Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (489)

Search Parameters:
Keywords = electron energy loss spectroscopy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
19 pages, 10777 KiB  
Article
Improving Durability and Mechanical Properties of Silty Sand Stabilized with Geopolymer and Nanosilica Composites
by Mojtaba Jafari Kermanipour, Mohammad Hossein Bagheripour and Ehsan Yaghoubi
J. Compos. Sci. 2025, 9(8), 397; https://doi.org/10.3390/jcs9080397 - 30 Jul 2025
Viewed by 218
Abstract
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano [...] Read more.
This study investigates the effectiveness of geopolymer-based binders for the stabilization of silty sand, aiming to improve its strength and durability under cyclic environmental conditions. A composite binder consisting of Ground Granulated Blast-furnace Slag (GGBS) and Recycled Glass Powder (RGP), modified with nano poly aluminum silicate (PAS), was used to treat the soil. The long-term performance of the stabilized soil was evaluated under cyclic wetting–drying (W–D) conditions. The influence of PAS content on the mechanical strength, environmental safety, and durability of the stabilized soil was assessed through a series of laboratory tests. Key parameters, including unconfined compressive strength (UCS), mass retention, pH variation, ion leaching, and microstructural development, were analyzed using field emission scanning electron microscopy (FE-SEM) and energy-dispersive X-ray spectroscopy (EDS). Results revealed that GGBS-stabilized specimens maintained over 90% of their original strength and mass after eight W–D cycles, indicating excellent durability. In contrast, RGP-stabilized samples exhibited early strength degradation, with up to an 80% reduction in UCS and 10% mass loss. Environmental evaluations confirmed that leachate concentrations remained within acceptable toxicity limits. Microstructural analysis further highlighted the critical role of PAS in enhancing the chemical stability and long-term performance of the stabilized soil matrix. Full article
Show Figures

Figure 1

18 pages, 5270 KiB  
Article
Co-Pyrolysis of Bamboo and Rice Straw Biomass with Polyethylene Plastic: Characterization, Kinetic Evaluation, and Synergistic Interaction Analysis
by Munir Hussain, Vikul Vasudev, Shri Ram, Sohail Yasin, Nouraiz Mushtaq, Menahil Saleem, Hafiz Tanveer Ashraf, Yanjun Duan, Muhammad Ali and Yu Bin
Polymers 2025, 17(15), 2063; https://doi.org/10.3390/polym17152063 - 29 Jul 2025
Viewed by 294
Abstract
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal [...] Read more.
This study investigates the co-pyrolysis behavior of two lignocellulosic biomass blends, bamboo (B), and rice straw (R) with a plastic polyethylene (P). A total of 15 samples, including binary and ternary blends, were analyzed. Firstly, X-ray diffraction (XRD) analysis was performed to reveal high crystallinity in the B25R75 blend (I/Ic = 13.39). Whereas, the polyethylene samples showed persistent ZrP2O7 and lazurite phases (I/Ic up to 3.12) attributed to additives introduced during the manufacturing of the commercial plastic feedstock. In addition, scanning electron microscopy with energy-dispersive X-ray (SEM-EDX) spectroscopy was performed to characterize the surface morphology and elemental composition of the feedstock. Moreover, thermogravimetric analysis (TGA) was employed at temperatures up to 700 °C at three different heating rates (5, 10, and 20 °C/min) under pyrolysis conditions. Kinetic analysis used TGA data to calculate activation energy via Friedman’s isoconversional method, and the blended samples exhibited a decrease in activation energy compared to the individual components. Furthermore, the study evaluated transient interaction effects among the components by assessing the deviation between experimental and theoretical weight loss. This revealed the presence of significant synergistic behavior in certain binary and ternary blends. The results demonstrate that co-pyrolysis of bamboo and rice straw with polyethylene enhances thermal decomposition efficiency and provides a more favorable energy recovery route. Full article
(This article belongs to the Topic Biomass for Energy, Chemicals and Materials)
Show Figures

Figure 1

16 pages, 3885 KiB  
Article
Synthesis and Properties of Bi1.8Mn0.5Ni0.5Ta2O9-Δ Pyrochlore
by Sergey V. Nekipelov, Olga V. Petrova, Alexandra V. Koroleva, Mariya G. Krzhizhanovskaya, Kristina N. Parshukova, Nikolay A. Sekushin, Boris A. Makeev and Nadezhda A. Zhuk
Chemistry 2025, 7(4), 119; https://doi.org/10.3390/chemistry7040119 - 25 Jul 2025
Viewed by 172
Abstract
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a [...] Read more.
Pyrochlore Bi1.8Mn0.5Ni0.5Ta2O9-Δ (sp.gr. Fd-3m, a = 10.5038(9) Å) was synthesized by the solid-phase reaction method and characterized by vibrational and X-ray spectroscopy. According to scanning electron microscopy, the ceramics are characterized by a porous microstructure formed by randomly oriented oblong grains. The average crystallite size determined by X-ray diffraction is 65 nm. The charge state of transition element cations in the pyrochlore was analyzed by soft X-ray spectroscopy using synchrotron radiation. For mixed pyrochlore, a characteristic shift of Bi4f and Ta4f and Ta5p spectra to the region of lower energies by 0.25 and 0.90 eV is observed compared to the binding energy in Bi2O3 and Ta2O5 oxides. XPS Mn2p spectrum of pyrochlore has an intermediate energy position compared to the binding energy in MnO and Mn2O3, which indicates a mixed charge state of manganese (II, III) cations. Judging by the nature of the Ni2p spectrum of the complex oxide, nickel ions are in the charge state of +(2+ζ). The relative permittivity of the sample in a wide temperature (up to 350 °C) and frequency range (25–106 Hz) does not depend on the frequency and exhibits a constant low value of 25. The minimum value of 4 × 10−3 dielectric loss tangent is exhibited by the sample at a frequency of 106 Hz. The activation energy of conductivity is 0.7 eV. The electrical behavior of the sample is modeled by an equivalent circuit containing a Warburg diffusion element. Full article
(This article belongs to the Section Inorganic and Solid State Chemistry)
Show Figures

Figure 1

24 pages, 5866 KiB  
Article
Multiscale Characterization of Thermo-Hydro-Chemical Interactions Between Proppants and Fluids in Low-Temperature EGS Conditions
by Bruce Mutume, Ali Ettehadi, B. Dulani Dhanapala, Terry Palisch and Mileva Radonjic
Energies 2025, 18(15), 3974; https://doi.org/10.3390/en18153974 - 25 Jul 2025
Viewed by 259
Abstract
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were [...] Read more.
Enhanced Geothermal Systems (EGS) require thermochemically stable proppant materials capable of sustaining fracture conductivity under harsh subsurface conditions. This study systematically investigates the response of commercial proppants to coupled thermo-hydro-chemical (THC) effects, focusing on chemical stability and microstructural evolution. Four proppant types were evaluated: an ultra-low-density ceramic (ULD), a resin-coated sand (RCS), and two quartz-based silica sands. Experiments were conducted under simulated EGS conditions at 130 °C with daily thermal cycling over a 25-day period, using diluted site-specific Utah FORGE geothermal fluids. Static batch reactions were followed by comprehensive multi-modal characterization, including scanning electron microscopy with energy-dispersive spectroscopy (SEM-EDS), X-ray diffraction (XRD), and micro-computed tomography (micro-CT). Proppants were tested in both granular and powdered forms to evaluate surface area effects and potential long-term reactivity. Results indicate that ULD proppants experienced notable resin degradation and secondary mineral precipitation within internal pore networks, evidenced by a 30.4% reduction in intragranular porosity (from CT analysis) and diminished amorphous peaks in the XRD spectra. RCS proppants exhibited a significant loss of surface carbon content from 72.98% to 53.05%, consistent with resin breakdown observed via SEM imaging. While the quartz-based sand proppants remained morphologically intact at the macro-scale, SEM-EDS revealed localized surface alteration and mineral precipitation. The brown sand proppant, in particular, showed the most extensive surface precipitation, with a 15.2% increase in newly detected mineral phases. These findings advance understanding of proppant–fluid interactions under low-temperature EGS conditions and underscore the importance of selecting proppants based on thermo-chemical compatibility. The results also highlight the need for continued development of chemically resilient proppant formulations tailored for long-term geothermal applications. Full article
Show Figures

Figure 1

18 pages, 4009 KiB  
Article
Impact of Thermo-Oxidative Aging on Flame Retardancy of Melamine Formaldehyde Particle Boards: Processes and Performance Degradation Analysis
by Shiyue Ling, Yanni Zhang, Dan Yang, Luoxin Huang and Yuchen Zhang
Fire 2025, 8(7), 274; https://doi.org/10.3390/fire8070274 - 11 Jul 2025
Viewed by 419
Abstract
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the [...] Read more.
Melamine formaldehyde particle boards (MFPBs), commonly utilized as a wooden decorative material in traditional architecture, demonstrate considerable performance deterioration with extended age, with reductions in essential flame retardancy and structural integrity presenting substantial risks to fire safety in structures. This research examines the impact of thermo-oxidative aging on the flame retardancy of MFPBs. The morphological evolution, surface composition, and flame-retardant characteristics of aged MFPBs were examined via scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TG), limiting oxygen index (LOI), and cone calorimeter (CCT). The results indicate that thermo-oxidative aging (60 °C, 1440 h) markedly reduces the activation energy (E, by 17.05%), pre-exponential factor (A, by 68.52%), LOI value (by 4%, from 27.5 to 26.4), and time to ignition (TTI, by 17.1%, from 41 s to 34 s) while augmenting the peak mass loss rate (MHRR, by 4.7%) and peak heat release rate (pHRR, by 20.1%). Subsequent investigation indicates that aging impairs the char layer structure on MFPB surfaces, hastens the migration and degradation of melamine formaldehyde resin (MFR), and alters the dynamic equilibrium between “MFR surface enrichment” and “thermal decomposition”. The identified degradation thresholds and failure mechanisms provide essential parameters for developing aging-resistant fireproof composites, meeting the pressing demands of building safety requirements and sustainable material design. Full article
(This article belongs to the Special Issue Fire Prevention and Flame Retardant Materials)
Show Figures

Figure 1

20 pages, 6807 KiB  
Article
Enhancing Electrochemical Kinetics and Stability of Biodegradable Mg-Y-Zn Alloys with LPSO Phases via Strategic Micro-Alloying with Ca, Sr, Mn, and Zr
by Lisha Wang, Huiping Wang, Chenchen Zhang, Wei Sun, Yue Wang, Lijuan Wang and Xiaoyan Kang
Crystals 2025, 15(7), 639; https://doi.org/10.3390/cryst15070639 - 11 Jul 2025
Viewed by 292
Abstract
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), [...] Read more.
This study systematically investigated the effects of biologically relevant microalloying elements—calcium (Ca), strontium (Sr), manganese (Mn), and zirconium (Zr)—on the electrochemical behavior of Mg-Y-Zn alloys containing long-period stacking ordered (LPSO) phases. The alloys were prepared by casting and characterized using X-ray diffraction (XRD), optical microscopy (OM), and scanning electron microscopy with energy-dispersive spectroscopy (SEM/EDS). Electrochemical properties were assessed through potentiodynamic polarization in Hank’s solution, and corrosion rates were determined by hydrogen evolution and weight loss methods. Microalloying significantly enhanced the corrosion resistance of the base Mg-Y-Zn alloy, with corrosion rates decreasing from 2.67 mm/year (unalloyed) to 1.65 mm/year (Ca), 1.36 mm/year (Sr), 1.18 mm/year (Zr), and 1.02 mm/year (Mn). Ca and Sr additions introduced Mg2Ca and Mg17Sr2, while Mn and Zr refined the existing LPSO structure without new phases. Sr refined the LPSO phase and formed a uniformly distributed Mg17Sr2 network, promoting uniform corrosion and suppressing deep localized attacks. Ca-induced Mg2Ca acted as a temporary sacrificial phase, with corrosion eventually propagating along LPSO interfaces. The Mn-containing alloy exhibited the lowest corrosion rate; this is attributed to the suppression of both anodic and cathodic reaction kinetics and the formation of a stable protective surface film. Zr improved general corrosion resistance but increased susceptibility to localized attacks due to dislocation-rich zones. These findings elucidate the corrosion mechanisms in LPSO-containing Mg alloys and offer an effective strategy to enhance the electrochemical stability of biodegradable Mg-based implants. Full article
(This article belongs to the Special Issue Advances in High-Performance Alloys)
Show Figures

Figure 1

24 pages, 7576 KiB  
Article
Study on the Damage Evolution Mechanism of FRP-Reinforced Concrete Subjected to Coupled Acid–Freeze Erosion
by Fei Li, Wei Li, Shenghao Jin, Dayang Wang, Peifeng Cheng and Meitong Piao
Coatings 2025, 15(7), 759; https://doi.org/10.3390/coatings15070759 - 26 Jun 2025
Viewed by 463
Abstract
Plain concrete specimens and FRP(Fiber Reinforced Polymer)-reinforced concrete specimens were fabricated to investigate concrete’s mechanical and surface degradation behaviors reinforced with carbon, basalt, glass, and aramid fiber-reinforced polymer under coupled sulfuric acid and freeze–thaw cycles. The compressive strength of fully wrapped FRP cylindrical [...] Read more.
Plain concrete specimens and FRP(Fiber Reinforced Polymer)-reinforced concrete specimens were fabricated to investigate concrete’s mechanical and surface degradation behaviors reinforced with carbon, basalt, glass, and aramid fiber-reinforced polymer under coupled sulfuric acid and freeze–thaw cycles. The compressive strength of fully wrapped FRP cylindrical specimens and the flexural load capacity of prismatic specimens with FRP reinforced to the pre-cracked surface, along with the dynamic elastic modulus and mass loss, were evaluated before and after acid–freeze cycles. The degradation mechanism of the specimens was elucidated through analysis of surface morphological changes captured in photographs, scanning electron microscopy (SEM) observations, and energy-dispersive spectroscopy (EDS) data. The experimental results revealed that after 50 cycles of coupled acid–freeze erosion, the plain cylindrical concrete specimens showed a mass gain of 0.01 kg. In contrast, after 100 cycles, a significant mass loss of 0.082 kg was recorded. The FRP-reinforced specimens initially demonstrated mass loss trends comparable to those of the plain concrete specimens. However, in the later stages, the FRP confinement effectively mitigated the surface spalling of the concrete, leading to a reversal in mass loss and subsequent mass gain. Notably, the GFRP(Glassfiber Reinforced Polymer)-reinforced specimens exhibited the most significant mass gain of 1.653%. During the initial 50 cycles of acid–freeze erosion, the prismatic and cylindrical specimens demonstrated comparable degradation patterns. However, in the subsequent stages, FRP reduced the exposed surface area-to-volume ratio of the specimens in contact with the acid solution, resulting in a marked improvement in their structural integrity. After 100 cycles of acid–freeze erosion, the compressive strength loss rate and flexural load capacity loss rate followed the ascending order: CFRP-reinforced < BFRP(Basalt Fiber Reinforced Polymer)-reinforced < AFRP(Aramid Fiber Reinforced Polymer)-reinforced < GFRP-reinforced < plain specimens. Conversely, the ductility ranking from highest to lowest was AFRP/GFRP > control group > BFRP/CFRP. A probabilistic analysis model was established to complement the experimental findings, encompassing the quantification of hazard levels and reliability indices. Full article
(This article belongs to the Special Issue Surface Treatments and Coatings for Asphalt and Concrete)
Show Figures

Figure 1

20 pages, 1498 KiB  
Article
Novel Green Synthesis Route of ZnO Nanoparticles for Dielectric Applications
by Zohra Benzarti, Joana Neiva, Pedro Faia, Eduardo Silva, Sandra Carvalho and Susana Devesa
Nanomaterials 2025, 15(13), 991; https://doi.org/10.3390/nano15130991 - 26 Jun 2025
Viewed by 421
Abstract
This study presents a novel, eco-friendly synthesis route for zinc oxide (ZnO) nanoparticles using cladode extracts of Hylocereus undatus acting simultaneously as reducing and improving agents, in alignment with green chemistry principles. The synthesis involved the reaction of zinc sulfate heptahydrate with the [...] Read more.
This study presents a novel, eco-friendly synthesis route for zinc oxide (ZnO) nanoparticles using cladode extracts of Hylocereus undatus acting simultaneously as reducing and improving agents, in alignment with green chemistry principles. The synthesis involved the reaction of zinc sulfate heptahydrate with the plant extract, with the medium pH adjusted using sodium hydroxide (NaOH), followed by calcination at 300 °C, 400 °C, and 500 °C, and then by a washing step to enhance purity. Comprehensive characterization was performed using thermogravimetric analysis (TGA), differential scanning calorimetry (DSC), X-ray diffraction (XRD), Raman spectroscopy, scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), and electrical impedance spectroscopy to investigate the structural, morphological, and dielectric properties of the nanoparticles. The sample calcined at 400 °C, followed by washing (HT400W), exhibits highly crystalline ZnO nanoparticles with a predominant wurtzite structure (93.15 wt% ZnO) and minimal impurities (6.85 wt% Na2SO4). SEM analysis indicated a flake-like morphology with nanoscale features (50–100 nm), while Raman spectroscopy confirmed enhanced crystallinity and purity post-washing. Additionally, the HT400W sample exhibited a dielectric constant (ε′) of 16.96 and a low loss tangent (tan δ) of 0.14 at 1 MHz, suggesting superior energy efficiency for high-frequency applications. This green synthesis approach not only eliminates hazardous reagents but also delivers ZnO nanoparticles with good dielectric performance. Furthermore, this work demonstrates the efficacy of a sustainable biotemplate, offering an environmentally friendly approach for synthesizing ZnO nanoparticles with tailored physicochemical properties. Full article
(This article belongs to the Section Nanofabrication and Nanomanufacturing)
Show Figures

Graphical abstract

18 pages, 3622 KiB  
Article
Insights into the Crystal Structure and Magnetodielectric Properties of High-Energy Ball Milled Sr Substituted LaFeO3
by Julio C. Aguirre-Espinosa, Félix Sánchez-De Jesús, Claudia A. Cortés-Escobedo and Ana M. Bolarín-Miró
Materials 2025, 18(13), 3014; https://doi.org/10.3390/ma18133014 - 25 Jun 2025
Viewed by 341
Abstract
The effect of strontium substitution on the crystal tructure, as well as the magnetic, and electrical properties of lanthanum ferrite (LaFeO3) synthesized by high-energy ball milling, is studied, with an emphasis on magnetodielectric coupling. X-ray diffraction (XRD) confirmed the successful synthesis [...] Read more.
The effect of strontium substitution on the crystal tructure, as well as the magnetic, and electrical properties of lanthanum ferrite (LaFeO3) synthesized by high-energy ball milling, is studied, with an emphasis on magnetodielectric coupling. X-ray diffraction (XRD) confirmed the successful synthesis of orthorhombic La1−xSrxFeO3 for doping levels up to 0.2 mol. At 0.3 mol Sr2+, two phases appear: La0.6Sr0.4FeO2.976 and La0.8Sr1.2FeO3.714, the latter being metastable. This phase vanishes at 0.5 mol. The Fourier Transform Infrared Spectroscopy (FT-IR) and Scanning Electron Microscopy coupled with Energy Dispersive X-ray Spectroscopy (SEM-EDS) analysis confirmed these results using a vibrating sample magnetometer (VSM), whose measurements show ferromagnetism at 0.1 and 0.3 mol Sr2+, attributed to crystal distortion, magnetic spin rearrangement, and as consequence, modifications in the double-exchange interactions. Dielectric tests reveal that higher Sr2+ concentrations lead to increased relative permittivity, dielectric losses, and conductivity, linked to oxygen vacancy formation. This study demonstrates a room-temperature magnetodielectric coupling of 32% in Sr-doped lanthanum ferrite, highlighting its potential for technological applications. Full article
Show Figures

Graphical abstract

28 pages, 6157 KiB  
Article
Towards a Sustainable Material Protection: Olanzapine Drugs and Their Derivatives as Corrosion Inhibitors for C1018 Steel in 1 M Hydrochloric Acid
by Habibah M. A. Omar, Nestor Ankah, Mohamed S. Gomaa, Malak Y. Alkhaldi, Nadir M. A. Osman, Abdullah R. Al-Subaie, Ibrahim Aldossary, Irshad Baig, Ashraf A. Bahraq, Marwah Aljohani, Ihsan Ulhaq Toor and Aeshah H. Alamri
Materials 2025, 18(12), 2902; https://doi.org/10.3390/ma18122902 - 19 Jun 2025
Viewed by 470
Abstract
This study investigates the synthesis process and characterization methods and evaluates the inhibition behavior of olanzapine (2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno-[2,3-b] 1,5]benzodiazepine (OLZ)) and its derivatives, such as 3-(2-methyl-4-(4-methylpiperazin-1-yl)-10H-benzo[b]thieno[2,3-e] [1,4]diazepin-10-yl) propenamide (OLZ1) and Ethyl 2-(2-methyl-4-(4-methylpiperazin-1-yl)-10H-benzo[b]thieno[2,3-e][1,4]diazepin-10 yl) acetate (OLZ2) for carbon steel (C1018) in a 1 M HCl [...] Read more.
This study investigates the synthesis process and characterization methods and evaluates the inhibition behavior of olanzapine (2-methyl-4-(4-methyl-1-piperazinyl)-10H-thieno-[2,3-b] 1,5]benzodiazepine (OLZ)) and its derivatives, such as 3-(2-methyl-4-(4-methylpiperazin-1-yl)-10H-benzo[b]thieno[2,3-e] [1,4]diazepin-10-yl) propenamide (OLZ1) and Ethyl 2-(2-methyl-4-(4-methylpiperazin-1-yl)-10H-benzo[b]thieno[2,3-e][1,4]diazepin-10 yl) acetate (OLZ2) for carbon steel (C1018) in a 1 M HCl acidic solution. Fourier Transform Infrared Spectroscopy (FTIR) and Nuclear Magnetic Resonance (NMR) were employed to verify their molecular structures and functional groups, which characterized the derivatives after synthesis. Their corrosion inhibition potential for C1018 steel in acidic media was estimated by weight loss (WL) and electrochemical techniques, such as electrochemical impedance spectroscopy (EIS), linear polarization resistance (LPR), and potentiodynamic polarization (PDP), accompanied by surface analysis methods. The findings revealed that all three derivatives demonstrated exceptional inhibition performance, achieving maximum efficiencies of 88.83%, 91.20%, and 91.82% for OLZ, OLZ1, and OLZ2 at 300 ppm, respectively. Weight loss experiments across different temperatures further explored their inhibitory behavior. Although inhibition efficiency decreased with a temperature increase to 318 K, the derivatives still displayed notable performance, with maximum efficiencies of 74.75% for OLZ, 81.63% for OLZ1, and 79.44% for OLZ2. Polarization studies identified the corrosion inhibition mechanisms as an anodic type. Surface characterization of the C1018 steel coupons, both with and without the inhibitors, was performed using FTIR and scanning electron microscopy (SEM) combined with energy-dispersive X-ray spectroscopy (EDX). These analyses indicated the creation of a protective inhibitor layer on the carbon steel surface, reducing corrosion in the acidic environment. Overall, this study underscores the potential of these drug derivatives as corrosion inhibitors, combining structural insights and performance assessments to support their industrial application. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

19 pages, 3263 KiB  
Article
Removal of Iron, Zinc, and Copper Impurities from Sodium Aluminate After the Bayer Process
by Vladimir Damjanović, Srećko Stopić, Duško Kostić, Mitar Perušić, Radislav Filipović, Aleksandar Mitrašinović and Dragana Kostić
Metals 2025, 15(6), 669; https://doi.org/10.3390/met15060669 - 17 Jun 2025
Viewed by 451
Abstract
This study investigates the influence of specific surface area (SSA) and aluminum hydroxide particle size on sodium aluminate’s purification efficiency in the Bayer process. This research examines how variations in SSA affect the adsorption and incorporation of contaminants such as Cu, Fe, and [...] Read more.
This study investigates the influence of specific surface area (SSA) and aluminum hydroxide particle size on sodium aluminate’s purification efficiency in the Bayer process. This research examines how variations in SSA affect the adsorption and incorporation of contaminants such as Cu, Fe, and Zn, as well as the optimal balance between effective purification and excessive Al2O3 loss. Different SSA values and purification durations are analyzed to optimize the purification process and determine conditions that maximize impurity removal while maintaining system stability. Additionally, solid residue characterization using X-ray diffraction (XRD), scanning electron microscopy (SEM), and energy-dispersive spectroscopy (EDS) provides insights into impurity incorporation mechanisms, including isomorphic replacement, surface adsorption, and co-crystallization. This study highlights key process parameters that influence impurity behavior and crystallization dynamics, offering valuable guidance for refining industrial purification strategies and improving aluminum hydroxide quality. Full article
Show Figures

Figure 1

12 pages, 1291 KiB  
Article
Non-Destructive Condition and Damage Assessment of Historic Weighted Silk
by Marta Anghelone, Caroline Dalhed and Tanja Kimmel
Fibers 2025, 13(6), 78; https://doi.org/10.3390/fib13060078 - 10 Jun 2025
Viewed by 684
Abstract
Silk weighting is a process used to compensate for the weight loss caused by degumming, achieved by adding agents such as metallic salts to enhance the hand feel and appearance of the fibers. With the development of tin weighting procedures (ca. 1870s), the [...] Read more.
Silk weighting is a process used to compensate for the weight loss caused by degumming, achieved by adding agents such as metallic salts to enhance the hand feel and appearance of the fibers. With the development of tin weighting procedures (ca. 1870s), the production of weighted silk tremendously increased, as the fast decay of such fabrics was attributed to the process itself. The weighted silk was largely used for evening wear and high-fashion garments, many of which nowadays are stored in textile collections, and often characterized by poor conservation conditions. Within the present work, a multi-analytical and interdisciplinary non-destructive protocol was established for studying the finishing techniques, characterizing the materials as well as the state of preservation of historic tin-weighted silk. The protocol involves a visual and haptic approach typical of conservation professionals, as well as analytical investigations such as X-Ray Fluorescence analyses, 3D digital microscopy, Scanning Electron Microscopy with Energy Dispersive Spectroscopy, and Fourier-transform Infrared Spectroscopy (FTIR) in Attenuated Total Reflection. Elemental analyses are effective for studying the technology of production, while FTIR emerged as a powerful tool for assessing the condition, through the carbonyl and crystallinity indices. Full article
Show Figures

Graphical abstract

12 pages, 3100 KiB  
Article
Effect of B4C Content on the Oxidation Resistance of a B4C-SiO2–Albite/Al2O3 Coating at 900 °C
by Pengbin Chen, Quanhao Luo, Haoze Wang, Huan He, Tao Liu, Yingheng Huang and Tianquan Liang
Coatings 2025, 15(6), 688; https://doi.org/10.3390/coatings15060688 - 6 Jun 2025
Viewed by 748
Abstract
B4C is beneficial for forming a glassy film that is effective at impeding oxygen diffusion and improving the oxidation resistance of coatings at high temperature. The effect of B4C content on the oxidation resistance of a B4C-SiO [...] Read more.
B4C is beneficial for forming a glassy film that is effective at impeding oxygen diffusion and improving the oxidation resistance of coatings at high temperature. The effect of B4C content on the oxidation resistance of a B4C-SiO2–Albite/Al2O3 (BSA/AO) double-layer coating by the slurry brushing method at 900 °C was investigated by X-ray diffraction (XRD), scanning electron microscopy (SEM) with energy-dispersive spectroscopy (EDS), and differential scanning calorimetry (DSC) with thermogravimetric analysis (TGA) in this work. It is indicated that the composite coating with 20 wt% B4C exhibits excellent oxidation resistance at high temperature, which shows a mass loss of only 0.11% for the coated carbon block after being exposed to 900 °C for 196 h. This is attributed to the in situ formation of a thin, dense glass layer with good self-healing ability at the interface of the B4C-SiO2–Albite/Al2O3 composite coating within 1 h and the persistence and stability of the dense glass layer during exposure. The mechanism is discussed in detail. Full article
Show Figures

Figure 1

17 pages, 3950 KiB  
Article
Performance of Microbially Induced Carbonate Precipitation for Reinforcing Cohesive Soil in the Reservoir Area
by Xinfa Li, Dingxiang Zhuang and Ru Hu
Crystals 2025, 15(6), 540; https://doi.org/10.3390/cryst15060540 - 5 Jun 2025
Viewed by 645
Abstract
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and [...] Read more.
Cohesive soil in the reservoir area is vulnerable to natural disasters because of its poor erosion resistance and low strength. Therefore, it needs to be reinforced. Microbially induced calcium carbonate precipitation (MICP) is a sustaibable soil reinforcement technique with low energy consumption and no pollution. Different combinations of Bacillus subtilis bacterial solution (BS) concentrations and cementing solution (CS) concentrations were set to perform MICP solidification treatment. The characterization of cohesive soil before MICP was carried out by means of Scanning Electron Microscopy (SEM), Fourier-Transform Infrared Spectroscopy (FTIR), and Laser Particle Size Analyzer (LPSA). The results showed that the unreinforced soil showed an amorphous state with low strength and the particle size distribution was dominated by powder particles. However, with the addition of BS concentrations and CS concentrations, SEM results showed that spherical and rhombohedral minerals filled the pores of the cohesive soil, which increased the content of precipitations and enhanced the cementitious characteristics. When the concentrations of CS or BS were fixed, CaCO3 content, deviatoric stress, shear strength, cohesive force, and internal friction angle all showed a trend of first increasing and then decreasing with the increase in CS or BS concentration. The optimal combination of CS and BS concentration was 1.5 mol/L and OD600 = 1.8. Thermochemical analyses showed an improved thermal stability of the reinforcing cohesive soil, with the lowest mass loss (32%) and the highest pyrolysis temperature (812 °C) of the samples at the optimal combination of BS and CS concentration. This study is expected to improve the understanding of the MICP reinforcement process and contribute to the optimal design of future biologically mediated soil amendments, promoting bioremediation. Full article
(This article belongs to the Section Inorganic Crystalline Materials)
Show Figures

Figure 1

11 pages, 2615 KiB  
Article
Electronic Excitation-Induced Modification in Electronic Structure and Magnetism for Pulsed Laser Deposited Barium Strontium Titanate Thin Films with Changing Fe Impurity
by Arkaprava Das and Carla Bittencourt
Materials 2025, 18(11), 2534; https://doi.org/10.3390/ma18112534 - 28 May 2025
Viewed by 337
Abstract
This study presents a comprehensive analysis of the modifications in electronic structure and magnetism resulting from electronic excitation in pulsed laser-deposited Ba0.7Sr0.3FexTi(1−x)O3 thin films, specifically for compositions with x = 0, 0.1, and 0.2. [...] Read more.
This study presents a comprehensive analysis of the modifications in electronic structure and magnetism resulting from electronic excitation in pulsed laser-deposited Ba0.7Sr0.3FexTi(1−x)O3 thin films, specifically for compositions with x = 0, 0.1, and 0.2. To investigate the effects of electronic energy loss (Se) within the lattice, we performed 120 MeV Ag ion irradiation at varying fluences (1 × 1012 ions/cm2 and 5 × 1012 ions/cm2) and compared the results with those of the pristine sample. The Se induces lattice damage by generating ion tracks along its trajectory, which subsequently leads to a reduction in peak intensity observed in X-ray diffraction patterns. Atomic force microscopy micrographs indicate that irradiation resulted in a decrease in average grain height, accompanied by a more homogeneous grain distribution. X-ray photoelectron spectroscopy reveals a significant increase in oxygen vacancy (VO) concentration as ion fluence increases. Ferromagnetism exhibits progressive deterioration with rising irradiation fluence. Due to the high Se and multiple ion impact processes, cation interstitial defects are highly likely, which may overshadow the influence of VO in inducing ferromagnetism, thereby contributing to an overall decline in magnetic properties. Furthermore, the elevated Se potentially disrupts bound magnetic polarons, leading to a degradation of long-range ferromagnetism. Collectively, this investigation elucidates the electronic excitation-induced modulation of ferromagnetism, employing Fe impurity incorporation and irradiation techniques for precise defect engineering. Full article
(This article belongs to the Special Issue Advanced Nanomaterials and Nanocomposites for Energy Conversion)
Show Figures

Figure 1

Back to TopTop