Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (557)

Search Parameters:
Keywords = electrodeposition coatings

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1216 KiB  
Article
Predictive Modeling and Experimental Optimization of the Electrodeposition–Sintering Process for Functional Ceramic Coatings
by Jesús M. Rodríguez-Rego, Antonio Macías-García, Laura Mendoza-Cerezo, Juan Pablo Carrasco-Amador and Antonio Díaz-Parralejo
Materials 2025, 18(16), 3893; https://doi.org/10.3390/ma18163893 - 20 Aug 2025
Viewed by 155
Abstract
This study focuses on optimizing a sol–gel based electrodeposition–sintering process for producing yttria-stabilized zirconia (YSZ) ceramic coatings on stainless steel substrates. Four key process variables—precursor concentration, current density, sintering time, and temperature—were evaluated in terms of two response variables: R (electrodeposition yield) and [...] Read more.
This study focuses on optimizing a sol–gel based electrodeposition–sintering process for producing yttria-stabilized zirconia (YSZ) ceramic coatings on stainless steel substrates. Four key process variables—precursor concentration, current density, sintering time, and temperature—were evaluated in terms of two response variables: R (electrodeposition yield) and S (sintering yield). A fractional factorial design was used to reduce the number of experiments while enabling robust statistical modeling. Multiple linear regression analysis revealed that precursor concentration and current density were the most influential factors for both R and S, whereas sintering time and temperature had a lesser effect. Under central conditions (42.9 g·L−1, 1.5 A·cm2, 500 °C, 20 min), coatings exhibited yields of ~3.9 mg·cm2 and superior morphological uniformity. Higher current density (3 A·cm2) increased R to 6.9 mg·cm2 but induced porosity and cracking. Compared to conventional sol–gel derived coatings, the proposed methodology enables a more controlled microstructure with a trade-off between mass deposition and structural integrity. This predictive, statistically validated approach facilitates the optimization of electrodeposition parameters to obtain defect-minimized ceramic coatings, particularly suited for protective and thermal barrier applications in demanding environments. Full article
(This article belongs to the Section Advanced Materials Characterization)
Show Figures

Graphical abstract

12 pages, 1533 KiB  
Article
The Impact of a NiFe-Based Metal Alloy on CO2 Conversion to CH4 and Carboxylic Acids in a Microbial Electrosynthesis Cell
by Emmanuel Nwanebu, Sabahudin Hrapovic, Fabrice Tanguay-Rioux, Rihab Gharbi and Boris Tartakovsky
Methane 2025, 4(3), 19; https://doi.org/10.3390/methane4030019 - 13 Aug 2025
Viewed by 193
Abstract
This study assessed the effects of NiFe-based metal catalysts on CO2 conversion to methane (CH4) and carboxylic acids in microbial electrosynthesis (MES) cells. A NiFeBi alloy, when electrodeposited on a conductive bioring cathode, significantly decreased CH4 production from 0.55 [...] Read more.
This study assessed the effects of NiFe-based metal catalysts on CO2 conversion to methane (CH4) and carboxylic acids in microbial electrosynthesis (MES) cells. A NiFeBi alloy, when electrodeposited on a conductive bioring cathode, significantly decreased CH4 production from 0.55 to 0.12 L (Lc d)−1 while enhancing acetate production to 1.0 g (Lc d)−1, indicating suppressed methanogenic activity and improved acetogenic activity. On the other hand, NiFeMn and NiFeSn catalysts showed varied effects, with NiFeSn increasing both CH4 and acetate production and suggesting potential in promoting both chain elongation and CO2 uptake. When these alloys were electrodeposited on a 3D-printed conductive polylactide (cPLA) lattice, the production of longer-chain carboxylic acids like butyrate and caproate increased significantly, indicating enhanced biocompatibility and nutrient delivery. The NiFeSn-coated cPLA lattice increased caproate production, which was further enhanced using an acetogenic enrichment. However, the overall throughput remained low at 0.1 g (Lc d)−1. Cyclic voltammetric analysis demonstrated improved electrochemical responses with catalyst coatings, indicating better electron transfer. These findings underscore the importance of catalyst selection and cathode design in optimizing MES systems for efficient CO2 conversion to value-added products, contributing to environmental sustainability and industrial applications. Full article
Show Figures

Figure 1

19 pages, 3018 KiB  
Article
Development and Characterisation of a Microneedle Sensor for Intrapartum Fetal Monitoring
by J. M. Mitchell, C. V. Thatte, R. Sebastian, C. O’Mahony, R. A. Greene, J. R. Higgins, P. Galvin, F. P. McCarthy and S. R. Teixeira
Biosensors 2025, 15(8), 517; https://doi.org/10.3390/bios15080517 - 8 Aug 2025
Viewed by 282
Abstract
This study presents the in vitro and preliminary ex vivo development of a novel microneedle-based pH sensor for continuous intrapartum fetal monitoring. The objective was to evaluate the feasibility of using microneedle sensors to monitor fetal pH during labour and to develop a [...] Read more.
This study presents the in vitro and preliminary ex vivo development of a novel microneedle-based pH sensor for continuous intrapartum fetal monitoring. The objective was to evaluate the feasibility of using microneedle sensors to monitor fetal pH during labour and to develop a proof-of-principle microneedle pH sensor that meets clinical requirements such as high sensitivity to small pH changes (0.05 units) within a relevant range (6.50–7.45), minimal tissue disruption, and a compact design suitable for transcervical placement on the fetal scalp (<40 mm diameter). Platinum microneedles were passivated with ArCare medical adhesive and coated with iridium oxide via electrodeposition. Sensitivity was tested in phosphate buffered saline (PBS) and artificial interstitial fluid (ISF), using both external Ag/AgCl and internal platinum pseudo-reference electrodes. In PBS, the sensor exhibited linear responses in increments of 0.05 pH units over the clinically relevant range (6.5–7.45), with slopes of −60.49 mV/pH (R2 = 0.946, accuracy = 97.65%) and −63.2 mV/pH (R2 = 0.910, accuracy = 93.70%) in the external and internal configurations, respectively. In ISF, a slope of −25.5 mV/pH (R2 = 0.979) was obtained. Ex vivo testing on human skin confirmed successful microneedle penetration without visible iridium oxide transfer or tissue damage, as indicated by methylene blue staining. These findings support the potential for continuous minimally invasive fetal pH monitoring during labour, representing a significant step toward more objective and specific intrapartum assessment. Full article
(This article belongs to the Special Issue Nano/Micro Biosensors for Biomedical Applications (2nd Edition))
Show Figures

Figure 1

31 pages, 5261 KiB  
Review
Wear- and Corrosion-Resistant Coatings for Extreme Environments: Advances, Challenges, and Future Perspectives
by Subin Antony Jose, Zachary Lapierre, Tyler Williams, Colton Hope, Tryon Jardin, Roberto Rodriguez and Pradeep L. Menezes
Coatings 2025, 15(8), 878; https://doi.org/10.3390/coatings15080878 - 26 Jul 2025
Viewed by 1104
Abstract
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well [...] Read more.
Tribological processes in extreme environments pose serious material challenges, requiring coatings that resist both wear and corrosion. This review summarizes recent advances in protective coatings engineered for extreme environments such as high temperatures, chemically aggressive media, and high-pressure and abrasive domains, as well as cryogenic and space applications. A comprehensive overview of promising coating materials is provided, including ceramic-based coatings, metallic and alloy coatings, and polymer and composite systems, as well as nanostructured and multilayered architectures. These materials are deployed using advanced coating technologies such as thermal spraying (plasma spray, high-velocity oxygen fuel (HVOF), and cold spray), chemical and physical vapor deposition (CVD and PVD), electrochemical methods (electrodeposition), additive manufacturing, and in situ coating approaches. Key degradation mechanisms such as adhesive and abrasive wear, oxidation, hot corrosion, stress corrosion cracking, and tribocorrosion are examined with coating performance. The review also explores application-specific needs in aerospace, marine, energy, biomedical, and mining sectors operating in aggressive physiological environments. Emerging trends in the field are highlighted, including self-healing and smart coatings, environmentally friendly coating technologies, functionally graded and nanostructured coatings, and the integration of machine learning in coating design and optimization. Finally, the review addresses broader considerations such as scalability, cost-effectiveness, long-term durability, maintenance requirements, and environmental regulations. This comprehensive analysis aims to synthesize current knowledge while identifying future directions for innovation in protective coatings for extreme environments. Full article
(This article belongs to the Special Issue Advanced Tribological Coatings: Fabrication and Application)
Show Figures

Figure 1

14 pages, 3123 KiB  
Article
Effect of Surface Modification for Efficient Electroplating of 3D-Printed Components
by Dagmar Klichová, Hana Krupová, Jakub Měsíček, František Botko and Světlana Radchenko
Machines 2025, 13(7), 630; https://doi.org/10.3390/machines13070630 - 21 Jul 2025
Viewed by 270
Abstract
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of [...] Read more.
This article explores the issue of surface modification through tumbling and vaporisation of 3D-printed materials, and its impact on the electrolytic deposition of metal coatings on previously non-conductive materials. Plastic materials represent an affordable alternative, but their surface treatment, in the form of post-coating, achieves properties comparable to those of metal parts while saving expensive metal material. Samples prepared by selective laser sintering (SLS) with different surface treatments were used. Polyamide 12 (PA12) was chosen as the base material and copper (Cu) as the metallic coating. Graphite was sprayed on the samples to ensure conductivity. The Cu coating was electrodeposited from an acidic copper electrolyte. The quantitative analysis of the surface was carried out using standard ISO parameters. The thickness of the deposited copper layer was determined using destructive measurements on a digital microscope. The results show that surface modification has a significant effect on the functional properties of the surface quality and the thickness of the deposited copper layer. Full article
(This article belongs to the Special Issue Surface Engineering Techniques in Advanced Manufacturing)
Show Figures

Figure 1

15 pages, 4083 KiB  
Article
Tribological and Corrosion Effects from Electrodeposited Ni-hBN over SS304 Substrate
by Suresh Velayudham, Elango Natarajan, Kalaimani Markandan, Kaviarasan Varadaraju, Santhosh Mozhuguan Sekar, Gérald Franz and Anil Chouhan
Lubricants 2025, 13(7), 318; https://doi.org/10.3390/lubricants13070318 - 21 Jul 2025
Viewed by 518
Abstract
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the [...] Read more.
The aim of the present study is to investigate the influence of Nickel–Hexagonal Boron Nitride (Ni-hBN) nanocomposite coatings, deposited using the pulse reverse current electrodeposition technique. This experimental study focuses on assessing the tribological and corrosion properties of the produced coatings on the SS304 substrate. The microhardness of the as-deposited (AD) sample and heat-treated (HT) sample were 49% and 83.8% higher compared to the control sample. The HT sample exhibited a grain size which was approximately 9.7% larger than the AD sample owing to the expansion–contraction mechanism of grains during heat treatment and sudden quenching. Surface roughness reduced after coating, where the Ni-hBN-coated sample measured a roughness of 0.43 µm compared to 0.48 µm for the bare surface. The average coefficient of friction for the AD sample was 42.4% lower than the bare surface owing to the self-lubricating properties of nano hBN. In particular, the corrosion rate of the AD sample was found to be 0.062 mm/year, which was lower than values reported in other studies. As such, findings from the present study can be particularly beneficial for applications in the automotive and aerospace industries, where enhanced wear resistance, reduced friction, and superior corrosion protection are critical for components such as engine parts, gears, bearings and shafts. Full article
Show Figures

Figure 1

19 pages, 2215 KiB  
Article
Ni-Co Electrodeposition Improvement Using Phenylsalicylimine Derivatives as Additives in Ethaline-Based Deep Eutectic Solvents (DES)
by Enrique Ordaz-Romero, Paola Roncagliolo-Barrera, Ricardo Ballinas-Indili, Oscar González-Antonio and Norberto Farfán
Coatings 2025, 15(7), 814; https://doi.org/10.3390/coatings15070814 - 11 Jul 2025
Viewed by 576
Abstract
The development of metallic coatings as Ni-Co alloys, with particular emphasis on their homogeneity, processability, and sustainability, is of the utmost significance. To address these challenges, the utilization of phenylsalicylimines (PSIs) as additives within deep eutectic solvents (DES) was investigated, assessing their influence [...] Read more.
The development of metallic coatings as Ni-Co alloys, with particular emphasis on their homogeneity, processability, and sustainability, is of the utmost significance. To address these challenges, the utilization of phenylsalicylimines (PSIs) as additives within deep eutectic solvents (DES) was investigated, assessing their influence on the electrodeposition process of these metals at an intermediate temperature of 60 °C, while circumventing aqueous reaction conditions. The findings demonstrated that the incorporation of PSIs markedly enhances coating uniformity, resulting in an optimal cobalt content of 37% and an average thickness of 24 µm. Electrochemical evaluations revealed improvements in charge and mass transfer, thereby optimizing process efficiency. Moreover, computational studies confirmed that PSIs form stable complexes with Co (II), modulating the electrochemical characteristics of the system through the introduction of the diethylamino electron-donating group, which significantly stabilizes the coordinated forms with both components of the DES. Additionally, the coatings displayed exceptional corrosion resistance, with a rate of 0.781 µm per year, and achieved an optimal hardness of 38 N HRC, conforming to ASTM B994 standards. This research contributes to the development of electroplating bath designs for metallic coating deposition and lays the groundwork for the advancement of sophisticated technologies in functional coatings that augment corrosion resistance and mechanical properties. Full article
(This article belongs to the Special Issue Electrochemistry and Corrosion Science for Coatings)
Show Figures

Figure 1

14 pages, 3070 KiB  
Article
Immunosensor Enhanced with Silver Nanocrystals for On-Chip Prostate-Specific Antigen Detection
by Timothy A. Okhai, Kefilwe V. Mokwebo, Marlon Oranzie, Usisipho Feleni and Lukas W. Snyman
Biosensors 2025, 15(7), 428; https://doi.org/10.3390/bios15070428 - 3 Jul 2025
Viewed by 423
Abstract
An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy [...] Read more.
An electrochemical immunosensor for the quantification of prostate-specific antigens (PSAs) using silver nanocrystals (AgNCs) is reported. The silver nanocrystals were synthesized using a conventional citrate reduction protocol. The silver nanocrystals were characterized using scanning electron microscopy (SEM) and field effect scanning electron microscopy (FESEM), X-ray diffraction (XRD), high-resolution transmission electron microscopy (HRTEM), Fourier-transform infrared spectroscopy (FTIR), UV-Vis spectroscopy, and small-angle X-ray scattering (SAXS). The proposed immunosensor was fabricated on a glassy carbon electrode (GCE), sequentially, by drop-coating AgNCs, the electro-deposition of EDC-NHS, the immobilization of anti-PSA antibody (Ab), and dropping of bovine serum albumin (BSA) to prevent non-specific binding sites. Each stage of the fabrication process was characterized by cyclic voltammetry (CV). Using square wave voltammetry (SWV), the proposed immunosensor displayed high sensitivity in detecting PSA over a concentration range of 1 to 10 ng/mL with a detection limit of 1.14 ng/mL and R2 of 0.99%. The immunosensor was selective in the presence of interfering substances like glucose, urea, L-cysteine, and alpha-methylacyl-CoA racemase (AMACR) and it showed good stability and repeatability. These results compare favourably with some previously reported results on similar or related technologies for PSA detection. Full article
(This article belongs to the Special Issue Photonics for Bioapplications: Sensors and Technology—2nd Edition)
Show Figures

Figure 1

17 pages, 3854 KiB  
Article
Pulsed Current Electrodeposition of Gold–Copper Alloys Using a Low-Cyanide Electrolyte
by Mohamed Amazian, Teresa Andreu and Maria Sarret
Coatings 2025, 15(7), 778; https://doi.org/10.3390/coatings15070778 - 30 Jun 2025
Viewed by 725
Abstract
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling [...] Read more.
The development of stable, non-toxic electrolytes is essential for electrodepositing large-area coatings. This study presents a novel low-cyanide electrolyte, offering a viable alternative to traditional cyanide-based solutions for the electroplating of gold–copper alloys. Compared to conventional baths, the new formulation offers safer handling and environmental compatibility without compromising performance. Electrolyte compositions were optimized via cyclic voltammetry, and coatings were deposited using direct current, pulse current, and reverse pulse current methods. The novel low-cyanide electrolyte system achieved a 99.1% reduction in cyanide use compared with the commercial formulation. Coatings produced with pulse current and reverse pulse current deposition exhibited structural, morphological, and mechanical properties comparable to those obtained from cyanide-based electrolytes. Overall, the low-cyanide electrolyte represents a safer, high-performance alternative to traditional cyanide-based systems. Full article
Show Figures

Figure 1

17 pages, 5437 KiB  
Article
Characterization of Different Types of Screen-Printed Carbon Electrodes Modified Electrochemically by Ceria Coatings
by Reni Andreeva, Aleksandar Tsanev, Georgi Avdeev and Dimitar Stoychev
Metals 2025, 15(7), 741; https://doi.org/10.3390/met15070741 - 30 Jun 2025
Viewed by 249
Abstract
Electrochemical formation of ceria (mixed Ce2O3 and CeO2) coatings on different types of screen-printed carbon electrodes (SPCEs) (based on graphite (C110), carbon nanotubes (CNT), single-walled carbon nanotubes (SWCNT), carbon nanofibers (CNF), and mesoporous carbon (MC)) were studied. Their [...] Read more.
Electrochemical formation of ceria (mixed Ce2O3 and CeO2) coatings on different types of screen-printed carbon electrodes (SPCEs) (based on graphite (C110), carbon nanotubes (CNT), single-walled carbon nanotubes (SWCNT), carbon nanofibers (CNF), and mesoporous carbon (MC)) were studied. Their potential applications as catalysts for various redox reactions and electrochemical sensors were investigated. The ceria oxide layers were electrodeposited on SPCEs at various current densities and deposition time. The morphology, structure, and chemical composition in the bulk of the ceria layers were studied by SEM and EDS methods. XRD was used to identify the formed phases. The concentration, chemical composition and chemical state of the elements on the surface of studied samples were characterized by XPS. It was established that the increase of the concentration of CeCl3 in the solution and the cathode current density strongly affected the surface structure and concentration (relation between Ce3+ and Ce4+, respectively) in the formed ceria layers. At low concentration of CeCl3 (0.1M) and low values of cathode current density (0.5 mA·cm−2), porous samples were obtained, while with their increase, the ceria coatings grew denser. Full article
Show Figures

Figure 1

14 pages, 4112 KiB  
Article
Thermal–Alkaline Etching of SiC Nanoparticles for Colloidal Stabilization and Enhanced Wear Resistance in Electrodeposited Co/SiC Coatings
by Mengnan Wu, Qipeng Bao, Rui Qin and Zhongwei Zhan
Coatings 2025, 15(7), 770; https://doi.org/10.3390/coatings15070770 - 29 Jun 2025
Viewed by 478
Abstract
Composite electrodeposited coatings hold significant potential for marine and aerospace applications due to their synergistic corrosion resistance and wear durability, yet nanoparticle agglomeration and interfacial incompatibility persistently undermine their performance. Conventional dispersion techniques—mechanical agitation, surfactants, or high-energy methods—fail to resolve these issues, often [...] Read more.
Composite electrodeposited coatings hold significant potential for marine and aerospace applications due to their synergistic corrosion resistance and wear durability, yet nanoparticle agglomeration and interfacial incompatibility persistently undermine their performance. Conventional dispersion techniques—mechanical agitation, surfactants, or high-energy methods—fail to resolve these issues, often introducing residual stresses, organic impurities, or thermal damage to substrates. This study addresses these challenges through a novel thermal-assisted alkaline etching (TAE) protocol that synergistically removes surface oxides and enhances colloidal stability in β-SiC nanoparticles. By combining NaOH-based etching with low-temperature calcination (250 °C), the method achieves oxide-free SiC surfaces with elevated hydrophilicity and a ζ-potential of −25 mV, enabling submicron clustering (300 nm) without surfactants. Electrodeposited Co/SiC coatings incorporating TAE-SiC exhibited current-modulated reinforcement, achieving optimal SiC incorporation (5.9 at% Si) at 8 A/dm2 through electrophoretic–hydraulic synergy, along with uniform cross-sectional distribution validated by SEM. Tribological assessments revealed shorter wear tracks in TAE-SiC-enhanced coatings compared to their untreated counterparts, suggesting enhanced interfacial coherence despite a comparable mass loss. Demonstrating scalability through cost-effective aqueous-phase chemistry, this methodology provides a generalized framework applicable to other ceramic-reinforced systems (e.g., Al2O3 and TiC), offering transformative potential for next-generation protective coatings in harsh operational environments. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

17 pages, 5024 KiB  
Article
Optimization of Deposition Parameters for Ni-P-WC-BN(h) Composite Coatings via Orthogonal Experimentation and Wear Behavior of the Optimized Coating
by Yingyue Li, Zehao Liu, Yana Li and Jinran Lin
Metals 2025, 15(7), 714; https://doi.org/10.3390/met15070714 - 26 Jun 2025
Viewed by 368
Abstract
Ni–P–WC–BN(h) nanocomposite coatings were fabricated on 20CrMnTi substrates using ultrasonic-assisted pulsed electrodeposition. 20CrMnTi is a low-carbon steel that is commonly used in the manufacturing gears and shaft components. To enhance the wear resistance and extend the service life of such mechanical parts, ultrasonic-assisted [...] Read more.
Ni–P–WC–BN(h) nanocomposite coatings were fabricated on 20CrMnTi substrates using ultrasonic-assisted pulsed electrodeposition. 20CrMnTi is a low-carbon steel that is commonly used in the manufacturing gears and shaft components. To enhance the wear resistance and extend the service life of such mechanical parts, ultrasonic-assisted pulsed electrodeposition was employed as an effective surface modification technique. The microhardness, phase structure, surface morphology, and wear behavior of the coating were also characterized. An orthogonal experimental design was employed to examine the effects of current density, bath temperature, ultrasonic power, and pulse duty cycle on the microhardness and wear behavior of the coatings, aiming to optimize the deposition parameters. The optimal process combination was identified as a current density of 3 A·dm−2, a bath temperature of 55 °C, an ultrasonic power of 210 W, and a duty cycle of 0.7. Under these conditions, the coatings exhibited enhanced hardness and wear resistance. Based on the optimized parameters, additional tribological tests were conducted under various operating conditions to further evaluate wear performance. The results showed that the dominant wear mechanisms were chemical wear and adhesive wear. This study offers new insights into the fabrication of high-performance nanocomposite coatings and expands the application scope of ultrasonic-assisted pulsed electrodeposition in multiphase composite systems. Full article
(This article belongs to the Special Issue Surface Modification and Characterization of Metals and Alloys)
Show Figures

Figure 1

14 pages, 2179 KiB  
Article
One-Pot Anodic Electrodeposition of Dual-Cation-Crosslinked Sodium Alginate/Carboxymethyl Chitosan Interpenetrating Hydrogel with Vessel-Mimetic Heterostructures
by Xuli Li, Yuqing Qu, Yong Zhang, Pei Chen, Siyu Ding, Miaomiao Nie, Kun Yan and Shefeng Li
J. Funct. Biomater. 2025, 16(7), 235; https://doi.org/10.3390/jfb16070235 - 26 Jun 2025
Viewed by 752
Abstract
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), [...] Read more.
This study develops a one-pot anodic templating electrodeposition strategy using dual-cation-crosslinking and interpenetrating networks, coupled with pulsed electrical signals, to fabricate a vessel-mimetic multilayered tubular hydrogel. Typically, the anodic electrodeposition is performed in a mixture of sodium alginate (SA) and carboxymethyl chitosan (CMC), with the ethylenediaminetetraacetic acid calcium disodium salt hydrate (EDTA·Na2Ca) incorporated to provide a secondary ionic crosslinker (i.e., Ca2+) and modulate the cascade reaction diffusion process. The copper wire electrodes serve as templates for electrochemical oxidation and enable a copper ion (i.e., Cu2+)-induced tubular hydrogel coating formation, while pulsed electric fields regulate layer-by-layer deposition. The dual-cation-crosslinked interpenetrating hydrogels (CMC/SA-Cu/Ca) exhibit rapid growth rates and tailored mechanical strength, along with excellent antibacterial performance. By integrating the unique pulsed electro-fabrication with biomimetic self-assembly, this study addresses challenges in vessel-mimicking structural complexity and mechanical compatibility. The approach enables scalable production of customizable multilayered hydrogels for artificial vessel grafts, smart wound dressings, and bioengineered organ interfaces, demonstrating broad biomedical potential. Full article
Show Figures

Figure 1

50 pages, 22023 KiB  
Review
Research Advancements of Wear-Resistant Coatings Fabricated on Aluminum and Its Alloys
by Bohao Jia, Ruoqi Ren, Hongliang Zhang, Tiannan Man, Xue Cui, Teng Liu, Tianzhang Zhao, Yurii Luhovskyi and Zhisheng Nong
Coatings 2025, 15(7), 750; https://doi.org/10.3390/coatings15070750 - 25 Jun 2025
Viewed by 853
Abstract
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive [...] Read more.
The low hardness and insufficient wear resistance of aluminum and its alloys restrict their broader application in various fields. The application of surface protective coatings can effectively enhance the hardness and wear resistance of aluminum and its alloys. This article provides a comprehensive review of the recent research progress of wear-resistant coatings fabricated on aluminum and its alloys. The relevant achievements in the recent research works of preparing wear-resistant coatings by one-step methods (such as anodic oxidation, micro-arc oxidation, cold spraying, plasma spraying, and electrodeposition) and two-step methods (anodic oxidation and physical vapor deposition, micro-arc oxidation and sealing, magnetron sputtering, and plasma nitriding) are mainly introduced. The working principles of each coating preparation method, along with their impacts on the microstructure and tribological performance of the coatings, were systematically examined. Additionally, a comparative analysis was conducted to evaluate the advantages and disadvantages of each coating preparation method. Full article
(This article belongs to the Section Corrosion, Wear and Erosion)
Show Figures

Figure 1

18 pages, 3874 KiB  
Article
Organic and Ionic Liquids Electrolyte Solutions as Versatile Media for Metallic Lithium Recovery
by Mihai Tudor Olaru, Alexandru Matei, Irina Atkinson, Adelina Ionela Matei, Elena Bacalum, Miruna Iota and Ana-Maria Popescu
Materials 2025, 18(12), 2899; https://doi.org/10.3390/ma18122899 - 19 Jun 2025
Viewed by 521
Abstract
For various applications, particularly in battery technology, there is a significant demand for uniform, high-quality lithium or lithium-coated materials. The use of electrodeposition techniques to obtain such materials has not proven practical or economical due to the low solubility of most lithium salts [...] Read more.
For various applications, particularly in battery technology, there is a significant demand for uniform, high-quality lithium or lithium-coated materials. The use of electrodeposition techniques to obtain such materials has not proven practical or economical due to the low solubility of most lithium salts in suitable solvents. In this study, we propose efficient lithium electrodeposition processes and baths that can be operated at low temperatures and relatively low costs. We utilized organic solvents such as dimethyl acetamide (DMA), dimethylforamide (DMF), and dimethyl sulfoxide (DMSO), as well as a mixture of DMSO and ionic liquid [1-Butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide BMIMTFSI]. Lithium salts such as LiCl, Li2CO3, and LiNO3 were tested. Lithium metal was deposited on copper substrates at different temperatures and selected current densities within an argon-filled glovebox using a DC power source or a PARSTAT-4000A potentiostat. Cyclic voltammetry (CV) was employed to determine and compare the deposition processes. The obtained deposits were analyzed through visual inspection (photography) and scanning electron microscopy (SEM). Chemical analysis (ICP-OES) and XRD confirmed the presence of lithium and occasionally lithium hydroxide in the deposits. The best results were achieved with the deposition of lithium from DMSO-LiNO3 and DMSO-BMIMTFSI-LiNO3 systems. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

Back to TopTop