Carbon Nitride-Based Catalysts for Photocatalytic NO Removal
Abstract
1. Introduction
2. NO Photocatalytic Removal Mechanism
3. Optimization Strategies for G-C3N4
3.1. Morphological Engineering and Surface Modification
3.2. Doping Engineering
3.2.1. Non-Metal Doping
3.2.2. Metal Doping
3.2.3. Multi-Element Doping
3.3. Defect Engineering
3.4. Construction of Heterogeneous Structures
3.4.1. Type-I Heterojunction
3.4.2. Type-II Heterojunction
3.4.3. Z-Scheme Heterojunction
3.4.4. S-Scheme Heterojunction
3.4.5. Schottky Junction
4. Conclusions and Prospect
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Wang, Y.; Tang, T.; Zhou, Q.; Xu, L.; Tang, C. Research progress in high-temperature SCR denitration: From catalyst innovations to reaction mechanism exploration. Electr. Power Environ. Prot. 2025, 3, 343–356. (In Chinese) [Google Scholar] [CrossRef]
- Rezaei, F.; Rownaghi, A.A.; Monjezi, S.; Lively, R.P.; Jones, C.W. SOx/NOx Removal from Flue Gas Streams by Solid Adsorbents: A Review of Current Challenges and Future Directions. Energy Fuels 2015, 29, 5467–5486. [Google Scholar] [CrossRef]
- Zhao, M.; Xue, P.; Liu, J.; Liao, J.; Guo, J. A review of removing SO2 and NOX by wet scrubbing. Sustain. Energy Technol. Assess. 2021, 47, 101451. [Google Scholar] [CrossRef]
- Luo, C.; Ma, S.; Feng, Y.; Wang, C.; Zhao, G.; Feng, H.; Liu, J. Research status and development of flue gas denitrification technology in selective non-catalytic reduction. Electr. Power Environ. Prot. 2024, 6, 603–614. [Google Scholar] [CrossRef]
- Alves, L.; Holz, L.I.V.; Fernandes, C.; Ribeirinha, P.; Mendes, D.; Fagg, D.P.; Mendes, A. A comprehensive review of NOx and N2O mitigation from industrial streams. Renew. Sust. Enery Rev. 2022, 155, 111916. [Google Scholar] [CrossRef]
- Islam, A.; Teo, S.H.; Ng, C.H.; Taufiq-Yap, Y.H.; Choong, S.Y.T.; Awual, M.R. Progress in recent sustainable materials for greenhouse gas (NOx and SOx) emission mitigation. Prog. Mater Sci. 2023, 132, 101033. [Google Scholar] [CrossRef]
- Shang, H.; Jia, H.; Li, P.; Li, H.; Zhang, W.; Li, S.; Wang, Q.; Xiao, S.; Wang, D.; Li, G.; et al. Highly selective and efficient photocatalytic NO removal: Charge carrier kinetics and interface molecular process. Nano Res. 2024, 17, 1003–1026. [Google Scholar] [CrossRef]
- Nguyen, V.-H.; Nguyen, B.-S.; Huang, C.-W.; Le, T.-T.; Nguyen, C.C.; Le, T.T.N.; Heo, D.; Ly, Q.V.; Trinh, Q.T.; Shokouhimehr, M.; et al. Photocatalytic NOx abatement: Recent advances and emerging trends in the development of photocatalysts. J. Clean. Prod. 2020, 270, 121912. [Google Scholar] [CrossRef]
- Xue, T.; Li, J.; Chen, L.; Li, K.; Hua, Y.; Yang, Y.; Dong, F. Photocatalytic NOx removal and recovery: Progress, challenges and future perspectives. Chem. Sci. 2024, 15, 9026–9046. [Google Scholar] [CrossRef] [PubMed]
- Li, N.; Wang, C.; Zhang, K.; Lv, H.; Yuan, M.; Bahnemann, D.W. Progress and prospects of photocatalytic conversion of low-concentration NOx. Chin. J. Catal. 2022, 43, 2363–2387. [Google Scholar] [CrossRef]
- Pichat, P.; Herrmann, J.-M.; Courbon, H.; Disdier, J.; Mozzanega, M.-N. Photocatalytic oxidation of various compounds over TiO2 and other semiconductor oxides; Mechanistic considerations. Can. J. Chem. Eng. 1982, 60, 27–32. [Google Scholar] [CrossRef]
- Lu, X.; Wang, L.; Li, Z.; Wang, Z.; Gan, Y.; Hailili, R. 2D Bismuth-Based Nanomaterials for Photocatalytic Nitrogen Oxide Removal: Progress and Prospects. ACS Sustain. Chem. Eng. 2024, 12, 11444–11466. [Google Scholar] [CrossRef]
- Ma, C.; Wei, J.; Jiang, K.; Chen, J.; Yang, Z.; Yang, X.; Yu, G.; Zhang, C.; Li, X. Typical layered structure bismuth-based photocatalysts for photocatalytic nitrogen oxides oxidation. Sci. Total Environ. 2023, 855, 158644. [Google Scholar] [CrossRef]
- Ma, D.; Zhang, Z.; Zou, Y.; Chen, J.; Shi, J.-W. The progress of g-C3N4 in photocatalytic H2 evolution: From fabrication to modification. Coord. Chem. Rev. 2024, 500, 215489. [Google Scholar] [CrossRef]
- Zhou, M.; Ou, H.; Li, S.; Qin, X.; Fang, Y.; Lee, S.-C.; Wang, X.; Ho, W. Photocatalytic Air Purification Using Functional Polymeric Carbon Nitrides. Adv. Sci. 2021, 8, 2102376. [Google Scholar] [CrossRef]
- Wang, Z.; Shi, X.; Chen, M.; Cao, J.; Ho, W.; Lee, S.; Wang, C.; Huang, Y. Polymeric carbon nitride-based photocatalysts for the removal of nitrogen oxides: A review. Environ. Chem. Lett. 2023, 21, 2913–2952. [Google Scholar] [CrossRef]
- Wang, H.; Labidi, A.; Ren, M.; Shaik, F.; Wang, C. Recent progress of microstructure-regulated g-C3N4 in photocatalytic NO conversion: The pivotal roles of adsorption/activation sites. Acta Phys. Chim. Sin. 2025, 41, 100039. [Google Scholar] [CrossRef]
- Lasek, J.; Yu, Y.-H.; Wu, J.C.S. Removal of NOx by photocatalytic processes. J. Photochem. Photobiol. C 2013, 14, 29–52. [Google Scholar] [CrossRef]
- Hailili, R.; Gan, Y. Tailoring Multiscale Interfaces in Heterojunction Photocatalysis for NOx Removal. ACS Appl. Mater. Interfaces 2025, 17, 39809–39844. [Google Scholar] [CrossRef] [PubMed]
- Yuan, R.; Wang, M.; Liao, L.; Hu, W.; Liu, Z.; Liu, Z.; Guo, L.; Li, K.; Cui, Y.; Lin, F.; et al. 100% N2O inhibition in photocatalytic NOx reduction by carbon particles over Bi2WO6/TiO2 Z-scheme heterojunctions. Chem. Eng. J. 2023, 453, 139892. [Google Scholar] [CrossRef]
- Cui, W.; Wang, J.; Li, Y.; Liu, P.; Dong, F. Photocatalytic NO removal: Complete oxidation and reduction reaction for by-product inhibition and end-product recovery. Environ. Sci. Nano 2025, 12, 67–97. [Google Scholar] [CrossRef]
- Xiao, L.; Chen, P.; Yang, W.; Zhao, X.; Dong, F. Photocatalytic reaction mechanisms at the gas-solid interface for environmental and energy applications. Catal. Sci. Technol. 2021, 11, 7807–7839. [Google Scholar] [CrossRef]
- Bari, G.A.K.M.R.; Islam, M.; Jeong, J.-H. Materials Design and Development of Photocatalytic NOx Removal Technology. Metals 2024, 14, 423. [Google Scholar] [CrossRef]
- Chen, R.; Wang, J.; Zhang, C.; Sun, Y.; Li, J.; Dong, F. Purification and Value-Added Conversion of NOx under Ambient Conditions with Photo-/Electrocatalysis Technology. Environ. Sci. Technol. 2025, 59, 1013–1033. [Google Scholar] [CrossRef] [PubMed]
- Shi, Y.; Yang, Z.; Shi, L.; Li, H.; Liu, X.; Zhang, X.; Cheng, J.; Liang, C.; Cao, S.; Guo, F.; et al. Surface Boronizing Can Weaken the Excitonic Effects of BiOBr Nanosheets for Efficient O2 Activation and Selective NO Oxidation under Visible Light Irradiation. Environ. Sci. Technol. 2022, 56, 14478–14486. [Google Scholar] [CrossRef] [PubMed]
- Liang, H.; Zhao, J.; Wang, A.; Kannan, P.; Jing, S.; Chen, F.; Tsiakaras, P. Synthesis of novel nanoflowers-like P, K co-doped graphitic carbon nitride for efficient H2O2 photoproduction. J. Colloid Interface Sci. 2025, 677, 729–739. [Google Scholar] [CrossRef]
- Liang, H.; Wang, A.; Cheng, R.; Chen, F.; Kannan, P.; Molochas, C.; Tsiakaras, P. K co-doped graphitic phase carbon nitride for efficient photocatalytic H2O2 production. Chem. Eng. J. 2024, 489, 151145. [Google Scholar] [CrossRef]
- Ai, W.; Wang, J.; Wen, J.; Wang, S.; Tan, W.; Zhang, Z.; Liang, K.; Zhang, R.; Li, W. Research landscape and hotspots of selective catalytic reduction (SCR) for NOx removal: Insights from a comprehensive bibliometric analysis. Environ. Sci. Pollut. Res. 2023, 30, 65482–65499. [Google Scholar] [CrossRef]
- Yuan, S.; Dai, L.; Xie, M.; Liu, J.; Peng, H. Modification optimization and application of graphitic carbon nitride in photocatalysis: Current progress and future prospects. Chem. Eng. Sci. 2024, 296, 120245. [Google Scholar] [CrossRef]
- Wu, H.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Hollow porous carbon nitride immobilized on carbonized nanofibers for highly efficient visible light photocatalytic removal of NO. Nanoscale 2016, 8, 12066–12072. [Google Scholar] [CrossRef]
- Sano, T.; Tsutsui, S.; Koike, K.; Hirakawa, T.; Teramoto, Y.; Negishi, N.; Takeuchi, K. Activation of graphitic carbon nitride (g-C3N4) by alkaline hydrothermal treatment for photocatalytic NO oxidation in gas phase. J. Mater. Chem. A 2013, 1, 6489–6496. [Google Scholar] [CrossRef]
- Ma, H.; Jia, Y.; Zhu, G.; Zhang, F.; Rhee, S.; Lee, B.; Liu, C. Study of cyano and hydroxyl groups modification on the properties of porous carbon nitride synthesized by using a salt assistant method. Appl. Surf. Sci. 2020, 507, 144885. [Google Scholar] [CrossRef]
- Wang, H.; Xu, X.; Labidi, A.; Ren, H.; Allam, A.A.; Rady, A.; Huang, Y.; Wei, S.; Padervand, M.; Ghasemi, S.; et al. Cyano/Hydroxyl Groups Co-Functionalized g-C3N4 for Photocatalytic NO Removal: A Synergistic Strategy towards Inhibition of Toxic Intermediate NO2. Catalysts 2023, 13, 1433. [Google Scholar] [CrossRef]
- Yi, J.; Liao, J.; Xia, K.; Song, Y.; Lian, J.; She, X.; Liu, Y.; Yuan, S.; Dong, F.; Xu, H.; et al. Integrating the merits of two-dimensional structure and heteroatom modification into semiconductor photocatalyst to boost NO removal. Chem. Eng. J. 2019, 370, 944–951. [Google Scholar] [CrossRef]
- Fang, Z.; Zhou, M.; Lin, Z.; Yang, C.; Hou, Y.; Yu, J.C.; Zhang, J.; Wang, X. Amide bonded polymeric carbon nitride for photocatalytic O2 activation and NO oxidation. Appl. Catal. B 2024, 353, 124022. [Google Scholar] [CrossRef]
- Zhang, R.; Ma, M.; Zhang, Q.; Dong, F.; Zhou, Y. Multifunctional g-C3N4/graphene oxide wrapped sponge monoliths as highly efficient adsorbent and photocatalyst. Appl. Catal. B 2018, 235, 17–25. [Google Scholar] [CrossRef]
- Cui, Y.; Huang, X.; Wang, T.; Jia, L.; Nie, Q.; Tan, Z.; Yu, H. Graphene quantum dots/carbon nitride heterojunction with enhanced visible-light driven photocatalysis of nitric oxide: An experimental and DFT study. Carbon 2022, 191, 502–514. [Google Scholar] [CrossRef]
- Gu, Z.; Zhang, B.; Asakura, Y.; Tsukuda, S.; Kato, H.; Kakihana, M.; Yin, S. Alkali-assisted hydrothermal preparation of g-C3N4/rGO nanocomposites with highly enhanced photocatalytic NOx removal activity. Appl. Surf. Sci. 2020, 521, 146213. [Google Scholar] [CrossRef]
- Abdellatif, H.R.S.; Zhang, G.; Wang, X.; Xie, D.; Irvine, J.T.S.; Ni, J.; Ni, C. Boosting photocatalytic oxidation on graphitic carbon nitride for efficient photocatalysis by heterojunction with graphitic carbon units. Chem. Eng. J. 2019, 370, 875–884. [Google Scholar] [CrossRef]
- Hou, S.; Gao, X.; Lv, X.; Zhao, Y.; Yin, X.; Liu, Y.; Fang, J.; Yu, X.; Ma, X.; Ma, T.; et al. Decade Milestone Advancement of Defect-Engineered g-C3N4 for Solar Catalytic Applications. Nano-Micro Lett. 2024, 16, 70. [Google Scholar] [CrossRef] [PubMed]
- Ran, M.; Li, J.; Cui, W.; Li, Y.; Li, P.; Dong, F. Efficient and stable photocatalytic NO removal on C self-doped g-C3N4: Electronic structure and reaction mechanism. Catal. Sci. Technol. 2018, 8, 3387–3394. [Google Scholar] [CrossRef]
- Wang, Z.; Chen, M.; Huang, Y.; Shi, X.; Zhang, Y.; Huang, T.; Cao, J.; Ho, W.; Lee, S.C. Self-assembly synthesis of boron-doped graphitic carbon nitride hollow tubes for enhanced photocatalytic NOx removal under visible light. Appl. Catal. B 2018, 239, 352–361. [Google Scholar] [CrossRef]
- Qi, Z.; Chen, J.; Zhou, W.; Li, Y.; Li, X.; Zhang, S.; Fan, J.; Lv, K. Synergistic effects of holey nanosheet and sulfur-doping on the photocatalytic activity of carbon nitride towards NO removal. Chemosphere 2023, 316, 137813. [Google Scholar] [CrossRef] [PubMed]
- Luo, J.; Dong, G.; Zhu, Y.; Yang, Z.; Wang, C. Switching of semiconducting behavior from n-type to p-type induced high photocatalytic NO removal activity in g-C3N4. Appl. Catal. B 2017, 214, 46–56. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.; Li, Q.; Lei, M.; Fan, J.; Carabineiro, S.A.C.; Liu, Y.; Lv, K. Three in one: Atomically dispersed Na boosting the photoreactivity of carbon nitride towards NO oxidation. Chem. Commun. 2020, 56, 14195–14198. [Google Scholar] [CrossRef] [PubMed]
- Xiong, T.; Cen, W.; Zhang, Y.; Dong, F. Bridging the g-C3N4 Interlayers for Enhanced Photocatalysis. ACS Catal. 2016, 6, 2462–2472. [Google Scholar] [CrossRef]
- Cui, W.; Li, J.; Cen, W.; Sun, Y.; Lee, S.C.; Dong, F. Steering the interlayer energy barrier and charge flow via bioriented transportation channels in g-C3N4: Enhanced photocatalysis and reaction mechanism. J. Catal. 2017, 352, 351–360. [Google Scholar] [CrossRef]
- Li, J.; Cui, W.; Sun, Y.; Chu, Y.; Cen, W.; Dong, F. Directional electron delivery via a vertical channel between g-C3N4 layers promotes photocatalytic efficiency. J. Mater. Chem. A 2017, 5, 9358–9364. [Google Scholar] [CrossRef]
- Zhou, M.; Dong, G.; Ma, J.; Dong, F.; Wang, C.; Sun, J. Photocatalytic removal of NO by intercalated carbon nitride: The effect of group IIA element ions. Appl. Catal. B Environ. 2020, 273, 119007. [Google Scholar] [CrossRef]
- Zhou, M.; Dong, G.; Yu, F.; Huang, Y. The deep oxidation of NO was realized by Sr multi-site doped g-C3N4 via photocatalytic method. Appl. Catal. B 2019, 256, 117825. [Google Scholar] [CrossRef]
- Zhang, R.; Cao, Y.; Doronkin, D.E.; Ma, M.; Dong, F.; Zhou, Y. Single-atom dispersed Zn-N3 active sites bridging the interlayer of g-C3N4 to tune NO oxidation pathway for the inhibition of toxic by-product generation. Chem. Eng. J. 2023, 454, 140084. [Google Scholar] [CrossRef]
- Xiong, T.; Wang, H.; Zhou, Y.; Sun, Y.; Cen, W.; Huang, H.; Zhang, Y.; Dong, F. KCl-mediated dual electronic channels in layered g-C3N4 for enhanced visible light photocatalytic NO removal. Nanoscale 2018, 10, 8066–8074. [Google Scholar] [CrossRef]
- Cui, W.; Li, J.; Sun, Y.; Wang, H.; Jiang, G.; Lee, S.C.; Dong, F. Enhancing ROS generation and suppressing toxic intermediate production in photocatalytic NO oxidation on O/Ba co-functionalized amorphous carbon nitride. Appl. Catal. B 2018, 237, 938–946. [Google Scholar] [CrossRef]
- Chen, P.; Wang, H.; Liu, H.; Ni, Z.; Li, J.; Zhou, Y.; Dong, F. Directional electron delivery and enhanced reactants activation enable efficient photocatalytic air purification on amorphous carbon nitride co-functionalized with O/La. Appl. Catal. B 2019, 242, 19–30. [Google Scholar] [CrossRef]
- Zhou, M.; Zeng, L.; Li, R.; Yang, C.; Qin, X.; Ho, W.; Wang, X. Poly(heptazine imide) with Enlarged Interlayers Spacing for Efficient Photocatalytic NO Decomposition. Appl. Catal. B 2022, 317, 121719. [Google Scholar] [CrossRef]
- Junaid, M.; Iqbal, M.; Ragab, A.H.; Al-Mhyawi, S.R.; Gumaah, N.F.; Jabbar, A.; Khan, I. Advanced theoretical insights into energetically favorable and structurally stable boron-doped graphitic carbon nitride for effective catalytic removal of nitrous oxide and carbon monoxide from industrial flue gases. Environ. Sci. Pollut. Res. 2025, 32, 14928–14943. [Google Scholar] [CrossRef]
- Basharnavaz, H.; Habibi-Yangjeh, A.; Kamali, S.H. and Os—Embedded graphitic carbon nitride as a promising candidate for NO gas sensor: A first-principles investigation. Mater. Chem. Phys. 2019, 231, 264–271. [Google Scholar] [CrossRef]
- Pundi, A.; Chang, C.-J. Synthesis, Characterization, and Roles of Vacancy Defects in Polymer and Graphitized Carbon Nitride Photocatalysts: A Comprehensive Review. Polymers 2025, 17, 334. [Google Scholar] [CrossRef]
- Li, Y.; Gu, M.; Shi, T.; Cui, W.; Zhang, X.; Dong, F.; Cheng, J.; Fan, J.; Lv, K. Carbon vacancy in C3N4 nanotube: Electronic structure, photocatalysis mechanism and highly enhanced activity. Appl. Catal. B 2020, 262, 118281. [Google Scholar] [CrossRef]
- Liao, J.; Cui, W.; Li, J.; Sheng, J.; Wang, H.; Dong, X.A.; Chen, P.; Jiang, G.; Wang, Z.; Dong, F. Nitrogen defect structure and NO+ intermediate promoted photocatalytic NO removal on H2 treated g-C3N4. Chem. Eng. J. 2020, 379, 122282. [Google Scholar] [CrossRef]
- Lu, P.; Yang, Y.; Bai, J.; Zhao, Z.; Fu, M.; Hu, X.; He, Y. Defected mesoporous carbon nitride with quantum confinement effect for NO purification. J. Alloys Compd. 2023, 934, 167825. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Chen, M.; Shi, X.; Zhang, Y.; Cao, J.; Ho, W.; Lee, S.C. Roles of N-Vacancies over Porous g-C3N4 Microtubes during Photocatalytic NOx Removal. ACS Appl. Mater. Interfaces 2019, 11, 10651–10662. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, J.; Dong, X.A.; Fu, H.; Zhang, X.; Lv, X.; Li, Y.; Jiang, G. Defective borate-decorated polymer carbon nitride: Enhanced photocatalytic NO removal, synergy effect and reaction pathway. Appl. Catal. B 2019, 249, 266–274. [Google Scholar] [CrossRef]
- Gu, W.; Lu, D.; Kondamareddy, K.K.; Li, J.; Cheng, P.; Ho, W.; Wang, Y.; Zhao, Z.; Wang, Z. Efficient photocatalytic decomposition of NO and mechanism insight enabled by NaBH4-reduced N(ligancy-3)-vacancy-rich-graphitic carbon nitride. Mater. Today Phys. 2024, 46, 101487. [Google Scholar] [CrossRef]
- Li, Y.; Gu, M.; Zhang, M.; Zhang, X.; Lv, K.; Liu, Y.; Ho, W.; Dong, F. C3N4 with engineered three coordinated (N3C) nitrogen vacancy boosts the production of 1O2 for Efficient and stable NO photo-oxidation. Chem. Eng. J. 2020, 389, 124421. [Google Scholar] [CrossRef]
- Zhang, C.; Xu, Y.; Bai, H.; Li, D.; Wei, L.; Feng, C.; Huang, Y.; Wang, Z.; Li, X.; Cui, X.; et al. Boosting visible-light photocatalytic NO removal by non-intrinsic oxygen vacancies in graphitic carbon nitride. Nano Energy 2024, 121, 109197. [Google Scholar] [CrossRef]
- Hu, J.; Ji, Y.; Mo, Z.; Li, N.; Xu, Q.; Li, Y.; Xu, H.; Chen, D.; Lu, J. Engineering black phosphorus to porous g-C3N4-metal-organic framework membrane: A platform for highly boosting photocatalytic performance. J. Mater. Chem. A 2019, 7, 4408–4414. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, A.; Cao, Y.; Wang, S.; Dong, F.; Zhou, Y. Mo-doped carbon nitride homojunction to promote oxygen activation for enhanced photocatalytic performance. Chem. Eng. J. 2020, 401, 126028. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Integration of 3D macroscopic graphene aerogel with 0D-2D AgVO3-g-C3N4 heterojunction for highly efficient photocatalytic oxidation of nitric oxide. Appl. Catal. B 2019, 243, 576–584. [Google Scholar] [CrossRef]
- Cheng, C.; Chen, D.; Li, N.; Li, H.; Xu, Q.; He, J.; Lu, J. Bi2WO6 quantum dots with oxygen vacancies combined with g-C3N4 for NO removal. J. Colloid Interface Sci. 2022, 609, 447–455. [Google Scholar] [CrossRef]
- Ou, M.; Zhong, Q.; Zhang, S.; Yu, L. Ultrasound assisted synthesis of heterogeneous g-C3N4/BiVO4 composites and their visible-light-induced photocatalytic oxidation of NO in gas phase. J. Alloys Compd. 2015, 626, 401–409. [Google Scholar] [CrossRef]
- Wang, C.; Fu, M.; Cao, J.; Wu, X.; Hu, X.; Dong, F. BaWO4/g-C3N4 heterostructure with excellent bifunctional photocatalytic performance. Chem. Eng. J. 2020, 385, 123833. [Google Scholar] [CrossRef]
- Xiong, M.; Tao, Y.; Zhao, Z.; Zhu, Q.; Jin, X.; Zhang, S.; Chen, M.; Li, G. Porous g-C3N4/TiO2 foam photocatalytic filter for treating NO indoor gas. Environ. Sci. Nano 2021, 8, 1571–1579. [Google Scholar] [CrossRef]
- Ma, J.; Wang, C.; He, H. Enhanced photocatalytic oxidation of NO over g-C3N4-TiO2 under UV and visible light. Appl. Catal. B 2016, 184, 28–34. [Google Scholar] [CrossRef]
- Liu, J.; Huang, X.; Hu, L.; Liu, P.; Jia, L.; Sasaki, K.; Tan, Z.; Yu, H. Nitric oxide removal by synergistic photooxidation and adsorption using Pd1/g-C3N4-UiO-66-NH2 P-A heterojunction. Chem. Eng. J. 2023, 476, 146768. [Google Scholar] [CrossRef]
- Zhou, Z.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Three-Dimensional g-C3N4/NH2-UiO-66 graphitic aerogel hybrids with recyclable property for enhanced photocatalytic elimination of nitric oxide. Chem. Eng. J. 2021, 418, 129117. [Google Scholar] [CrossRef]
- Zhang, R.; Zhang, A.; Yang, Y.; Cao, Y.; Dong, F.; Zhou, Y. Surface modification to control the secondary pollution of photocatalytic nitric oxide removal over monolithic protonated g-C3N4/graphene oxide aerogel. J. Hazard. Mater. 2020, 397, 122822. [Google Scholar] [CrossRef]
- Jiang, G.; Cao, J.; Chen, M.; Zhang, X.; Dong, F. Photocatalytic NO oxidation on N-doped TiO2/g-C3N4 heterojunction: Enhanced efficiency, mechanism and reaction pathway. Appl. Surf. Sci. 2018, 458, 77–85. [Google Scholar] [CrossRef]
- Liu, D.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. ZIF-67-Derived 3D Hollow Mesoporous Crystalline Co3O4 Wrapped by 2D g-C3N4 Nanosheets for Photocatalytic Removal of Nitric Oxide. Small 2019, 15, 1902291. [Google Scholar] [CrossRef]
- Tan, Y.; Wei, S.; Liu, X.; Pan, B.; Liu, S.; Wu, J.; Fu, M.; Jia, Y.; He, Y. Neodymium oxide (Nd2O3) coupled tubular g-C3N4, an efficient dual-function catalyst for photocatalytic hydrogen production and NO removal. Sci. Total Environ. 2021, 773, 145583. [Google Scholar] [CrossRef]
- Wang, X.; Ren, Y.; Li, Y.; Zhang, G. Fabrication of 1D/2D BiPO4/g-C3N4 heterostructured photocatalyst with enhanced photocatalytic efficiency for NO removal. Chemosphere 2022, 287, 132098. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Fan, J.; Liu, W.; Xue, Y.; Yin, S. In-situ hydrothermal synthesis of Ag3PO4/g-C3N4 composite and their photocatalytic decomposition of NOx. J. Alloys Compd. 2017, 695, 2812–2819. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Ho, W.; Cao, J.; Shen, Z.; Lee, S.C. Fabrication of Bi2O2CO3/g-C3N4 heterojunctions for efficiently photocatalytic NO in air removal: In-situ self-sacrificial synthesis, characterizations and mechanistic study. Appl. Catal. B 2016, 199, 123–133. [Google Scholar] [CrossRef]
- Wang, Z.; Huang, Y.; Chen, L.; Chen, M.; Cao, J.; Ho, W.; Lee, S.C. In situ g-C3N4 self-sacrificial synthesis of a g-C3N4/LaCO3OH heterostructure with strong interfacial charge transfer and separation for photocatalytic NO removal. J. Mater. Chem. A 2018, 6, 972–981. [Google Scholar] [CrossRef]
- Xie, B.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Fabrication of an FAPbBr3/g-C3N4 heterojunction to enhance NO removal efficiency under visible-light irradiation. Chem. Eng. J. 2022, 430, 132968. [Google Scholar] [CrossRef]
- Li, G.; Guo, J.; Hu, Y.; Wang, Y.; Wang, J.; Zhang, S.; Zhong, Q. Facile synthesis of the Z-scheme graphite-like carbon nitride/silver/silver phosphate nanocomposite for photocatalytic oxidative removal of nitric oxides under visible light. J. Colloid Interface Sci. 2021, 588, 110–121. [Google Scholar] [CrossRef]
- Zhang, G.; Zhu, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Xu, H.; Lu, J. Hierarchical Z-scheme g-C3N4/Au/ZnIn2S4 photocatalyst for highly enhanced visible-light photocatalytic nitric oxide removal and carbon dioxide conversion. Environ. Sci. Nano 2020, 7, 676–687. [Google Scholar] [CrossRef]
- Ou, M.; Wan, S.; Zhong, Q.; Zhang, S.; Song, Y.; Guo, L.; Cai, W.; Xu, Y. Hierarchical Z-scheme photocatalyst of g-C3N4@Ag/BiVO4 (040) with enhanced visible-light-induced photocatalytic oxidation performance. Appl. Catal. B 2018, 221, 97–107. [Google Scholar] [CrossRef]
- Wang, M.; Xin, D.; Tan, G.; Qiu, Y.; Zhang, W.; Shi, M.; Shi, L. Defects and polarization charge cooperatively optimized Z-scheme NVs-g-C3N4/Bi/BiO1−xI heterojunction for full-spectrum catalytic organic pollutants mineralization and NO deep oxidation. J. Alloys Compd. 2025, 1027, 180651. [Google Scholar] [CrossRef]
- Wang, T.; Yang, W.; Chang, L.; Wang, H.; Wu, H.; Cao, J.; Fan, H.; Wang, J.; Liu, H.; Hou, Y.; et al. One-step calcination synthesis of accordion-like MXene-derived TiO2@C coupled with g-C3N4: Z-scheme heterojunction for enhanced photocatalytic NO removal. Sep. Purif. Technol. 2022, 285, 120329. [Google Scholar] [CrossRef]
- Hu, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. Fabrication of graphitic-C3N4 quantum dots/graphene-InVO4 aerogel hybrids with enhanced photocatalytic NO removal under visible-light irradiation. Appl. Catal. B 2018, 236, 45–52. [Google Scholar] [CrossRef]
- Noda, C.; Asakura, Y.; Shiraki, K.; Yamakata, A.; Yin, S. Synthesis of three-component C3N4/rGO/C-TiO2 photocatalyst with enhanced visible-light responsive photocatalytic deNOx activity. Chem. Eng. J. 2020, 390, 124616. [Google Scholar] [CrossRef]
- Hu, J.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. 3D Aerogel of Graphitic Carbon Nitride Modified with Perylene Imide and Graphene Oxide for Highly Efficient Nitric Oxide Removal under Visible Light. Small 2018, 14, 1800416. [Google Scholar] [CrossRef] [PubMed]
- Fu, M.; Hu, X.; Wang, C.; Lu, P.; Bai, J.; Wang, R.; Tan, X. Constructing a novel NaLa (WO4)2/g-C3N4 Z-scheme heterojunction with efficient carrier separation for excellent photocatalytic purification of NO. J. Alloys Compd. 2022, 906, 164371. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Q.; Yang, Y.; Bian, J.; Li, C. Photocatalytic oxidation of high concentration NO over SnS2/g-C3N4: A mechanistic study. J. Fuel Chem. Techn. 2025, 53, 323–334. [Google Scholar] [CrossRef]
- Li, H.; Wu, X.; Yin, S.; Katsumata, K.; Wang, Y. Effect of rutile TiO2 on the photocatalytic performance of g-C3N4/brookite-TiO2-xNy photocatalyst for NO decomposition. Appl. Surf. Sci. 2017, 392, 531–539. [Google Scholar] [CrossRef]
- Li, Y.; Lv, K.; Ho, W.; Dong, F.; Wu, X.; Xia, Y. Hybridization of rutile TiO2 (rTiO2) with g-C3N4 quantum dots (CN QDs): An efficient visible-light-driven Z-scheme hybridized photocatalyst. Appl. Catal. B 2017, 202, 611–619. [Google Scholar] [CrossRef]
- Zhang, J.; Tao, H.; Wu, S.; Yang, J.; Zhu, M. Enhanced durability of nitric oxide removal on TiO2 (P25) under visible light: Enabled by the direct Z-scheme mechanism and enhanced structure defects through coupling with C3N5. Appl. Catal. B 2021, 296, 120372. [Google Scholar] [CrossRef]
- Li, X.; Chen, D.; Li, N.; Xu, Q.; Li, H.; He, J.; Lu, J. One-Step Synthesis of Honeycomb-Like Carbon Nitride Isotype Heterojunction as Low-Cost, High-Performance Photocatalyst for Removal of NO. ACS Sustain. Chem. Eng. 2018, 6, 11063–11070. [Google Scholar] [CrossRef]
- Vinh, T.H.T.; Thi, C.M.; Van Viet, P. Enhancing photocatalysis of NO gas degradation over g-C3N4 modified α-Bi2O3 microrods composites under visible light. Mater. Lett. 2020, 281, 128637. [Google Scholar] [CrossRef]
- Van Viet, P.; Nguyen, H.-P.; Tran, H.-H.; Bui, D.-P.; Hai, L.V.; Pham, M.-T.; You, S.-J.; Thi, C.M. Constructing g-C3N4/SnO2 S-scheme heterojunctions for efficient photocatalytic NO removal and low NO2 generation. J. Sci. Adv. Mater. Dev. 2021, 6, 551–559. [Google Scholar] [CrossRef]
- Pham, M.-T.; Tran, D.P.H.; Pham, V.V.; Nguyen, P.H.; Nguyen, M.-K.; Kogularasu, S.; Huynh, L.T.N.; Lee, Y.-Y.; Chang-Chien, G.-P.; Chang, T.-C.; et al. Investigating the role of Pd-coated TiO2@g-C3N4 heterojunctions in enhancing photocatalytic NO removal. FlatChem 2025, 52, 100898. [Google Scholar] [CrossRef]
- Ren, Y.; Li, Y.; Wu, X.; Wang, J.; Zhang, G. S-scheme Sb2WO6/g-C3N4 photocatalysts with enhanced visible-light-induced photocatalytic NO oxidation performance. Chin. J. Catal. 2021, 42, 69–77. [Google Scholar] [CrossRef]
- Hossain, S.M.; Park, H.; Kang, H.-J.; Mun, J.S.; Tijing, L.; Rhee, I.; Kim, J.-H.; Jun, Y.-S.; Shon, H.K. Synthesis and NOx removal performance of anatase S-TiO2/g-CN heterojunction formed from dye wastewater sludge. Chemosphere 2021, 275, 130020. [Google Scholar] [CrossRef]
- Li, K.; Cui, W.; Li, J.; Sun, Y.; Chu, Y.; Jiang, G.; Zhou, Y.; Zhang, Y.; Dong, F. Tuning the reaction pathway of photocatalytic NO oxidation process to control the secondary pollution on monodisperse Au nanoparticles@g-C3N4. Chem. Eng. J. 2019, 378, 122184. [Google Scholar] [CrossRef]
- Geng, J.; Zhao, L.; Wang, M.; Dong, G.; Ho, W. The photocatalytic NO-removal activity of g-C3N4 significantly enhanced by the synergistic effect of Pd0 nanoparticles and N vacancies. Environ. Sci. Nano 2022, 9, 742–750. [Google Scholar] [CrossRef]
- Jiang, G.; Li, X.; Lan, M.; Shen, T.; Lv, X.; Dong, F.; Zhang, S. Monodisperse bismuth nanoparticles decorated graphitic carbon nitride: Enhanced visible-light-response photocatalytic NO removal and reaction pathway. Appl. Catal. B 2017, 205, 532–540. [Google Scholar] [CrossRef]
- Fan, Q.; Yan, Z.; Li, J.; Xiong, X.; Li, K.; Dai, G.; Jin, Y.; Wu, C. Interfacial-electric-field guiding design of a Type-I FeIn2S4@ZnIn2S4 heterojunction with ohmic-like charge transfer mechanism for highly efficient solar H2 evolution. Appl. Surf. Sci. 2024, 663, 160206. [Google Scholar] [CrossRef]
- Sharma, J.; Dhiman, P.; Kumar, A.; Sharma, G. Advances in photocatalytic NO oxidation by Z-scheme heterojunctions. Environ. Res. 2024, 240, 117431. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, J.; Yu, H.; Yu, J. Emerging S-Scheme Photocatalyst. Adv. Mater. 2022, 34, 2107668. [Google Scholar] [CrossRef]
- Kumar, A.; Rana, S.; Wang, T.; Dhiman, P.; Sharma, G.; Du, B.; Stadler, F.J. Advances in S-scheme heterojunction semiconductor photocatalysts for CO2 reduction, nitrogen fixation and NOx degradation. Mater. Sci. Semicond. Process. 2023, 168, 107869. [Google Scholar] [CrossRef]









| Materials | Light Source | NO | Removal Rate | Reaction Time (min) | Ref. |
|---|---|---|---|---|---|
| C self-doped g-C3N4 | 150 W tungsten halogen lamp (λ > 420 nm) | 500 ppb | 56.77% | 30 | [41] |
| B-doped tubular g-C3N4 | 300 W Xe arc lamp (λ > 420 nm) | 400 ppb | 30.4% | 30 | [42] |
| S-doped holey g-C3N4 nanosheet | 150 W visible LED lamp (λ > 400 nm) | 600 ppm | 53% | 30 | [43] |
| p-type g-C3N4 | Xenon lamp (λ > 420 nm) | 600 ppb | 80% | 30 | [44] |
| Na-doped g-C3N4 | visible LED lamp (λ > 420 nm) | 550 ppb | 55.8% | 30 | [45] |
| K-doped g-C3N4 | 150 W tungsten halogen lamp (λ > 420 nm) | 600 ppb | 37% | 30 | [46,47] |
| K-doped g-C3N4 | 150 W tungsten halogen lamp (λ > 420 nm) | 500 ppb | 41.93% | 30 | [46,47] |
| Cs/Rb-doped g-C3N4 | 150 W tungsten halogen lamp (λ > 420 nm) | 600 ppb | 48.51%/51.11% | 30 | [48] |
| Group IIA ion-doped g-C3N4 | Xenon lamp (λ > 420 nm) | 600 ppb | 62% (for Ba2+) | 10 | [49] |
| Sr-doped g-C3N4 | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 55% | 9 | [50] |
| Zn-doped g-C3N4 | 150 W metal halide lamp (λ > 420 nm) | 600 ppb | 49% | 30 | [51] |
| K+, Cl− ions co-doped g-C3N4 | 150 W tungsten halogen lamp (λ > 420 nm) | 600 ppb | 38.4% | 30 | [52] |
| O, Ba co-doped g-C3N4 | 150 W tungsten halogen lamp | 500 ppb | 56.4% | 30 | [53] |
| O, La co-doped g-C3N4 | 150 W tungsten halogen lamp | 500 ppb | 50.4% | 30 | [54] |
| Na+, Li+ ion co-doped g-C3N4 | 30 W visible LED lamp | 600 ppb | 82% | 35 | [55] |
| Materials | Light Source | NO | Removal Rate | Reaction Time (min) | Ref. |
|---|---|---|---|---|---|
| g-C3N4 nanotube with C vacancy | visible LED lamp (λ ≥ 448 nm) | 600 ppb | 47.7% | 30 | [59] |
| H2-treated g-C3N4 with N defect | 150 W tungsten halogen lamp (λ > 420 nm) | 600 ppb | 30.4% | 30 | [60] |
| mesoporous N-deficient g-C3N4 | Two 12 W visible LED lamp | 550 ppm | 60.61% | 30 | [61] |
| N2C-deficient g-C3N4 | 300 W Xe arc lamp | 400 ppb | 32.8% | 30 | [62] |
| defect-rich borate-modified g-C3N4 | 300 W halogen lamp (λ: 420–700 nm) | 500 ppb | 44.1% | 30 | [63] |
| N(ligancy-3)-vacancy-rich g-C3N4 | 30 W visible LED lamp | 600 ppb | 66.7% | 40 | [64] |
| N3C vacancy g-C3N4 | LED lamp (λ ≥ 420 nm) | 600 ppb | 40.3% | 60 | [65] |
| g-C3N4 oxygen vacancies | 300 W Xenon lamp (λ > 420 nm) | 500 ppb | 40.71% | 25 | [66] |
| Materials | Heterojunction Type | Light Source | NO | Removal Rate | Reaction Time (min) | Ref. |
|---|---|---|---|---|---|---|
| BP/porous g-C3N4-HKUST-1 | Type-I | Two 300 W Xenon lamp | 600 ppb | 74% | 30 | [67] |
| Mo-g-C3N4/g-C3N4 | Type-I | 150 W metal halide lamp (λ > 420 nm) | 500 ppb | 36% | 30 | [68] |
| 0D-2D AgVO3/g-C3N4 | Type-II | 300 W xenon lamp | 600 ppb | 65% | 30 | [69] |
| oxygen vacancy Bi2WO6/g-C3N4 | Type-II | 250 W Xe lamp | 500 ppb | 61.2% | 30 | [70] |
| g-C3N4/BiVO4 | Type-II | 350 W Xe lamp | 400 ppb | 50% | 360 | [71] |
| BaWO4/g-C3N4 | Type-II | Two 12 W LED lamp | 520 ppb | 42.17% | 30 | [72] |
| g-C3N4/TiO2 | Type-II | 150 W tungsten lamps (λ < 400 nm) | 550 ppb | 65% | 60 | [73] |
| g-C3N4/P25 | Type-II | 500 W Xenon arc lamp (λ: 420–700 nm) | 400 ppb | 44% | 30 | [74] |
| Pd1/g-C3N4-UiO-66-NH2 | Type-II | 300 W Xenon lamp (λ > 380 nm) | 40–70 ppb | 93.91% | - | [75] |
| g-C3N4/NH2-UiO-66/rGO | Type-II | 300 W Xenon lamp (λ > 400 nm) | 600 ppb | 56.8% | 60 | [76] |
| Protonated g-C3N4/GO aerogel | Type-II | 150 W metal halide lamp (λ > 420 nm) | 500 ppb | 46.1% | 30 | [77] |
| N-doped TiO2/g-C3N4 | Type-II | Incandescent lamps | 600 ppb | 46.1% | 30 | [78] |
| g-C3N4/Co3O4 | Type-II | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 57% | 60 | [79] |
| Nd2O3/tubular g-C3N4 | Type-II | Two 12 W LED lamp | 520 ppb | 54.48% | 30 | [80] |
| 1D/2D BiPO4/g-C3N4 | Type-II | 300 W Xe lamp (λ > 420 nm) | 400 ppb | 46% | 30 | [81] |
| Ag3PO4/g-C3N4 | Type-II | mercury lamp (λ > 290 nm) | - | 51.09% | 30 | [82] |
| Bi2O2CO3/g-C3N4 | Type-II | 300 W Xe arc lamp (λ > 420 nm) | 400 ppb | 34.8% | 30 | [83] |
| g-C3N4/LaCO3OH | Type-II | 300 W Xe arc lamp (λ > 420 nm) | 400 ppb | 30.3% | 30 | [84] |
| FAPbBr3/g-C3N4 | Type-II | Xenon lamp | - | 58% | 60 | [85] |
| g-C3N4/Ag/Ag3PO4 | Z-Scheme | 300 W Xenon lamp (λ > 420 nm) | 400 ppm | 74% | 90 | [86] |
| g-C3N4/Au/ZnIn2S4 | Z-Scheme | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 59.7% | 60 | [87] |
| g-C3N4@Ag/BiVO4 | Z-Scheme | 350 W Xenon lamp (λ > 420 nm) | 400 ppb | 83% | 150 | [88] |
| NVs-g-C3N4/Bi/BiO1-xI | Z-Scheme | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 71.3% | 18 | [89] |
| MXene-derived TiO2@C/g-C3N4 | Z-Scheme | 500 W Xenon lamp (λ > 420 nm) | 100 ppm | 17.8% 94.0% (with H2O2) | 50 | [90] |
| g-C3N4(QDs)/GO-InVO4 aerogel | Z-Scheme | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 65% | 30 | [91] |
| g-C3N4/rGO/C-TiO2 | Z-Scheme | 2 mW LED lamp (627 nm) | 1 ppm | 28% | - | [92] |
| PI/GO/g-C3N4 | Z-Scheme | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 46% | 30 | [93] |
| NaLa(WO4)2/g-C3N4 | Z-Scheme | Two 12 W LED lamp | 550 ppb | 47.18% | 30 | [94] |
| SnS2/g-C3N4 | Z-Scheme | - | - | 66.8% | 20 | [95] |
| TiO2−xNy/g-C3N4 | Z-Scheme | Simulated solar light (λ > 410 nm) | 60% | 20 | [96] | |
| rTiO2/g-C3N4 QDs | Z-Scheme | 500 W Xenon lamp (λ > 420 nm) | 600 ppb | 37.4% | 30 | [97] |
| TiO2/C3N5 | Z-Scheme | 300 W Xenon lamp (λ > 420 nm) | 450 ppb | 67.1% | 20 | [98] |
| honeycomb-like g-C3N4 | Z-Scheme | Xenon lamp (λ > 420 nm) | 600 ppb | 68% | 30 | [99] |
| Bi2O3/g-C3N4 | S-Scheme | 300 W solar light lamp | 500 ppb | 39.1% | 30 | [100] |
| SnO2/g-C3N4 | S-Scheme | 300 W Xenon lamp (λ > 420 nm) | 500 ppb | 35% | 30 | [101] |
| Pd/TiO2@g-C3N4 | S-Scheme | 300 W Xenon lamp (λ > 420 nm) | 500 ppb | 77.1% | 30 | [102] |
| Sb2WO6/g-C3N4 | S-Scheme | Xenon lamp (λ > 420 nm) | 400 ppb | 68% | 30 | [103] |
| S-TiO2/g-C3N4 | S-Scheme | white fluorescent lamps (with UV cut-off filter) | 1 ppm | 25.25% | 60 | [104] |
| Au/g-C3N4 | Schottky junction | 150 W tungsten halogen lamp (λ > 420 nm) | 500 ppb | 41.0% | 30 | [105] |
| Pd0/g-C3N4 | Schottky junction | 300 W Xenon lamp (λ > 420 nm) | 600 ppb | 75% | 9 | [106] |
| Bi/g-C3N4 | Schottky junction | 150 W tungsten halogen lamp (λ > 420 nm) | 500 ppb | 60.8% | 30 | [107] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, S.; Chen, F.; Niu, X.; Liang, H. Carbon Nitride-Based Catalysts for Photocatalytic NO Removal. Catalysts 2025, 15, 1043. https://doi.org/10.3390/catal15111043
Wang S, Chen F, Niu X, Liang H. Carbon Nitride-Based Catalysts for Photocatalytic NO Removal. Catalysts. 2025; 15(11):1043. https://doi.org/10.3390/catal15111043
Chicago/Turabian StyleWang, Sheng, Fu Chen, Xiyao Niu, and Huagen Liang. 2025. "Carbon Nitride-Based Catalysts for Photocatalytic NO Removal" Catalysts 15, no. 11: 1043. https://doi.org/10.3390/catal15111043
APA StyleWang, S., Chen, F., Niu, X., & Liang, H. (2025). Carbon Nitride-Based Catalysts for Photocatalytic NO Removal. Catalysts, 15(11), 1043. https://doi.org/10.3390/catal15111043

