Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (758)

Search Parameters:
Keywords = electrode kinetics

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
18 pages, 1918 KiB  
Article
Sustainable Degradation of Acetaminophen by a Solar-Powered Electro-Fenton Process: A Green and Energy-Efficient Approach
by Sonia Herrera-Chávez, Silvia Gutierrez, Miguel A. Sandoval, Enric Brillas, Martin Pacheco-Álvarez and Juan M. Peralta-Hernández
Processes 2025, 13(8), 2633; https://doi.org/10.3390/pr13082633 - 20 Aug 2025
Abstract
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), [...] Read more.
The presence of acetaminophen (ACTP) in aquatic environments has become a significant concern due to its environmental persistence and the potential formation of toxic transformation products. This study systematically compares the performance of three electrochemical advanced oxidation processes (EAOPs), electro-oxidation (EO), electro-Fenton (EF), and solar photo-electro-Fenton (SPEF), for the degradation and mineralization of ACTP in aqueous media using boron-doped diamond (BDD) electrodes. Reactions were conducted under varying operational parameters, including current densities (15–60 mA cm−2), initial ACTP concentrations (10–30 mg L−1), and Fe2+ dosages. In the SPEF system, natural sunlight was utilized as the source of UV-A irradiation (30–35 W m−2). Among the evaluated processes, SPEF exhibited the highest degradation efficiency, achieving up to 97% ACTP removal and 78% chemical oxygen demand (COD) reduction within 90 min. High-performance liquid chromatography (HPLC) analysis identified phenol and catechol as major intermediates, suggesting a degradation pathway involving hydroxylation, aromatic ring cleavage, and subsequent oxidation into low-molecular-weight carboxylic acids. Kinetic modeling revealed pseudo-first-order behavior, with a maximum rate constant of 0.0865 min−1 under optimized conditions determined via Box–Behnken experimental design. Additionally, SPEF demonstrated enhanced energy efficiency (~0.052 kWh gCOD−1) and improved oxidant regeneration under solar radiation, highlighting its potential as an environmentally friendly and cost-effective alternative for pharmaceutical wastewater treatment. These results support the implementation of SPEF as a sustainable strategy for mitigating the environmental impact of emerging contaminants, especially in regions with high solar availability and limited technological resources. Full article
(This article belongs to the Special Issue Modeling and Optimization for Multi-scale Integration)
Show Figures

Figure 1

31 pages, 7440 KiB  
Review
Breaking the Polarization Bottleneck: Innovative Pathways to High-Performance Metal–Air Batteries
by Biao Ma, Deling Hong, Xiangfeng Wei and Jiehua Liu
Batteries 2025, 11(8), 315; https://doi.org/10.3390/batteries11080315 - 19 Aug 2025
Abstract
Metal–air batteries have excellent theoretical energy density and economic advantages through abundant anode materials and open cathode structures. However, the actual energy efficiency of metal–air batteries is much lower than the theoretical value due to the effect of polarization voltage during battery operation, [...] Read more.
Metal–air batteries have excellent theoretical energy density and economic advantages through abundant anode materials and open cathode structures. However, the actual energy efficiency of metal–air batteries is much lower than the theoretical value due to the effect of polarization voltage during battery operation, limiting the power output and thus hindering their practical application. This review systematically dissects the origins of polarization: slow oxygen reduction/evolution reaction (ORR/OER) kinetics, interfacial resistance, and mass transfer bottlenecks. We highlight cutting-edge strategies to mitigate polarization, including atomic-level engineering of air cathodes (e.g., single-atom catalysts, low Pt catalysts), biomass-derived 3D porous electrodes, and electrolyte innovations (additives to inhibit corrosion, solid-state electrolytes to improve stability). In addition, breakthroughs in metal–H2O2 battery design using concentrated liquid oxygen sources are discussed. Together, these advances alleviate the battery polarization bottleneck and pave the way for practical applications of metal–air batteries in electric vehicles, drones, and deep-sea devices. Full article
(This article belongs to the Special Issue Batteries: 10th Anniversary)
Show Figures

Graphical abstract

10 pages, 4385 KiB  
Article
Interfacial Electron Transfer in Strategically Engineered Pt3Rh/C Ultrafine Alloy Nanoparticle Catalysts Facilitates Exceptional Performance in Li-O2 Batteries
by Xing Xu, Yinkun Gao and Xudong Li
Catalysts 2025, 15(8), 777; https://doi.org/10.3390/catal15080777 - 15 Aug 2025
Viewed by 268
Abstract
A major challenge for Li-O2 batteries is the slow kinetics of oxygen reduction (ORR) and evolution (OER) reactions. This work presents a high-performance Pt3Rh/C composite cathode where Pt-Rh nanoalloys are uniformly dispersed on 3D nanoporous carbon. The bimetallic architecture demonstrates [...] Read more.
A major challenge for Li-O2 batteries is the slow kinetics of oxygen reduction (ORR) and evolution (OER) reactions. This work presents a high-performance Pt3Rh/C composite cathode where Pt-Rh nanoalloys are uniformly dispersed on 3D nanoporous carbon. The bimetallic architecture demonstrates significantly enhanced ORR/OER activity compared to conventional catalysts. Super P, with a large specific surface area and omnipresent pores with diverse size distribution, provided sufficient storage space for Li2O2 and facilitated transport channels for Li+ and O2, while the highly conductive Pt3Rh NPs optimized catalytic efficiency. XPS reveals a prominent electron transfer process between Pt and Rh; the Rh sites in Pt3Rh/C alloy can effectively act as electron donors to improve the oxygen/lithium peroxide (O2/Li2O2) redox chemistry in LOB. Therefore, the Pt3Rh/C electrode shows the minimum overpotential (0.60 V) for efficient oxygen reduction and evolution under an upper-limit capacity of 2000 mAh g−1. This work introduces a Pt3Rh/C nanoalloy synthesis method that boosts Li-O2 battery efficiency by accelerating oxygen reaction kinetics. Full article
(This article belongs to the Section Electrocatalysis)
Show Figures

Graphical abstract

15 pages, 3400 KiB  
Article
Ti3C2TX MXene/Polyaniline-Modified Nylon Fabric Electrode for Wearable Non-Invasive Glucose Monitoring in Sweat
by Lichao Wang, Meng Li, Shengnan Ya, Hang Tian, Kerui Li, Qinghong Zhang, Yaogang Li, Hongzhi Wang and Chengyi Hou
Biosensors 2025, 15(8), 531; https://doi.org/10.3390/bios15080531 - 14 Aug 2025
Viewed by 294
Abstract
Sweat-based electrochemical sensors for wearable applications have attracted substantial interest due to their non-invasive nature, compact design, and ability to provide real-time data. Remarkable advancements have been made in integrating these devices into flexible platforms. While thin-film polymer substrates are frequently employed for [...] Read more.
Sweat-based electrochemical sensors for wearable applications have attracted substantial interest due to their non-invasive nature, compact design, and ability to provide real-time data. Remarkable advancements have been made in integrating these devices into flexible platforms. While thin-film polymer substrates are frequently employed for their durability, the prolonged buildup of sweat on such materials can disrupt consistent sensing performance and adversely affect skin comfort over extended periods. Therefore, investigating lightweight, comfortable, and breathable base materials for constructing working electrodes is essential for producing flexible and breathable sweat electrochemical sensors. In this study, nylon fabric was chosen as the base material for constructing the working electrode. The electrode is prepared using a straightforward printing process, incorporating Ti3C2TX MXene/polyaniline and methylene blue as modification materials in the electronic intermediary layer. The synergistic effect of the modified layer and the multi-level structure of the current collector enhances the electrochemical kinetics on the electrode surface, improves electron transmission efficiency, and enables the nylon fabric-based electrode to accurately and selectively measure glucose concentration in sweat. It exhibits a wide linear range (0.04~3.08 mM), high sensitivity (3.11 μA·mM−1), strong anti-interference capabilities, and high stability. This system can monitor glucose levels and trends in sweat, facilitating the assessment of daily sugar intake for personal health management. Full article
(This article belongs to the Section Biosensor and Bioelectronic Devices)
Show Figures

Graphical abstract

28 pages, 8717 KiB  
Article
Thermo-Kinetic Assessment of Ammonia/Syngas Combustion: Experimental and Numerical Investigation of Laminar Burning Velocity at Elevated Pressure and Temperature
by Mehrdad Kiani, Ali Akbar Abbasian Arani, Ehsan Houshfar, Mehdi Ashjaee and Pouriya H. Niknam
Fuels 2025, 6(3), 59; https://doi.org/10.3390/fuels6030059 - 12 Aug 2025
Viewed by 355
Abstract
The utilization of ammonia as a fuel for gas turbines involves practical challenges due to its low reactivity, narrow flammability limits, and slow laminar flame propagation. One of the potential solutions to enhance the combustion reactivity of ammonia is co-firing with syngas. This [...] Read more.
The utilization of ammonia as a fuel for gas turbines involves practical challenges due to its low reactivity, narrow flammability limits, and slow laminar flame propagation. One of the potential solutions to enhance the combustion reactivity of ammonia is co-firing with syngas. This paper presents an experimental and numerical investigation of the laminar burning velocity (LBV) of ammonia/syngas/air mixtures under elevated pressures (up to 10 bar) and temperatures (up to 473 K). Experiments were conducted in a constant-volume combustion chamber with a total volume of 11 L equipped with a dual-electrode capacitive discharge ignition system. A systematic sensitivity analysis was conducted to experimentally evaluate the system performance under various syngas compositions and equivalence ratios from 0.7 to 1.6 and ultimately identify the factors with the most impact on the system. As a complement to the experiments, a detailed numerical simulation was carried out integrating available kinetic mechanisms—chemical reaction sets and their rates—to support advancements in the understanding and optimization of ammonia/syngas co-firing dynamics. The sensitivity analysis results reveal that LBV is significantly enhanced by increasing the hydrogen content (>50%). Furthermore, the LBV of the gas mixture is found to increase with the use of a rich flame, higher mole fractions of syngas, and higher initial temperatures. The results indicate that higher pressure reduces LBV by 40% but at the same time enhances the adiabatic flame temperature (by 100 K) due to an equilibrium shift. The analysis was also extended to quantify the impact of syngas mole fractions and elevated initial temperatures. The kinetics of the reactions are analyzed through the reaction pathways, and the results reveal how the preferred pathways vary under lean and rich flame conditions. These findings provide valid quantitative design data for optimizing the combustion kinetics of ammonia/syngas blends, offering valuable design data for ammonia-based combustion systems in industrial gas turbines and power generation applications, reducing NOₓ emissions by up to 30%, and guiding future research directions toward kinetic models and emission control strategies. Full article
Show Figures

Figure 1

12 pages, 2532 KiB  
Article
Efficient Oxygen Evolution Reaction Performance Achieved by Tri-Doping Modification in Prussian Blue Analogs
by Yanhong Ding, Bin Liu, Haiyan Xiang, Fangqi Ren, Tianzi Xu, Jiayi Liu, Haifeng Xu, Hanzhou Ding, Yirong Zhu and Fusheng Liu
Inorganics 2025, 13(8), 258; https://doi.org/10.3390/inorganics13080258 - 2 Aug 2025
Viewed by 346
Abstract
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost [...] Read more.
The high cost of hydrogen production is the primary factor limiting the development of the hydrogen energy industry chain. Additionally, due to the inefficiency of hydrogen production by water electrolysis technology, the development of high-performance catalysts is an effective means of producing low-cost hydrogen. In water electrolysis technology, the electrocatalytic activity of the electrode affects the kinetics of the oxygen evolution reaction (OER) and the hydrogen evolution rate. This study utilizes the liquid phase co-precipitation method to synthesize three types of Prussian blue analog (PBA) electrocatalytic materials: Fe/PBA(Fe4[Fe(CN)6]3), Fe-Mn/PBA((Fe, Mn)3[Fe(CN)6]2·nH2O), and Fe-Mn-Co/PBA((Mn, Co, Fe)3II[FeIII(CN)6]2·nH2O). X-ray diffraction (XRD) and scanning electron microscopy (SEM) analyses show that Fe-Mn-Co/PBA has a smaller particle size and higher crystallinity, and its grain boundary defects provide more active sites for electrochemical reactions. The electrochemical test shows that Fe-Mn-Co/PBA exhibits the best electrochemical performance. The overpotential of the oxygen evolution reaction (OER) under 1 M alkaline electrolyte at 10/50 mA·cm−2 is 270/350 mV, with a Tafel slope of 48 mV·dec−1, and stable electrocatalytic activity is maintained at 5 mA·cm−2. All of these are attributed to the synergistic effect of Fe, Mn, and Co metal ions, grain refinement, and the generation of grain boundary defects and internal stresses. Full article
(This article belongs to the Special Issue Novel Catalysts for Photoelectrochemical Energy Conversion)
Show Figures

Figure 1

11 pages, 3000 KiB  
Article
Comparative Study of the Bulk and Foil Zinc Anodic Behavior Kinetics in Oxalic Acid Aqueous Solutions
by Vanya Lilova, Emil Lilov, Stephan Kozhukharov, Georgi Avdeev and Christian Girginov
Materials 2025, 18(15), 3635; https://doi.org/10.3390/ma18153635 - 1 Aug 2025
Viewed by 297
Abstract
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical [...] Read more.
The anodic behavior of zinc electrodes is important for energy storage, corrosion protection, electrochemical processing, and other practical applications. This study investigates the anodic galvanostatic polarization of zinc foil and bulk electrodes in aqueous oxalic acid solutions, revealing significant differences in their electrochemical behavior, particularly in induction period durations. The induction period’s duration depended on electrolyte concentration, current density, and temperature. Notably, the temperature dependence of the kinetics exhibited contrasting trends: the induction period for foil electrodes increased with temperature, while that of bulk electrodes decreased. Chemical analysis and polishing treatment comparisons showed no significant differences between the foil and bulk electrodes. However, Scanning Electron Microscopy (SEM) observations of samples anodized at different temperatures, combined with Inductively Coupled Plasma–Optical Emission Spectroscopy (ICP-OES) analysis of dissolved electrode material, provided insights into the distinct anodic behaviors. X-ray Diffraction (XRD) studies further confirmed these findings, revealing a crystallographic orientation dependence of the anodic behavior. These results provide detailed information about the electrochemical properties of zinc electrodes, with implications for optimizing their performance in various applications. Full article
Show Figures

Figure 1

11 pages, 1401 KiB  
Communication
Graphene-Enhanced FePO4 Composites with Superior Electrochemical Performance for Lithium-Ion Batteries
by Jinde Yu, Shuchun Hu, Yaohan Zhang, Yin Liu, Wenjuan Ren, Aipeng Zhu, Yanqi Feng, Zhe Wang, Dunan Rao, Yuqin Yang, Heng Zhang, Runhan Liu and Shunying Chang
Materials 2025, 18(15), 3604; https://doi.org/10.3390/ma18153604 - 31 Jul 2025
Viewed by 294
Abstract
In this study, we successfully synthesized olivine-type FePO4 via an in situ oxidation method and further developed two composite cathode materials (o-FePO4-1/GR-1 and o-FePO4-1/GR-2) by incorporating graphene. The composites were characterized using scanning electron microscopy (SEM), X-ray diffraction [...] Read more.
In this study, we successfully synthesized olivine-type FePO4 via an in situ oxidation method and further developed two composite cathode materials (o-FePO4-1/GR-1 and o-FePO4-1/GR-2) by incorporating graphene. The composites were characterized using scanning electron microscopy (SEM), X-ray diffraction (XRD), and X-ray Photoelectron Spectroscopy (XPS), revealing a three-dimensional porous layered structure with an enhanced surface area and strong interaction between FePO4 nanoparticles and graphene layers. Electrochemical tests demonstrated that the composite electrodes exhibited significantly improved performance compared to pristine FePO4, with discharge capacities of 147 mAh g−1 at 1C and 163 mAh g−1 at 0.1C for o-FePO4-1/GR-2, approaching the level of LiFePO4. The incorporation of graphene effectively enhanced the electrochemical reaction kinetics, highlighting the innovation of our method in developing high-performance cathode materials for lithium-ion batteries. Full article
(This article belongs to the Section Electronic Materials)
Show Figures

Figure 1

14 pages, 3688 KiB  
Article
Oxygen-Vacancy Engineered SnO2 Dots on rGO with N-Doped Carbon Nanofibers Encapsulation for High-Performance Sodium-Ion Batteries
by Yue Yan, Bingxian Zhu, Zhengzheng Xia, Hui Wang, Weijuan Xu, Ying Xin, Qingshan Zhao and Mingbo Wu
Molecules 2025, 30(15), 3203; https://doi.org/10.3390/molecules30153203 - 30 Jul 2025
Viewed by 360
Abstract
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to [...] Read more.
The widespread adoption of sodium-ion batteries (SIBs) remains constrained by the inherent limitations of conventional anode materials, particularly their inadequate electronic conductivity, limited active sites, and pronounced structural degradation during cycling. To overcome these limitations, we propose a novel redox engineering approach to fabricate oxygen-vacancy-rich SnO2 dots anchored on reduced graphene oxide (rGO), which are encapsulated within N-doped carbon nanofibers (denoted as ov-SnO2/rGO@N-CNFs) through electrospinning and subsequent carbonization. The introduction of rich oxygen vacancies establishes additional sodium intercalation sites and enhances Na+ diffusion kinetics, while the conductive N-doped carbon network effectively facilitates charge transport and mitigates SnO2 aggregation. Benefiting from the well-designed architecture, the hierarchical ov-SnO2/rGO@N-CNFs electrode achieves remarkable reversible specific capacities of 351 mAh g−1 after 100 cycles at 0.1 A g−1 and 257.3 mAh g−1 after 2000 cycles at 1.0 A g−1 and maintains 177 mAh g−1 even after 8000 cycles at 5.0 A g−1, demonstrating exceptional long-term cycling stability and rate capability. This work offers a versatile design strategy for developing high-performance anode materials through synergistic interface engineering for SIBs. Full article
Show Figures

Graphical abstract

23 pages, 2300 KiB  
Article
Electrodegradation of Selected Water Contaminants: Efficacy and Transformation Products
by Borislav N. Malinović, Tatjana Botić, Tijana Đuričić, Aleksandra Borković, Katarina Čubej, Ivan Mitevski, Jasmin Račić and Helena Prosen
Appl. Sci. 2025, 15(15), 8434; https://doi.org/10.3390/app15158434 - 29 Jul 2025
Viewed by 348
Abstract
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important [...] Read more.
The electrooxidation (EO) of three important environmental contaminants, anticorrosive 1H-benzotriazole (BTA), plasticizer dibutyl phthalate (DBP), and non-ionic surfactant Triton X-100 (tert-octylphenoxy[poly(ethoxy)] ethanol, t-OPPE), was studied as a possible means to improve their elimination from wastewaters, which are an important emission source. EO was performed in a batch reactor with a boron-doped diamond (BDD) anode and a stainless steel cathode. Different supporting electrolytes were tested: NaCl, H2SO4, and Na2SO4. Results were analysed from the point of their efficacy in terms of degradation rate, kinetics, energy consumption, and transformation products. The highest degradation rate, shortest half-life, and lowest energy consumption was observed in the electrolyte H2SO4, followed by Na2SO4 with only slightly less favourable characteristics. In both cases, degradation was probably due to the formation of persulphate or sulphate radicals. Transformation products (TPs) were studied mainly in the sulphate media and several oxidation products were identified with all three contaminants, while some evidence of progressive degradation, e.g., ring-opening products, was observed only with t-OPPE. The possible reasons for the lack of further degradation in BTA and DBP are too short of an EO treatment time and perhaps a lack of detection due to unsuitable analytical methods for more polar TPs. Results demonstrate that BDD-based EO is a robust method for the efficient removal of structurally diverse organic contaminants, making it a promising candidate for advanced water treatment technologies. Full article
Show Figures

Figure 1

30 pages, 7897 KiB  
Review
Recent Progress of 2D Pt-Group Metallic Electrocatalysts for Energy-Conversion Applications
by Ziyue Chen, Yuerong Wang, Haiyan He and Huajie Huang
Catalysts 2025, 15(8), 716; https://doi.org/10.3390/catal15080716 - 27 Jul 2025
Viewed by 555
Abstract
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts [...] Read more.
With the rapid growth of energy demand, the development of efficient energy-conversion technologies (e.g., water splitting, fuel cells, metal-air batteries, etc.) becomes an important way to circumvent the problems of fossil fuel depletion and environmental pollution, which motivates the pursuit of high-performance electrocatalysts with controllable compositions and morphologies. Among them, two-dimensional (2D) Pt-group metallic electrocatalysts show a series of distinctive architectural merits, including a high surface-to-volume ratio, numerous unsaturated metal atoms, an ameliorative electronic structure, and abundant electron/ion transfers channels, thus holding great potential in realizing good selectivity, rapid kinetics, and high efficiency for various energy-conversion devices. Considering that great progress on this topic has been made in recent years, here we present a panoramic review of recent advancements in 2D Pt-group metallic nanocrystals, which covers diverse synthetic methods, structural analysis, and their applications as electrode catalysts for various energy-conversion technologies. At the end, the paper also outlines the research challenges and future opportunities in this emerging area. Full article
Show Figures

Graphical abstract

21 pages, 4142 KiB  
Review
Nanomaterial-Enabled Enhancements in Thylakoid-Based Biofuel Cells
by Amit Sarode and Gymama Slaughter
Nanomaterials 2025, 15(14), 1092; https://doi.org/10.3390/nano15141092 - 14 Jul 2025
Viewed by 446
Abstract
Thylakoid-based photosynthetic biofuel cells (TBFCs) harness the inherent light-driven electron transfer pathways of photosynthesis to enable sustainable solar-to-electrical energy conversion. While TBFCs offer a unique route toward biohybrid energy systems, their practical deployment is hindered by sluggish electron transfer kinetics, unstable redox mediators, [...] Read more.
Thylakoid-based photosynthetic biofuel cells (TBFCs) harness the inherent light-driven electron transfer pathways of photosynthesis to enable sustainable solar-to-electrical energy conversion. While TBFCs offer a unique route toward biohybrid energy systems, their practical deployment is hindered by sluggish electron transfer kinetics, unstable redox mediators, and inefficient interfacing between biological and electrode components. This review critically examines recent advances in TBFCs, with a focus on three key surface engineering strategies: (i) incorporation of nanostructured materials to enhance electrode conductivity and surface area; (ii) application of redox mediators to facilitate charge transfer between photosynthetic proteins and electrodes; and (iii) functional exploitation of individual thylakoid components, including Photosystem I (PSI) and Photosystem II (PSII), to augment photogenerated current output. By systematically evaluating current advancements, this review highlights the synergistic role of materials and biological components in advancing TBFC technology and offers insights into next generation biohybrid solar energy systems with enhanced efficiency and scalability. Full article
(This article belongs to the Special Issue Advanced Nanotechnology in Fuel Cells)
Show Figures

Graphical abstract

41 pages, 6887 KiB  
Review
Charging the Future with Pioneering MXenes: Scalable 2D Materials for Next-Generation Batteries
by William Coley, Amir-Ali Akhavi, Pedro Pena, Ruoxu Shang, Yi Ma, Kevin Moseni, Mihrimah Ozkan and Cengiz S. Ozkan
Nanomaterials 2025, 15(14), 1089; https://doi.org/10.3390/nano15141089 - 14 Jul 2025
Viewed by 568
Abstract
MXenes, a family of two-dimensional carbide and nitride nanomaterials, have demonstrated significant promise across various technological domains, particularly in energy storage applications. This review critically examines scalable synthesis techniques for MXenes and their potential integration into next-generation rechargeable battery systems. We highlight both [...] Read more.
MXenes, a family of two-dimensional carbide and nitride nanomaterials, have demonstrated significant promise across various technological domains, particularly in energy storage applications. This review critically examines scalable synthesis techniques for MXenes and their potential integration into next-generation rechargeable battery systems. We highlight both top-down and emerging bottom-up approaches, exploring their respective efficiencies, environmental impacts, and industrial feasibility. The paper further discusses the electrochemical behavior of MXenes in lithium-ion, sodium-ion, and aluminum-ion batteries, as well as their multifunctional roles in solid-state batteries—including as electrodes, additives, and solid electrolytes. Special emphasis is placed on surface functionalization, interlayer engineering, and ion transport properties. We also compare MXenes with conventional graphite anodes, analyzing their gravimetric and volumetric performance potential. Finally, challenges such as diffusion kinetics, power density limitations, and scalability are addressed, providing a comprehensive outlook on the future of MXenes in sustainable energy storage technologies. Full article
(This article belongs to the Special Issue Pioneering Nanomaterials: Revolutionizing Energy and Catalysis)
Show Figures

Figure 1

19 pages, 690 KiB  
Review
Polymeric Composite-Based Electrochemical Sensing Devices Applied in the Analysis of Monoamine Neurotransmitters
by Stelian Lupu
Biosensors 2025, 15(7), 440; https://doi.org/10.3390/bios15070440 - 9 Jul 2025
Viewed by 459
Abstract
Electroanalysis of monoamine neurotransmitters is a useful tool for monitoring relevant neurodegenerative disorders and diseases. Electroanalysis of neurotransmitters using analytical devices consisting of electrodes modified with tailored and nanostructured composite materials is an active research topic nowadays. Nano- and microstructured composite materials composed [...] Read more.
Electroanalysis of monoamine neurotransmitters is a useful tool for monitoring relevant neurodegenerative disorders and diseases. Electroanalysis of neurotransmitters using analytical devices consisting of electrodes modified with tailored and nanostructured composite materials is an active research topic nowadays. Nano- and microstructured composite materials composed of various organic conductive polymers, metal/metal oxide nanoparticles, and carbonaceous materials enable an increase in the performance of electroanalytical sensing devices. Synergistic properties resulting from the combination of various pristine nanomaterials have enabled faster kinetics and increased overall performance. Herein, recent results related to the design and elaboration of electroanalytical sensing devices based on cost-effective and reliable nano- and microstructured composite materials for the quantification of monoamine neurotransmitters are presented. The discussion focuses on the fabrication procedures and detection strategies, highlighting the capabilities of the analytical platforms used in the determination of relevant analytes. The review aims to present the main benefits of using composite nanostructured materials in the electroanalysis of monoamine neurotransmitters. Full article
(This article belongs to the Special Issue Innovative Biosensing Technologies for Sustainable Healthcare)
Show Figures

Figure 1

14 pages, 3894 KiB  
Article
Self-Supported Tailoring of Nickel Sulfide/CuCo Nanosheets into Hierarchical Heterostructures for Boosting Urea Oxidation Reaction
by Prince J. J. Sagayaraj, Aravind Senthilkumar, Juwon Lee, Eunkyeong Byeon, Hyoung-il Kim, Sulakshana Shenoy and Karthikeyan Sekar
Catalysts 2025, 15(7), 664; https://doi.org/10.3390/catal15070664 - 7 Jul 2025
Viewed by 871
Abstract
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR [...] Read more.
Electro-oxidation of urea (UOR) in alkaline medium is one of the most effective alternative ways of producing green hydrogen, as the oxidation potential in UOR is less and thermodynamically more favorable than conventional water oxidation. The development of cost-effective materials in catalyzing UOR is recently seeking more attention in the research hotspot. Suitably modifying the Ni-based catalysts towards active site creation and preventing surface passivation is much important in this context, following which we reported the synthesis of Ni3S2 (NS) supported with CuCo (CC) bimetallic (NSCC). A simple hydrothermal route for NS synthesis and the electrodeposition method for CuCo (CC) deposition is adapted in a self-supported manner. The NS and CC catalysts exhibited sheet-like morphology, as confirmed by SEM and TEM analysis. The bimetallic CC deposition prevented the surface passivation of nickel sulfide (NS) over oxygen evolution reaction (OER) and improved the charge-transfer kinetics. The NSCC catalyst catalyzed UOR in an alkaline medium, which required a lower potential of 1.335 V vs. RHE to attain the current density of 10 mAcm−2, with a lower Tafel slope value of 131 mVdec−1. In addition, a two-electrode cell setup is constructed with an operating cell voltage of 1.512 V for delivering 10 mAcm−2 current density. This study illustrates the new strategy of designing heterostructure catalysts for electrocatalytic UOR. Full article
(This article belongs to the Special Issue Homogeneous and Heterogeneous Catalytic Oxidation and Reduction)
Show Figures

Figure 1

Back to TopTop