Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline

Search Results (306)

Search Parameters:
Keywords = electron-hole pair recombination

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
26 pages, 7676 KB  
Article
Effects of WO3 Amount and Treatment Temperature on TiO2-ZrO2-WO3 Photocatalysts Used in the Solar Photocatalytic Oxidation of Sildenafil
by Jhatziry Hernández Sierra, Jorge Cortez Elizalde, José Gilberto Torres Torres, Adib Abiu Silahua Pavón, Adrian Cervantes Uribe, Adrian Cordero García, Zenaida Guerra Que, Gerardo Enrique Córdova Pérez, Israel Rangel Vázquez and Juan Carlos Arevalo Perez
Catalysts 2026, 16(1), 82; https://doi.org/10.3390/catal16010082 - 10 Jan 2026
Viewed by 407
Abstract
TiO2 shows improved photocatalytic properties when combined with other oxides, such as ZrO2. Unfortunately, this material does not exhibit a spectral response in the visible range, but this can be improved by adding WO3. Here, the effect of [...] Read more.
TiO2 shows improved photocatalytic properties when combined with other oxides, such as ZrO2. Unfortunately, this material does not exhibit a spectral response in the visible range, but this can be improved by adding WO3. Here, the effect of the amount of WO3 and the treatment temperature on TiO2-ZrO2-WO3 materials applied in the solar photocatalytic oxidation of sildenafil was evaluated. The materials were synthesized using the sol–gel method and were characterized by N2, XRD, UV-Vis RDS, SEM, PL, and XPS. Photocatalytic activity was determined by the degradation and mineralization of sildenafil. The most active photocatalysts were selected for stability testing and to determine the oxidizing species that dominate the reaction mechanism. The optimal amount of WO3 that improves solar photocatalytic activity at both treatment temperatures was found to be 1% with a reaction mechanism based on OH· and h+. WO3 reduces electron–hole pair recombination. At 500 °C, the crystallinity of the anatase phase is improved, while at 800 °C, the transformation to rutile is suppressed at low WO3 concentrations. XPS observed the reduction in Ti4+ to Ti3+ and W6+ to W5+ in TiO2–ZrO2–WO3 materials, which were found to be photoactive under sunlight with potential for use in industrial-scale reaction systems. Full article
(This article belongs to the Special Issue Advances in Photocatalytic Degradation, 2nd Edition)
Show Figures

Figure 1

15 pages, 4516 KB  
Article
Chitin-Assisted Fabrication of an Fe3O4/BiOCl Composite for Visible-Light Photocatalytic Degradation of Ciprofloxacin
by Xiaoxing Zeng, Kunlei Wang, Hongting Ye, Xiaofeng Gong, Yanhong Yao and Fei Feng
Molecules 2026, 31(1), 134; https://doi.org/10.3390/molecules31010134 - 30 Dec 2025
Viewed by 200
Abstract
A novel recyclable composite, Fe3O4/chitin/BiOCl, was synthesized via a solvothermal approach using cetyltrimethylammonium bromide (CTAB), bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), chitin, and Fe3O4 as precursors. The composite was systematically characterized via [...] Read more.
A novel recyclable composite, Fe3O4/chitin/BiOCl, was synthesized via a solvothermal approach using cetyltrimethylammonium bromide (CTAB), bismuth nitrate pentahydrate (Bi(NO3)3·5H2O), chitin, and Fe3O4 as precursors. The composite was systematically characterized via X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), Brunauer–Emmett-Teller (BET) analysis, ultraviolet–visible (UV-vis) spectroscopy, and vibrating sample magnetometry (VSM). Characterization results indicated that the incorporation of chitin significantly improved the porosity and specific surface area of the catalyst. Furthermore, the synergistic effects between chitin and Fe3O4 effectively reduced the recombination rate of photogenerated electron–hole pairs. The photocatalytic activity of the composite was evaluated by degrading ciprofloxacin (CIP) under visible-light irradiation. When the contents of Fe3O4 and chitin were 5% and 2% (by weight), respectively, the catalyst exhibited excellent photocatalytic performance with a degradation rate of 89.54%, and the rate constant was 5.1 times higher than that of pure BiOCl. Additionally, the catalyst exhibited excellent magnetic recoverability and photocatalytic stability. Full article
Show Figures

Graphical abstract

16 pages, 12873 KB  
Article
In Situ Anchoring of CQDs-Induced CuO Quantum Dots on Ultrafine TiO2 Nanowire Arrays for Enhanced Photocatalysis
by Xinyu Hao, Xiaoyang Xi, Jinwei Qu and Qiurong Li
Catalysts 2026, 16(1), 23; https://doi.org/10.3390/catal16010023 - 28 Dec 2025
Viewed by 372
Abstract
CuO/TiO2 is a highly active visible-light-driven photocatalyst. The precise structural regulation of TiO2 and the quantum dot-scale loading strategy of CuO have long been researching hotspots and challenges. This work presents an ingenious synthetic strategy, leveraging the photoinduced superhydrophilicity and dark-induced [...] Read more.
CuO/TiO2 is a highly active visible-light-driven photocatalyst. The precise structural regulation of TiO2 and the quantum dot-scale loading strategy of CuO have long been researching hotspots and challenges. This work presents an ingenious synthetic strategy, leveraging the photoinduced superhydrophilicity and dark-induced reversible hydrophobicity of TiO2, coupled with carbon quantum dots (CQDs) as “seeds” to induce the in situ synthesis of CuO quantum dots (CuO QDs). Specifically, CuO QDs with an average diameter of 5–10 nm were successfully anchored onto TiO2 nanowire arrays (TNWAs) with a diameter of 10–15 nm. By adjusting the dosage of “seeds” (CQDs), the loading amount of CuO QDs can be effectively controlled. Corresponding characterizations were performed, including ultraviolet-visible-near-infrared (UV-Vis-NIR spectroscopy) for optical absorption properties, photoluminescence (PL) spectroscopy for photoluminescent behavior, electron paramagnetic resonance (EPR) spectroscopy for free radical generation capability, and bisphenol A (BPA) degradation assays for photocatalytic performance. Loading 4.78 wt% CuO QDs can effectively inhibit the recombination of electron–hole pairs in TNWAs. Simultaneously, it prolongs the lifetime of charge carriers (photoelectrons) and enhances the yields of hydroxyl radicals (•OH) and superoxide radicals (•O2). The BPA degradation efficiency of the CuO QDs/TNWA composite is 2.4 times higher than that of TNWAs. Furthermore, we found that the loading of CuO QDs significantly modulates the depletion layer width of the P–N heterojunction, and the underlying mechanism has been discussed in detail. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Graphical abstract

20 pages, 6335 KB  
Article
g-C3N4/CeO2/Bi2O3 Dual Type-II Heterojunction Photocatalysis Self-Cleaning Coatings: From Spectral Absorption Modulation to Engineering Application Characterization
by Shengchao Cui, Run Cheng, Feng Sun, Huishuang Zhao, Hang Yuan, Qing Si, Mengzhe Ai, Weiming Du, Kan Zhou, Yantao Duan and Wenke Zhou
Nanomaterials 2026, 16(1), 16; https://doi.org/10.3390/nano16010016 - 22 Dec 2025
Viewed by 502
Abstract
To enhance the purification of exhaust gas, a g-C3N4/CeO2/Bi2O3 dual type-II heterojunction photocatalysis was designed and prepared to suppress the recombination of electron–hole pairs and improve light energy utilization. The dual type-II heterojunction structure [...] Read more.
To enhance the purification of exhaust gas, a g-C3N4/CeO2/Bi2O3 dual type-II heterojunction photocatalysis was designed and prepared to suppress the recombination of electron–hole pairs and improve light energy utilization. The dual type-II heterojunction structure effectively reduced the bandgap (Eg) from 2.5 eV to 2.04 eV, thereby extending the light absorption of photocatalysis into the visible region. Following the design of the heterojunction, a self-cleaning process was developed and applied to asphalt pavement rut plates to evaluate its efficiency in degrading vehicle exhaust under real-road conditions. The coating was systematically characterized in terms of exhaust degradation efficiency, hardness, adhesion, water resistance, freeze–thaw durability, and skid resistance. Under 60 min of natural light irradiation, the purification efficiencies for HC, CO, CO2, and NOx reached 22.60%, 19.27%, 14.83%, and 50.01%, respectively. After three-repetition tests, the efficiencies remained high at 21.75%, 19.04%, 14.66%, and 49.83%, demonstrating excellent photocatalytic stability. All other road-performance indicators met the relevant China national standards. The application of this self-cleaning coating in road infrastructure presents a viable strategy for environmental remediation in transportation systems. Full article
(This article belongs to the Special Issue Nanomaterials and Nanotechnology in Civil Engineering)
Show Figures

Figure 1

19 pages, 4484 KB  
Article
Thermally Activated Composite Y2O3-bTiO2 as an Efficient Photocatalyst for Degradation of Azo Dye Reactive Black 5
by Aleksandar Jovanović, Mladen Bugarčić, Jelena Petrović, Marija Simić, Kristina Žagar Soderžnik, Janez Kovač and Miroslav Sokić
Molecules 2026, 31(1), 8; https://doi.org/10.3390/molecules31010008 - 19 Dec 2025
Viewed by 358
Abstract
Water pollution from textile effluents poses serious environmental risks, particularly due to persistent anionic dyes such as Reactive Black 5 (RB5). This study demonstrates that simple deposition of Y2O3 onto commercially available, biobased TiO2 (bTiO2) significantly enhances [...] Read more.
Water pollution from textile effluents poses serious environmental risks, particularly due to persistent anionic dyes such as Reactive Black 5 (RB5). This study demonstrates that simple deposition of Y2O3 onto commercially available, biobased TiO2 (bTiO2) significantly enhances photocatalytic degradation efficiency under simulated sunlight, suppressing rapid recombination of electron–hole pairs. Addressing a key research gap, the proposed method replaces expensive nanoscale precursors and complex synthesis routes typically used for Y2O3/TiO2 systems with a low-cost, straightforward approach involving weak complexation and co-precipitation. The resulting Y2O3-bTiO2 composite was characterized using FTIR, XRD, SEM, EDX, TEM, XPS, and UV-DRS techniques, confirming efficient incorporation of Y2O3 on the TiO2 surface. Photocatalytic experiments revealed that nanoparticles calcined at 700 °C achieved complete RB5 degradation within 60 min—reducing the reaction time by half compared to undoped bTiO2. Systematic studies of initial dye concentration, catalyst loading, and irradiation time confirmed that the degradation followed pseudo-first-order kinetics with a rate constant of 0.064 min−1 (R2 = 0.98). Calculated quantum yields corroborated the reduced electron–hole recombination induced by Y2O3 deposition. These findings highlight the novelty and practicality of the developed Y2O3-bTiO2 photocatalyst as an efficient, affordable, and environmentally sustainable material for the degradation of industrial dyes. Full article
(This article belongs to the Special Issue Advances in the Detection and Removal of Organic Residue from Water)
Show Figures

Figure 1

8 pages, 502 KB  
Proceeding Paper
Advances in TiO2 Nanoparticles for Rhodamine B Degradation
by Md. Golam Sazid, Asraf Ibna Helal, Harunur Rashid and Md. Redwanur Rashid Nafi
Mater. Proc. 2025, 25(1), 14; https://doi.org/10.3390/materproc2025025014 - 9 Dec 2025
Viewed by 443
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) have garnered significant attention as photocatalysts for degrading organic pollutants, particularly synthetic dyes such as rhodamine B (RhB), methylene blue, methyl orange, and others. The impact of several synthesis methods, including sol–gel, hydrothermal, and chemical vapor deposition (CVD) techniques, on the electrical and morphological properties of TiO2 NPs has been studied, emphasizing the distinctive physicochemical properties of TiO2 NPs, including their extensive surface area, significant oxidative capacity, and remarkable chemical stability, which are important in the recent advancements in their use for RhB degradation. A detailed examination of TiO2’s photocatalytic mechanism shows that it is based on the generation of reactive oxygen species (ROS) by photoinduced electron–hole pair formation under ultraviolet (UV) light exposure. In wastewater treatment, TiO2 degrades RhB into less harmful byproducts by the generation of electron–hole pairs that initiate redox reactions under sunlight. This study includes a thorough overview of significant factors influencing photocatalytic efficacy. The parameters include particle size, crystal phase (anatase, rutile, and brookite), surface changes, and the incorporation of metal or non-metal dopants to enhance visible light absorption. Researchers continually seek methods to overcome challenges, including restricted visible-light responsiveness and rapid electron–hole recombination. The investigated approaches include heterojunction generation, composite development, and co-catalyst insertion. This review article aims to address the deficiencies in our understanding of TiO2-based photocatalysis for the degradation of RhB and to propose enhancements for these systems to enable more efficient and sustainable wastewater treatment in the future. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

8 pages, 518 KB  
Proceeding Paper
Utilization of TiO2 Nanoparticles for Methylene Blue Degradation
by Md. Golam Sazid, Harunur Rashid, Md. Redwanur Rashid Nafi and Asraf Ibna Helal
Mater. Proc. 2025, 25(1), 13; https://doi.org/10.3390/materproc2025025013 - 8 Dec 2025
Viewed by 632
Abstract
Titanium dioxide (TiO2) nanoparticles (NPs) are useful as a potential photocatalyst for the degradation of dyes such as methyl orange, rhodamine B, and methylene blue (MB). Understanding the mechanism of photocatalysis and the factors influencing photocatalysis is important for engineering TiO [...] Read more.
Titanium dioxide (TiO2) nanoparticles (NPs) are useful as a potential photocatalyst for the degradation of dyes such as methyl orange, rhodamine B, and methylene blue (MB). Understanding the mechanism of photocatalysis and the factors influencing photocatalysis is important for engineering TiO2 NPs to achieve an unprecedented photocatalysis rate. For TiO2 NPs, their unique physicochemical qualities, such as small size, large surface area, optimum semiconductor bandgap, substantial oxidative potential, and outstanding chemical stability are factors which influence the MB degradation rate. The electron–hole pair separation in TiO2 NPs allows for photocatalysis, which is not possible in their bulk form. The formation of reactive oxygen species (ROS) via photoinduced generation of electron–hole pairs under light irradiation is the starting point of the mechanism of photocatalysis for TiO2 NPs. By generating ROS, TiO2 NPs catalyze the degradation of MB. The photocatalytic performance of TiO2 NPs is also different for different crystal phases, such as anatase, rutile, and brookite. The addition of metal or non-metal dopants into TiO2 NPs enhances photocatalysis by enhancing light absorption, which enhances the generation of electron–hole pairs and of ROS. This review article will explain the mechanism of photocatalysis, the parameters influencing photocatalytic activity, active sites and recombination rates, disadvantages, and strategies to overcome these challenges that can improve TiO2 NPs for a future wastewater treatment that is both efficient and sustainable. Full article
(This article belongs to the Proceedings of The 5th International Online Conference on Nanomaterials)
Show Figures

Figure 1

12 pages, 4106 KB  
Review
Dynamic Self-Adaptive Behavior of Photocatalysts
by Tianyang Li, Jichuang Wu, Shufang Zhao, Wenlan Ji, Zhongyi Liu, Jinpeng Li, Young Dok Kim and Wenlei Zhang
Catalysts 2025, 15(12), 1116; https://doi.org/10.3390/catal15121116 - 1 Dec 2025
Viewed by 433
Abstract
Harnessing solar energy directly through photocatalysis is an effective approach to addressing the energy crisis and environmental pollution. This green technology enables both sustainable energy production and the removal of environmental contaminants simultaneously. Heterojunction photocatalysts demonstrate superior performance by enhancing light utilization efficiency [...] Read more.
Harnessing solar energy directly through photocatalysis is an effective approach to addressing the energy crisis and environmental pollution. This green technology enables both sustainable energy production and the removal of environmental contaminants simultaneously. Heterojunction photocatalysts demonstrate superior performance by enhancing light utilization efficiency and inhibiting the recombination of photogenerated electron-hole pairs. The reconstruction of active sites in heterojunction photocatalysts, encompassing changes in their valence states and coordination environments, has been extensively studied. However, the unique structural self-adaptive phenomenon displayed by heterojunction photocatalysts that incorporate flexible components during the photocatalysis process has not been extensively investigated. Indeed, this intriguing self-adaptive behavior may be closely linked to their photocatalytic properties. Extensive studies indicate that this structural self-adaptation is predominantly driven by flexible materials, with flexible metal-organic frameworks (MOFs) finding particularly broad application. Based on this understanding, we briefly summarize and offer insights into the structural design and fundamental principles of such photocatalytic heterojunction catalysts while also providing an outlook for future research. Full article
(This article belongs to the Special Issue The Applications of Heterogeneous Catalysis in Energy Utilization)
Show Figures

Graphical abstract

20 pages, 4746 KB  
Article
The Efficiency and Mechanism of FeOCl/Ce-Catalyzed Persulfate for the Degradation of Caffeine Under Visible Light
by Zhao Bai, Mingyue Hu, Minrui Li, Weidong Wu, Chi Zhou and Yuru Wang
Molecules 2025, 30(22), 4381; https://doi.org/10.3390/molecules30224381 - 13 Nov 2025
Viewed by 525
Abstract
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis [...] Read more.
Despite extensive work on FeOCl-based photocatalysts, few studies have explored rare-earth (Ce) doping to simultaneously tune bandgap, suppress charge recombination, and enhance visible light-driven persulfate (PS) activation for the degradation of emerging contaminants. This study synthesized FeOCl/Ce composite photocatalysts via a partial pyrolysis method and systematically characterized their physicochemical properties. The results show that Ce doping significantly lowers the bandgap energy of the photocatalyst, enhances its visible light absorption ability, and effectively suppresses the recombination of photogenerated electron–hole pairs, thereby markedly improving photocatalytic performance under visible light. Analyses including XRD, EDS, XPS, and FT-IR confirm that Ce is incorporated into the FeOCl matrix and modulates the radial growth behavior of FeOCl without altering its intrinsic crystal structure. Morphological observations reveal that FeOCl/Ce exhibits a uniform nanosheet layered structure, with larger particles formed by the aggregation of smaller nanosheets. The nitrogen adsorption–desorption isotherm of FeOCl/Ce shows characteristics of Type IV with a relatively small BET surface area. The broadened optical absorption edge of FeOCl/Ce and the results of PL spectra and I-T curves further confirm its enhanced visible light absorption capacity and reduced electron–hole recombination compared to pure FeOCl. At an initial caffeine (CAF) concentration of 10 μM, FeOCl/Ce dose of 0.5 g/L, PS concentration of 1 mM, and initial pH of 5.06, the FeOCl/Ce-catalyzed PS system under visible light irradiation can degrade 91.2% of CAF within 30 min. An acidic environment is more favorable for CAF degradation, while the presence of SO42−, Cl, and NO3 inhibits the process performance to varying degrees, possibly due to competitive adsorption on the photocatalyst surface or quenching of reactive species. Cyclic stability tests show that FeOCl/Ce maintains good catalytic performance over multiple runs. Mechanistic analysis indicates that OH and holes are the dominant reactive species for CAF degradation, while PS mainly acts as an electron acceptor to suppress electron–hole recombination. Overall, the FeOCl/Ce photocatalytic system demonstrates high efficiency, good stability, and visible light responsiveness in CAF degradation, with potential applications for removing CAF and other emerging organic pollutants from aquatic environments. Full article
Show Figures

Figure 1

27 pages, 3114 KB  
Review
Carbon Nitride-Based Catalysts for Photocatalytic NO Removal
by Sheng Wang, Fu Chen, Xiyao Niu and Huagen Liang
Catalysts 2025, 15(11), 1043; https://doi.org/10.3390/catal15111043 - 3 Nov 2025
Viewed by 1049
Abstract
Nitrogen oxides (NOx) are major atmospheric pollutants, and their escalating emissions, driven by rapid economic development and urbanization, pose a severe threat to both the ecological environment and human health. Conventional denitrification technologies are often hampered by high costs, significant energy [...] Read more.
Nitrogen oxides (NOx) are major atmospheric pollutants, and their escalating emissions, driven by rapid economic development and urbanization, pose a severe threat to both the ecological environment and human health. Conventional denitrification technologies are often hampered by high costs, significant energy consumption, and stringent operational conditions, making them increasingly inadequate in the face of tightening environmental regulations. In this context, photocatalytic technology, particularly systems based on graphitic carbon nitride (g-C3N4), has garnered significant research interest for NOx removal due to its visible-light responsiveness, high stability, and environmental benignity. To advance the performance of g-C3N4, numerous modification strategies have been explored, including morphology control, elemental doping, defect engineering, and heterostructure construction. These approaches effectively broaden the light absorption range, enhance the separation efficiency of photogenerated electron-hole pairs, and improve the adsorption and conversion capacities for NOx. Notably, constructing heterojunctions between g-C3N4 and other materials (e.g., metal oxides, noble metals, metal–organic frameworks (MOFs)) has proven highly effective in boosting catalytic activity and stability. Furthermore, the underlying photocatalytic mechanisms, encompassing the generation and migration pathways of charge carriers, the redox reaction pathways of NOx, and the influence of external factors like light intensity and reaction temperature, have been extensively investigated. From an application perspective, g-C3N4-based photocatalysis demonstrates considerable potential in flue gas denitrification, vehicle exhaust purification, and air purification. Despite these advancements, several challenges remain, such as limited solar energy utilization, rapid charge carrier recombination, and insufficient long-term stability, which hinder large-scale implementation. Future research should focus on further optimizing the material structure, developing greener synthesis routes, enhancing catalyst stability and poison resistance, and advancing cost-effective engineering applications to facilitate the practical deployment of g-C3N4-based photocatalytic technology in air pollution control. Full article
Show Figures

Figure 1

16 pages, 4229 KB  
Article
In Situ Construction of 2D/2D g-C3N4/rGO Hybrid Photocatalysts for Efficient Ciprofloxacin Degradation
by Mengyao Wang, Yong Li, Rui Li, Yali Zhang, Deyun Yue, Shihao Zhao, Maosong Chen and Haojie Song
Nanomaterials 2025, 15(21), 1641; https://doi.org/10.3390/nano15211641 - 28 Oct 2025
Viewed by 622
Abstract
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) [...] Read more.
Insufficient harvesting of visible photons, limited adsorption, and fast recombination of photogenerated electron-hole pairs restrict the application of graphitic carbon nitride (g-C3N4). Here, we propose a straightforward solid-phase synthesis method for fabricating 2D/2D graphitic carbon nitride/reduced graphene oxide (SCN/GR) hybrid photocatalysts. The synthesis process involves the thermal condensation of three precursors: dicyandiamide (as the g-C3N4 source), NH4Cl (as a pore-forming agent), and graphene oxide (GO, which is in situ reduced to rGO during thermal treatment). The incorporation of reduced graphene oxide (rGO) into the g-C3N4 matrix not only narrows the bandgap of the material but also expedites the separation of photogenerated carriers. The photocatalytic activity of the SCN/GR hybrid was systematically evaluated by degrading ciprofloxacin in aqueous solution under different light conditions. The results demonstrated remarkable degradation efficiency: 72% removal within 1 h under full-spectrum light, 81% under UV light, and 52% under visible light. Notably, the introduction of rGO significantly improved the visible light absorption capacity of g-C3N4. Additionally, SCN/GR exhibits exceptional cyclic stability, maintaining its structural integrity and photocatalytic properties unchanged across five successive degradation cycles. This study offers a simple yet effective pathway to synthesize 2D/2D composite photocatalysts, which hold significant promise for practical applications in water treatment processes. Full article
(This article belongs to the Section Environmental Nanoscience and Nanotechnology)
Show Figures

Figure 1

39 pages, 3987 KB  
Review
Ultrasonic-Assisted Fabrication of TiO2-Based Composite Photocatalysts for Enhanced Photocatalysis of Organic Pollutants: A Review
by Jenny Hui Foong Chau, Ethan Dern Huang Kong, Jing Chang Chia, Chin Wei Lai, Joon Ching Juan, Yue Li, Ping Xiang, Irfan Anjum Badruddin and Amit Kumar
Catalysts 2025, 15(11), 1010; https://doi.org/10.3390/catal15111010 - 27 Oct 2025
Viewed by 1166
Abstract
Water contamination and the global energy crisis are two of the most significant challenges in the world. Titanium dioxide (TiO2) has garnered attention due to its promising photocatalytic performance. However, its wide band gap energy limits its efficiency under visible light [...] Read more.
Water contamination and the global energy crisis are two of the most significant challenges in the world. Titanium dioxide (TiO2) has garnered attention due to its promising photocatalytic performance. However, its wide band gap energy limits its efficiency under visible light irradiation. To address this, TiO2-based composite photocatalysts have been developed to narrow the band gap energy and suppress the recombination of electron–hole pairs, thereby enhancing photocatalytic performance. The ultrasonic technique, through acoustic cavitation, facilitates a synthetic process involving localized transient high-pressure and high-temperature conditions to produce photocatalysts with superior photocatalytic capabilities. This review focuses on ultrasonication and ultrasonic-assisted fabrication method for modifying TiO2 into visible light-driven composite heterostructures. It discusses the parameters of ultrasonication that influence the synthesis and modification of these composites, along with the factors affecting photocatalytic performance. Full article
(This article belongs to the Special Issue Catalysis Accelerating Energy and Environmental Sustainability)
Show Figures

Figure 1

12 pages, 9988 KB  
Article
Structural Optimization and Trap Effects on the Output Performance of 4H-SiC Betavoltaic Cell
by Kyeong Min Kim, In Man Kang, Jae Hwa Seo, Young Jun Yoon and Kibeom Kim
Nanomaterials 2025, 15(21), 1625; https://doi.org/10.3390/nano15211625 - 24 Oct 2025
Viewed by 697
Abstract
In this study, structural optimization and trap effect analysis of a 4H-SiC–based p–i–n betavoltaic (BV) cell were performed using Silvaco ATLAS TCAD (version 5.30.0.R) simulations combined with an electron-beam (e-beam) irradiation model. First, the optimum device structure was derived by varying the thickness [...] Read more.
In this study, structural optimization and trap effect analysis of a 4H-SiC–based p–i–n betavoltaic (BV) cell were performed using Silvaco ATLAS TCAD (version 5.30.0.R) simulations combined with an electron-beam (e-beam) irradiation model. First, the optimum device structure was derived by varying the thickness of the intrinsic layer (i-layer), the thickness of the p-layer, and the doping concentration of the i-layer. Under 17 keV e-beam irradiation, the electron–hole pairs generated in the i-layer were effectively separated and transported by the internal electric field, thereby contributing to the short-circuit current density (JSC), open-circuit voltage (VOC), and maximum output power density (Pout_max). Subsequently, to investigate the effects of traps, donor- and acceptor-like traps were introduced either individually or simultaneously, and their densities were varied to evaluate the changes in device performance. The simulation results revealed that traps degraded the performance through charge capture and recombination, with acceptor-like traps exhibiting the most pronounced impact. In particular, acceptor-like traps in the i-layer significantly reduced VOC from 2.47 V to 2.07 V and Pout_max from 3.08 μW/cm2 to 2.28 μW/cm2, demonstrating that the i-layer is the most sensitive region to performance degradation. These findings indicate that effective control of trap states within the i-layer is a critical factor for realizing high-efficiency and high-reliability SiC-based betavoltaic cells. Full article
(This article belongs to the Section Nanoelectronics, Nanosensors and Devices)
Show Figures

Figure 1

19 pages, 10259 KB  
Article
Fabrication of Novel n-n Heterojunction Bi2O2CO3/AgVO3 Photocatalytic Materials with Visible-Light-Driven Photocatalytic Activity Enhancement
by Weijie Hua, Huixin Yuan and Songhua Huang
Materials 2025, 18(20), 4705; https://doi.org/10.3390/ma18204705 - 14 Oct 2025
Viewed by 582
Abstract
This research successfully synthesized a novel n-n heterojunction Bi2O2CO3/AgVO3 nanocomposite photocatalyst via the in situ chemical deposition process. Characterization results strongly confirmed the formation of a tight heterojunction at the Bi2O2CO3 [...] Read more.
This research successfully synthesized a novel n-n heterojunction Bi2O2CO3/AgVO3 nanocomposite photocatalyst via the in situ chemical deposition process. Characterization results strongly confirmed the formation of a tight heterojunction at the Bi2O2CO3/AgVO3 interface. The nanocomposite exhibited characteristic XRD peaks and FT-IR vibrational modes of both Bi2O2CO3 and AgVO3 simultaneously. Electron microscopy images revealed AgVO3 nanorods tightly and uniformly loaded onto the surface of Bi2O2CO3 nanosheets. Compared to the single-component Bi2O2CO3, the composite photocatalyst exhibited a red shift in its optical absorption edge to the visible region (515 nm) and a decrease in bandgap energy to 2.382 eV. Photoluminescence (PL) spectra demonstrated the lowest fluorescence intensity for the nanocomposite, indicating that the recombination of photogenerated electron–hole pairs was suppressed. After 90 min of visible-light irradiation, the degradation efficiency of Bi2O2CO3/AgVO3 toward methylene blue (MB) reached up to 99.55%, with photodegradation rates 2.51 and 2.79 times higher than those of Bi2O2CO3 and AgVO3, respectively. Furthermore, the nanocomposite exhibited excellent cycling stability and reusability. MB degradation was gradually enhanced with increasing the photocatalyst dosage and decreasing initial MB concentration. Radical trapping experiments and absorption spectroscopy of the MB solution revealed that reactive species h+ and ·O2 could destroy and decompose the chromophore groups of MB molecules effectively. The possible mechanism for enhancing photocatalytic performance was suggested, elucidating the crucial roles of charge carrier transfer and active species generation. Full article
(This article belongs to the Section Catalytic Materials)
Show Figures

Figure 1

30 pages, 5345 KB  
Review
Recent Advances in Graphitic Carbon Nitride-Based Materials in the Photocatalytic Degradation of Emerging Contaminants
by Dan Xu, Heshan Cai, Daguang Li, Feng Chen, Shuwen Han, Xiaojuan Chen, Zhenyi Li, Zebang He, Zhuhong Chen, Jiabao He, Weiyu Huang, Xinyi Tang, Yihuan Wen and Yejun Feng
Inorganics 2025, 13(10), 319; https://doi.org/10.3390/inorganics13100319 - 26 Sep 2025
Cited by 1 | Viewed by 1886
Abstract
The increasing presence of emerging contaminants (ECs) has attracted considerable attention due to their potential harm to human health and ecosystems. Graphitic carbon nitride (g-C3N4), a semiconductor devoid of metals, stands out due to its distinctive optical properties and [...] Read more.
The increasing presence of emerging contaminants (ECs) has attracted considerable attention due to their potential harm to human health and ecosystems. Graphitic carbon nitride (g-C3N4), a semiconductor devoid of metals, stands out due to its distinctive optical properties and strong resistance to chemical degradation, which holds significant promise in the photocatalytic degradation of ECs. However, the inherent limitations of g-C3N4, such as its reduced specific surface area and the swift recombination of photogenerated electron-hole pairs, have prompted extensive research on modification strategies to enhance its photocatalytic performance. Current research on g-C3N4-based materials is often constrained in scope, with most reviews focusing solely on modification strategies or its application in degrading a single category of emerging contaminants (ECs). In this review, a systematic overview of synthesis methods and advanced modification strategies for g-C3N4-based materials is discussed, highlighting their recent advances in the photocatalytic degradation of various ECs using g-C3N4-based materials, which underscores their potential for environmental remediation. Moreover, this article critically examines the current challenges and outlines future research directions, with particular emphasis on integrating artificial intelligence and machine learning to accelerate the development of g-C3N4-based photocatalysts and optimize degradation processes, thereby promoting their efficient application in the photocatalytic degradation of ECs. Full article
(This article belongs to the Special Issue Novel Photo(electro)catalytic Degradation)
Show Figures

Figure 1

Back to TopTop