
- Piperno, S.; Lozzi, L.; Rastelli, R.; Passacantando, M.; Santucci, S. PMMA Nanofibers Production by Electrospinning. Appl. Surf. Sci. 2006, 252, 5583–5586. [Google Scholar] [CrossRef]
- Mokhtari, F.; Samadi, A.; Rashed, A.O.; Li, X.; Razal, J.M.; Kong, L.; Varley, R.J.; Zhao, S. Recent Progress in Electrospun Polyvinylidene Fluoride (PVDF)-Based Nanofibers for Sustainable Energy and Environmental Applications. Prog. Mater. Sci. 2025, 148, 101376. [Google Scholar] [CrossRef]
- Venkatesan, H.M.; Arun, A.P. High-Performance Triboelectric Nanogenerators Based on Ag-Doped ZnO Loaded Electrospun PVDF Nanofiber Mats for Energy Harvesting and Healthcare Monitoring. Sci. Rep. 2025, 15, 3347. [Google Scholar] [CrossRef]
- Ding, F.; Long, S.; Huang, X.; Wang, X.; Zhang, R.; Shi, J.; Zou, Y.; Zou, X. Fast Response and Stable Dyed Cellulose Nanofibrous Films for Shrimp Spoilage Detection. Food Chem. 2025, 474, 143260. [Google Scholar] [CrossRef]
- Zhang, C.-L.; Yu, S.-H. Nanoparticles Meet Electrospinning: Recent Advances and Future Prospects. Chem. Soc. Rev. 2014, 43, 4423. [Google Scholar] [CrossRef]
- Xu, W.; Ding, Y.; Jiang, S.; Chen, L.; Liao, X.; Hou, H. Polyimide/BaTiO3/MWCNTs Three-Phase Nanocomposites Fabricated by Electrospinning with Enhanced Dielectric Properties. Mater. Lett. 2014, 135, 158–161. [Google Scholar] [CrossRef]
- Liu, Z.; Ma, Z.; Pang, X.; Ahmad, M.; Zhao, Y.; Su, N.; Liu, J.; Zhang, Y.; Sun, H.; Subhan, F.; et al. Electrospinning Prepared Nickel-Based Carbon Fibers with Enhanced Adsorption Capacity for Adsorption Desulfurization of Fuels. Chem. Eng. J. 2023, 478, 147254. [Google Scholar] [CrossRef]
- Niu, S.; Wang, Z.L. Theoretical Systems of Triboelectric Nanogenerators. Nano Energy 2015, 14, 161–192. [Google Scholar] [CrossRef]
- Jiang, C.; Wu, C.; Li, X.; Yao, Y.; Lan, L.; Zhao, F.; Ye, Z.; Ying, Y.; Ping, J. All-Electrospun Flexible Triboelectric Nanogenerator Based on Metallic MXene Nanosheets. Nano Energy 2019, 59, 268–276. [Google Scholar] [CrossRef]
- Jeon, S.-B.; Park, S.-J.; Kim, W.-G.; Tcho, I.-W.; Jin, I.-K.; Han, J.-K.; Kim, D.; Choi, Y.-K. Self-Powered Wearable Keyboard with Fabric Based Triboelectric Nanogenerator. Nano Energy 2018, 53, 596–603. [Google Scholar] [CrossRef]
- Kim, D.H.; Shin, H.J.; Lee, H.; Jeong, C.K.; Park, H.; Hwang, G.; Lee, H.; Joe, D.J.; Han, J.H.; Lee, S.H.; et al. In Vivo Self-Powered Wireless Transmission Using Biocompatible Flexible Energy Harvesters. Adv. Funct. Mater. 2017, 27, 1700341. [Google Scholar] [CrossRef]
- Yue, O.; Wang, X.; Hou, M.; Zheng, M.; Hao, D.; Bai, Z.; Zou, X.; Cui, B.; Liu, C.; Liu, X. Smart Nanoengineered Electronic-Scaffolds Based on Triboelectric Nanogenerators as Tissue Batteries for Integrated Cartilage Therapy. Nano Energy 2023, 107, 108158. [Google Scholar] [CrossRef]
- Chu, B.; Qin, X.; Zhu, Q.; Wang, H.; Wen, Z.; Sun, X.; He, Y.; Lee, S.-T. Triboelectric Current Stimulation Alleviates in Vitro Cell Migration and in Vivo Tumor Metastasis. Nano Energy 2022, 100, 107471. [Google Scholar] [CrossRef]
- Bhatta, T.; Faruk, O.; Islam, M.R.; Kim, H.S.; Rana, S.S.; Pradhan, G.B.; Deo, A.; Kwon, D.-S.; Yoo, I.; Park, J.Y. Polymeric Multilayered Planar Spring-Based Hybrid Nanogenerator Integrated with a Self-Powered Vibration Sensor for Automotive Vehicles IoT Applications. Nano Energy 2024, 127, 109793. [Google Scholar] [CrossRef]
- He, S.; Gui, Y.; Wang, Y.; Cao, L.; He, G.; Tang, C. CuO/TiO2 /MXene-Based Sensor and SMS-TENG Array Integrated Inspection Robots for Self-Powered Ethanol Detection and Alarm at Room Temperature. ACS Sens. 2024, 9, 1188–1198. [Google Scholar] [CrossRef]
- Zhou, Q.; Park, J.G.; Kim, K.N.; Thokchom, A.K.; Bae, J.; Baik, J.M.; Kim, T. Transparent-Flexible-Multimodal Triboelectric Nanogenerators for Mechanical Energy Harvesting and Self-Powered Sensor Applications. Nano Energy 2018, 48, 471–480. [Google Scholar] [CrossRef]
- Xu, J.; Yin, J.; Fang, Y.; Xiao, X.; Zou, Y.; Wang, S.; Chen, J. Deep Learning Assisted Ternary Electrification Layered Triboelectric Membrane Sensor for Self-Powered Home Security. Nano Energy 2023, 113, 108524. [Google Scholar] [CrossRef]
- Yi, P.; Fu, X.; Liu, Y.; Zhang, X.; Zhang, C.; Li, X. Triboelectric Active Pressure Sensor with Ultrabroad Linearity Range by Femtosecond Laser Shaping Based on Electrons Dynamics Control. Nano Energy 2023, 113, 108592. [Google Scholar] [CrossRef]
- Xia, S.-Y.; Long, Y.; Huang, Z.; Zi, Y.; Tao, L.-Q.; Li, C.-H.; Sun, H.; Li, J. Laser-Induced Graphene (LIG)-Based Pressure Sensor and Triboelectric Nanogenerator towards High-Performance Self-Powered Measurement-Control Combined System. Nano Energy 2022, 96, 107099. [Google Scholar] [CrossRef]
- Xiao, T.; Bing, Z.; Wu, Y.; Chen, W.; Zhou, Z.; Fang, F.; Liang, S.; Guo, R.; Tu, S.; Pan, G.; et al. A Multi-Dimensional Tactile Perception System Based on Triboelectric Sensors: Towards Intelligent Sorting without Seeing. Nano Energy 2024, 123, 109398. [Google Scholar] [CrossRef]
- Cai, C.; Mo, J.; Lu, Y.; Zhang, N.; Wu, Z.; Wang, S.; Nie, S. Integration of a Porous Wood-Based Triboelectric Nanogenerator and Gas Sensor for Real-Time Wireless Food-Quality Assessment. Nano Energy 2021, 83, 105833. [Google Scholar] [CrossRef]
- Kim, H.-J.; Lee, J.-H. Highly Sensitive and Selective Gas Sensors Using P-Type Oxide Semiconductors: Overview. Sens. Actuators B Chem. 2014, 192, 607–627. [Google Scholar] [CrossRef]
- Yu, B.; Yu, H.; Wang, H.; Zhang, Q.; Zhu, M. High-Power Triboelectric Nanogenerator Prepared from Electrospun Mats with Spongy Parenchyma-like Structure. Nano Energy 2017, 34, 69–75. [Google Scholar] [CrossRef]
- Cui, C.; Wang, X.; Yi, Z.; Yang, B.; Wang, X.; Chen, X.; Liu, J.; Yang, C. Flexible Single-Electrode Triboelectric Nanogenerator and Body Moving Sensor Based on Porous Na2CO3/Polydimethylsiloxane Film. ACS Appl. Mater. Interfaces 2018, 10, 3652–3659. [Google Scholar] [CrossRef]
- Xiao, W.; Jin, Z.; Yang, W.; Liu, S. Construction of Flower-like Hierarchical Ni-Doped SnO2 Nanosheets and Their Gas Sensing Properties for Ethanol. New J. Chem. 2023, 47, 15283–15290. [Google Scholar] [CrossRef]
- Huang, H.; Du, Z.; Wu, H.-C.; Gao, F.; Jiang, L.; Hou, H.; Chen, S.; Li, W.; Hu, F.; Yang, W.; et al. High-Temperature Resistant Ethanol Sensing Enhanced by ZnO Nanoparticles/SiC Nanowire Heterojunctions. Appl. Surf. Sci. 2024, 645, 158828. [Google Scholar] [CrossRef]
- Umar, A.; Ibrahim, A.A.; Algadi, H.; Nakate, U.T.; Choudhury, S.P.; Alsuwian, T.; Albargi, H.; Alsaiari, M.A.; Baskoutas, S. Selective Ethanol Gas Sensing Performance of Flower-Shaped CuO Composed of Thin Nanoplates. J. Mater. Sci. Mater. Electron. 2021, 32, 18565–18579. [Google Scholar] [CrossRef]
- Subha, P.P.; Jayaraj, M.K. Enhanced Room Temperature Gas Sensing Properties of Low Temperature Solution Processed ZnO/CuO Heterojunction. BMC Chem. 2019, 13, 4. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Humidity on Gas Sensing Performance of Carbon Nanotube Gas Sensors Operated at Room Temperature. IEEE Sens. J. 2021, 21, 5763–5770. [Google Scholar] [CrossRef]
- Shooshtari, M.; Salehi, A.; Vollebregt, S. Effect of Temperature and Humidity on the Sensing Performance of TiO2 Nanowire-Based Ethanol Vapor Sensors. Nanotechnology 2021, 32, 325501. [Google Scholar] [CrossRef] [PubMed]
- Amann, A.; Costello, B.D.L.; Miekisch, W.; Schubert, J.; Buszewski, B.; Pleil, J.; Ratcliffe, N.; Risby, T. The Human Volatilome: Volatile Organic Compounds (VOCs) in Exhaled Breath, Skin Emanations, Urine, Feces and Saliva. J. Breath Res. 2014, 8, 034001. [Google Scholar] [CrossRef]
- Litra, D.; Chiriac, M.; Ababii, N.; Lupan, O. Acetone Sensors Based on Al-Coated and Ni-Doped Copper Oxide Nanocrystalline Thin Films. Sensors 2024, 24, 6550. [Google Scholar] [CrossRef]
- Madvar, H.R.; Kordrostami, Z.; Mirzaei, A. Sensitivity Enhancement of Resistive Ethanol Gas Sensor by Optimized Sputtered-Assisted CuO Decoration of ZnO Nanorods. Sensors 2022, 23, 365. [Google Scholar] [CrossRef]
- Zhang, M.; Lv, X.; Wang, T.; Pei, W.; Yang, Y.; Li, F.; Yin, D.; Yu, H.; Dong, X. CuO-Based Gas Sensor Decorated by Polyoxometalates Electron Acceptors: From Constructing Heterostructure to Improved Sensitivity and Fast Response for Ethanol Detection. Sens. Actuators B Chem. 2024, 415, 136016. [Google Scholar] [CrossRef]
- Matsumoto, H.; Tanioka, A. Functionality in Electrospun Nanofibrous Membranes Based on Fiber’s Size, Surface Area, and Molecular Orientation. Membranes 2011, 1, 249–264. [Google Scholar] [CrossRef]
- Meng, J.; Li, H.; Zhao, L.; Lu, J.; Pan, C.; Zhang, Y.; Li, Z. Triboelectric Nanogenerator Enhanced Schottky Nanowire Sensor for Highly Sensitive Ethanol Detection. Nano Lett. 2020, 20, 4968–4974. [Google Scholar] [CrossRef]
- Tian, J.; Wang, F.; Ding, Y.; Lei, R.; Shi, Y.; Tao, X.; Li, S.; Yang, Y.; Chen, X. Self-Powered Room-Temperature Ethanol Sensor Based on Brush-Shaped Triboelectric Nanogenerator. Research 2021, 2021, 8564780. [Google Scholar] [CrossRef]
- He, S.; Gui, Y.; Wang, Y.; Yang, J. A Self-Powered β-Ni(OH)2/MXene Based Ethanol Sensor Driven by an Enhanced Triboelectric Nanogenerator Based on β-Ni(OH)2@PVDF at Room Temperature. Nano Energy 2023, 107, 108132. [Google Scholar] [CrossRef]
- Kim, J.; Chun, J.; Kim, J.W.; Choi, W.J.; Baik, J.M. Self-Powered, Room-Temperature Electronic Nose Based on Triboelectrification and Heterogeneous Catalytic Reaction. Adv. Funct. Mater. 2015, 25, 7049–7055. [Google Scholar] [CrossRef]
- Hao, M.; Zhang, R.; Jia, X.; Gao, X.; Gao, W.; Cheng, L.; Qin, Y. A Polymer Based Self-Powered Ethanol Gas Sensor to Eliminate the Interference of Ultraviolet Light. Sens. Actuators A Phys. 2021, 332, 113173. [Google Scholar] [CrossRef]
- Lupan, O.; Postica, V.; Cretu, V.; Wolff, N.; Duppel, V.; Kienle, L.; Adelung, R. Single and Networked CuO Nanowires for Highly Sensitive P-Type Semiconductor Gas Sensor Applications. Phys. Status Solidi RRL 2016, 10, 260–266. [Google Scholar] [CrossRef]
- Zhao, X.; Xuan, X.; Jiang, D.; Li, H.; Li, C.; Li, M. Wireless Antenna Sensor with CuO@Cu-Vertical Graphene and Cysteine-PDMS Composite for Ethanol Gas Detection. Anal. Chim. Acta 2024, 1319, 342969. [Google Scholar] [CrossRef]
- Aamir, L. Novel P-Type Ag-WO3 Nano-Composite for Low-Cost Electronics, Photocatalysis, and Sensing: Synthesis, Characterization, and Application. J. Alloys Compd. 2021, 864, 158108. [Google Scholar] [CrossRef]
- He, Y.; Shi, X.; Chen, K.; Yang, X.; Chen, J. Titanium-Doped P-Type WO3 Thin Films for Liquefied Petroleum Gas Detection. Nanomaterials 2020, 10, 727. [Google Scholar] [CrossRef]
- Wu, Y.-Q.; Hu, M.; Wei, X.-Y. A Study of Transition from N- to p-Type Based on Hexagonal WO3 Nanorods Sensor. Chin. Phys. B 2014, 23, 040704. [Google Scholar] [CrossRef]
- Kaur, N. Nickel Oxide Nanostructures for Gas Sensing: Recent Advances, Challenges, and Future Perspectives. ACS Sens. 2025, 10, 1641–1674. [Google Scholar] [CrossRef]
- Majhi, S.M.; Naik, G.K.; Lee, H.-J.; Song, H.-G.; Lee, C.-R.; Lee, I.-H.; Yu, Y.-T. Au@NiO Core-Shell Nanoparticles as a p-Type Gas Sensor: Novel Synthesis, Characterization, and Their Gas Sensing Properties with Sensing Mechanism. Sens. Actuators B Chem. 2018, 268, 223–231. [Google Scholar] [CrossRef]
- Nakate, U.T.; Ahmad, R.; Patil, P.; Wang, Y.; Bhat, K.S.; Mahmoudi, T.; Yu, Y.T.; Suh, E.; Hahn, Y.-B. Improved Selectivity and Low Concentration Hydrogen Gas Sensor Application of Pd Sensitized Heterojunction N-ZnO/p-NiO Nanostructures. J. Alloys Compd. 2019, 797, 456–464. [Google Scholar] [CrossRef]
- Zhang, N.; Ruan, S.; Han, J.; Yin, Y.; Li, X.; Liu, C.; Adimi, S.; Wen, S.; Xu, Y. Oxygen Vacancies Dominated CuO@ZnFe2O4 Yolk-Shell Microspheres for Robust and Selective Detection of Xylene. Sens. Actuators B Chem. 2019, 295, 117–126. [Google Scholar] [CrossRef]
- Mnethu, O.; Nkosi, S.S.; Kortidis, I.; Motaung, D.E.; Kroon, R.E.; Swart, H.C.; Ntsasa, N.G.; Tshilongo, J.; Moyo, T. Ultra-Sensitive and Selective p-Xylene Gas Sensor at Low Operating Temperature Utilizing Zn Doped CuO Nanoplatelets: Insignificant Vestiges of Oxygen Vacancies. J. Colloid Interface Sci. 2020, 576, 364–375. [Google Scholar] [CrossRef] [PubMed]
- Ciftyurek, E.; Li, Z.; Schierbaum, K. Adsorbed Oxygen Ions and Oxygen Vacancies: Their Concentration and Distribution in Metal Oxide Chemical Sensors and Influencing Role in Sensitivity and Sensing Mechanisms. Sensors 2022, 23, 29. [Google Scholar] [CrossRef] [PubMed]
- Emiroglu, S.; Bârsan, N.; Weimar, U.; Hoffmann, V. In Situ Diffuse Reflectance Infrared Spectroscopy Study of CO Adsorption on SnO2. Thin Solid Film. 2001, 391, 176–185. [Google Scholar] [CrossRef]
- Karthik, K.; Victor Jaya, N.; Kanagaraj, M.; Arumugam, S. Temperature-Dependent Magnetic Anomalies of CuO Nanoparticles. Solid State Commun. 2011, 151, 564–568. [Google Scholar] [CrossRef]
- Cho, H.; Kim, I.; Park, J.; Kim, D. A Waterwheel Hybrid Generator with Disk Triboelectric Nanogenerator and Electromagnetic Generator as a Power Source for an Electrocoagulation System. Nano Energy 2022, 95, 107048. [Google Scholar] [CrossRef]
- Hao, C.; Wang, Z.; Cai, M.; Cheng, S.; Wang, Z.; Zhai, C.; Cui, J.; Zheng, Y.; Xue, C. Enhancing Output Performance of Triboelectric Nanogenerator by Increasing Charge Storage Capacity of Electrodes. Nano Res. 2025, 18, 94907039. [Google Scholar] [CrossRef]
Sensing Material | Device Type | Response Time | Limit of Detection | Reference |
---|---|---|---|---|
ZnO nanowire/Ag | Separated | 20 s (5 ppm) | 5 ppm | [25] |
WO3 nanorods | Separated | 5 s (100 ppm) | 5 ppm | [59] |
β-Ni(OH)2/MXene | Separated | 15 s (100 ppm) | 5 ppm | [60] |
ZnO/PTFE layer | Integrated | 240 s (2%) | 10 ppm | [61] |
Polyimide nanowire | Integrated | 28 s (10,000 ppm) | 500 ppm | [62] |
CuO@ES-PVDF | Integrated | 6 s (1000 ppm) | 10 ppm | This work |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Q.; Cho, H.; Kim, I.; Lee, J.; Kim, D. Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance. Polymers 2025, 17, 1400. https://doi.org/10.3390/polym17101400
He Q, Cho H, Kim I, Lee J, Kim D. Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance. Polymers. 2025; 17(10):1400. https://doi.org/10.3390/polym17101400
Chicago/Turabian StyleHe, Quanyu, Hyunwoo Cho, Inkyum Kim, Jonghwan Lee, and Daewon Kim. 2025. "Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance" Polymers 17, no. 10: 1400. https://doi.org/10.3390/polym17101400
APA StyleHe, Q., Cho, H., Kim, I., Lee, J., & Kim, D. (2025). Self-Powered Triboelectric Ethanol Sensor Based on CuO-Doped Electrospun PVDF Fiber with Enhanced Sensing Performance. Polymers, 17(10), 1400. https://doi.org/10.3390/polym17101400