Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (64)

Search Parameters:
Keywords = electrochemically active microorganisms

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 1415 KB  
Review
Challenges in Operating a Microbial Electrolysis Cell (MEC): Translating Biofilm Activity to Electron Flow and Hydrogen
by Naufila Mohamed Ashiq, Alreem Ali Juma Al Rahma Aldarmaki, Mariam Salem Saif Alketbi, Haya Aadel Abdullah Alshehhi, Alreem Salem Obaid Alkaabi, Noura Suhail Mubarak Saeed Alshamsi and Ashraf Aly Hassan
Sustainability 2025, 17(24), 11216; https://doi.org/10.3390/su172411216 - 15 Dec 2025
Viewed by 195
Abstract
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected [...] Read more.
Microbial electrolysis cells (MECs) are bioreactors that utilize electroactive microorganisms to catalyze the oxidation of organic substrates in wastewater, generating electron flow for hydrogen production. Despite the concept, a persistent performance gap exists where metabolically active anodic biofilms frequently fail to achieve expected current densities by the flow of electrons to produce hydrogen. This review examines the multiple causes that lead to the disconnect between robust biofilm development, electron transfer, and hydrogen production. Factors affecting biofilm generation (formation, substrate selection, thickness, conductivity, and heterogeneity) are discussed. Moreover, factors affecting electron transfer (electrode configuration, mass transfer constraints, key electroactive species, and metabolic pathways) are discussed. Also, substrate diffusion limitations, proton accumulation causing inhibitory pH gradients in stratified biofilms, elevated internal resistance, electron diversion to competing processes like hydrogenotrophic methanogenesis consuming H2, and detrimental biofilm aging, impacting hydrogen production, are studied. The critical roles of electrode materials, reactor configuration, and biofilm electroactivity are analyzed, emphasizing advanced electrochemical (CV, EIS, LSV), imaging (CLSM, SEM, AFM), and omics (metagenomics, transcriptomics, proteomics) techniques essential for diagnosing bottlenecks. Strategies to enhance extracellular electron transfer (EET) (advanced nanomaterials, redox mediators, conductive polymers, bioaugmentation, and pulsed electrical operation) are evaluated for bridging this performance gap and improving energy recovery. The review presents an integrated framework connecting biofilm electroactivity, EET kinetics, and hydrogen evolution efficiency. It highlights that conventional biofilm metrics may not reflect actual electron flow. Combining electrochemical, microelectrode, and omics insights allows precise evaluation of EET efficiency and supports sustainable MEC optimization for enhanced hydrogen generation. Full article
Show Figures

Figure 1

26 pages, 927 KB  
Review
Multilevel Mechanisms of Magnetic Nanoparticles in Enhancing Dark Fermentative Hydrogen Production: From Pure to Mixed Cultures
by Junwei Yan and Zhangzhang Xie
Hydrogen 2025, 6(4), 120; https://doi.org/10.3390/hydrogen6040120 - 14 Dec 2025
Viewed by 265
Abstract
Dark fermentative hydrogen production is constrained by challenges including low hydrogen yield and operational instability. Magnetic nanoparticles (MNPs) have emerged as promising additives for enhancing biohydrogen production due to their unique physicochemical characteristics, such as high specific surface area, excellent electrical conductivity, and [...] Read more.
Dark fermentative hydrogen production is constrained by challenges including low hydrogen yield and operational instability. Magnetic nanoparticles (MNPs) have emerged as promising additives for enhancing biohydrogen production due to their unique physicochemical characteristics, such as high specific surface area, excellent electrical conductivity, and inherent magnetic recyclability. This review systematically compares the enhancement mechanisms of MNPs in two distinct microbial systems: pure cultures and mixed cultures. In pure cultures, MNPs function primarily at the cellular and molecular levels through the following: (1) serving as sustained-release sources of essential metallic cofactors like Fe and Ni to promote hydrogenase synthesis and activation; (2) acting as efficient electron carriers that facilitate intracellular and extracellular electron transfer; and (3) redirecting central carbon metabolism toward high-hydrogen-yield acetate-type fermentation. In mixed cultures, which are more representative of practical applications, MNPs operate at the ecological level through the following: (1) modifying microenvironmental niches to exert selective pressure that enriches hydrogen-producing bacteria, such as Clostridium; (2) forming conductive networks that promote direct interspecies electron transfer and strengthen syntrophic metabolism; and (3) enhancing system robustness via toxin adsorption and pH buffering. Despite promising phenomenological improvements, critical knowledge gaps remain, including unclear structure–activity relationships of MNPs, insufficient quantification of electron transfer pathways, unknown genetic regulatory mechanisms, and overlooked magnetobiological effects. Future research should integrate electrochemical monitoring, multi-omics analyses, and advanced characterization techniques to deepen the mechanistic understanding of nanomaterial–microbe interactions. This review aims to provide theoretical insights and practical strategies for developing efficient and sustainable MNP–microorganism hybrid systems for scalable biohydrogen production. Full article
(This article belongs to the Special Issue Advances in Hydrogen Production, Storage, and Utilization)
Show Figures

Figure 1

48 pages, 3047 KB  
Review
From Prescription to Pollution: Assessing the Ecological Impact and Treatment Technologies for Antidepressant Contaminants
by Jordana Georgin, Jivago Schumacher de Oliveira, Younes Dehmani, Noureddine El Messaoudi, Matheus de Albuquerque Carvalho, Lucas Meili, Claudete Gindri Ramos and Dison S. P. Franco
Sustainability 2025, 17(21), 9752; https://doi.org/10.3390/su17219752 - 1 Nov 2025
Viewed by 1400
Abstract
Depression is becoming more common in the face of modern life’s obstacles. Antidepressants are a fast-expanding pharmaceutical category. Antidepressant residues in water must be closely monitored and kept at levels that do not endanger human health, just like those of other psychotropic medications. [...] Read more.
Depression is becoming more common in the face of modern life’s obstacles. Antidepressants are a fast-expanding pharmaceutical category. Antidepressant residues in water must be closely monitored and kept at levels that do not endanger human health, just like those of other psychotropic medications. Additionally, research has shown that these pollutants severely hinder aquatic life’s ability to migrate, reproduce, and interact with one another when they enter natural ecosystems. Antidepressants released into the natural environment can therefore be expected to have an impact on exposed fish and other aquatic species. There is a lot of information available about how exposure affects fish, but much of it is for exposure levels higher than those seen in their natural habitats. Antidepressants can bioaccumulate in fish tissues, and some behavioral effects have been documented for exposures that are relevant to the environment. As a result, antidepressant residue removal methods must be incorporated into contemporary wastewater treatment plant technology. In addition to covering a wide range of suggested treatment options and their ecotoxicological consequences on non-target organisms, this study discusses recent efforts to accomplish this goal. First, a thorough analysis of the harmful impacts on non-target people is provided. This work describes a variety of adsorptive methods that can make use of modern materials like molecularly imprinted polymers or ion-exchange resins or can rely on well-known and efficient adsorbents like silicates or activated carbon. Although extractive methods are also taken into consideration, they are now impractical due to the lack of reasonably priced and ecologically suitable solvents. Lastly, sophisticated oxidation methods are discussed, such as electrochemical alternatives, UV and gamma radiation, and ozone therapy. Notably, some of these techniques could totally mineralize antidepressant toxicants, either alone or in combination. Lastly, the topic of biological treatment with microorganisms is covered. This method can be very specific, but it usually prevents full mineralization. Full article
(This article belongs to the Section Sustainable Chemical Engineering and Technology)
Show Figures

Figure 1

18 pages, 3100 KB  
Article
The Influence of Acetate and Sodium Chloride Concentration on the Toxic Response of Electroactive Microorganisms
by Fei Xing, Haiya Zhang, Shuhu Xiao and Hongbin Lu
Microorganisms 2025, 13(9), 2077; https://doi.org/10.3390/microorganisms13092077 - 6 Sep 2025
Viewed by 791
Abstract
This study discussed the influence of acetate and sodium chloride concentration on monitoring 2,4-dichlorophenol(2,4-DCP) by electroactive bacteria. The performance of the reactor was represented by power density, and the electrochemical activity was represented by redox capacity. At the same time, micro-electrodes were used [...] Read more.
This study discussed the influence of acetate and sodium chloride concentration on monitoring 2,4-dichlorophenol(2,4-DCP) by electroactive bacteria. The performance of the reactor was represented by power density, and the electrochemical activity was represented by redox capacity. At the same time, micro-electrodes were used to detect the redox potential between biofilms, and the changes in extracellular polymers and microbial community structure under different conditions were also explored. With acetate concentration of 1 g/L and sodium chloride concentration of 0.0125 g/L, the electroactive microorganisms were more sensitive to toxic substances and responded fast. The biofilm also evenly covered on the surface of the carrier, which aided in the diffusion of substances. Although the maximum power density monotonically increased with acetate concentration, high concentration of substrate may mask the inhibitory effect and affect the judgment of inhibitory results. The content of protein and polysaccharide increased monotonically with sodium chloride concentration. However, more polysaccharides would lead to high resistance to electron transfer. Compared to sodium chloride, the microbial content was more affected by acetate. The electroactive microorganisms had strong adaptability to salinity. In practical application, it is conducive to increase the sensitivity of MFCs to reasonably reduce the concentration of acetic acid and sodium chloride. Full article
Show Figures

Graphical abstract

23 pages, 8047 KB  
Article
Efficient Chromium(VI) Removal Through In Situ Nano-Iron Sulfide Formation at the Cathode of Microbial Fuel Cells
by Yanyun Guo, Diwen Cao, Shien Tang, Yujing Hu, Weiliang Dong and Xiayuan Wu
Water 2025, 17(14), 2073; https://doi.org/10.3390/w17142073 - 11 Jul 2025
Viewed by 1098
Abstract
This study introduces an advanced strategy for improving microbial fuel cell (MFC) performance in hexavalent chromium (Cr(VI)) wastewater treatment. A high-performance nano-iron sulfide (nano-FeS) hybridized biocathode was developed by regulating glucose concentration and applying an external voltage. The combination of a glucose concentration [...] Read more.
This study introduces an advanced strategy for improving microbial fuel cell (MFC) performance in hexavalent chromium (Cr(VI)) wastewater treatment. A high-performance nano-iron sulfide (nano-FeS) hybridized biocathode was developed by regulating glucose concentration and applying an external voltage. The combination of a glucose concentration of 1000 mg/L and a 0.2 V applied voltage greatly promoted the in situ biosynthesis of nano-FeS, resulting in smaller particle sizes and increased quantities within the biocathode, leading to enhanced electrochemical performance. The MFC with the hybridized biocathode exhibited the highest power density (43.45 ± 1.69 mW/m2) and Cr(VI) removal rate (3.99 ± 0.09 mg/L·h), outperforming the control by 29% and 71%, respectively. The improvements were attributed to the following processes. (1) Nano-FeS provided additional active sites that enhanced electron transfer and electrocatalytic activity, reducing cathode passivation; (2) it protected microorganisms by reducing Cr(VI) toxicity, promoting redox-active substance enrichment and antioxidant enzyme secretion, which maintained microbial activity; (3) the biocathode selectively enriched electroactive and Cr(VI)-reducing bacteria (such as Brucella), fostering a stable and symbiotic microbial community. This study highlights the promising potential of regulating carbon source and external voltage to boost nano-FeS biosynthesis, offering a sustainable and efficient strategy for MFC-based Cr(VI) wastewater treatment with practical implications. Full article
Show Figures

Figure 1

16 pages, 2742 KB  
Review
Urease-Driven Microbially Induced Carbonate Precipitation (MICP) for the Circular Valorization of Reverse Osmosis Brine Waste: A Perspective Review
by Dayana Arias, Karem Gallardo, Manuel Saldana and Felipe Galleguillos-Madrid
Minerals 2025, 15(5), 543; https://doi.org/10.3390/min15050543 - 20 May 2025
Cited by 3 | Viewed by 3088
Abstract
The growing scarcity of freshwater has accelerated the global deployment of desalination technologies, especially reverse osmosis (RO), as an alternative to meet increasing water demands. However, this process generates substantial quantities of brine—a hypersaline waste stream that can severely impact marine ecosystems if [...] Read more.
The growing scarcity of freshwater has accelerated the global deployment of desalination technologies, especially reverse osmosis (RO), as an alternative to meet increasing water demands. However, this process generates substantial quantities of brine—a hypersaline waste stream that can severely impact marine ecosystems if improperly managed. This perspective review explores the use of urease-driven Microbially Induced Carbonate Precipitation (MICP) as a biotechnological solution aligned with circular economy principles for the treatment and valorization of RO brines. Through the enzymatic activity of ureolytic microorganisms, MICP promotes the precipitation of calcium carbonate and other mineral phases, enabling the recovery of valuable elements and reducing environmental burdens. Beyond mineral capture, MICP shows promise in the stabilization of toxic metals and potential integration with microbial electrochemical systems for energy applications. This review summarizes current developments, identifies existing challenges, such as microbial performance in saline conditions and reliance on conventional urea sources, and proposes future directions focused on strain optimization, nutrient recycling, and process scalability for sustainable implementation. Full article
Show Figures

Figure 1

14 pages, 1091 KB  
Review
Electro-Fermentation for Biofuel and Biochemical Production
by Priya Pilania, Keshani Bhushan and Urmila Gupta Phutela
Fermentation 2025, 11(4), 219; https://doi.org/10.3390/fermentation11040219 - 15 Apr 2025
Cited by 4 | Viewed by 3205
Abstract
Electro-fermentation (EF) is an emerging bioprocess with the ability to regulate the metabolism of electrochemically active microorganisms. In various fermentation processes, electrodes perform either as an electron acceptor or donor, facilitating the formation and movement of electrons and protons. The bioelectric activity created [...] Read more.
Electro-fermentation (EF) is an emerging bioprocess with the ability to regulate the metabolism of electrochemically active microorganisms. In various fermentation processes, electrodes perform either as an electron acceptor or donor, facilitating the formation and movement of electrons and protons. The bioelectric activity created by external electrodes enhances the metabolic reactions, resulting in a higher yield of value-added chemicals. The conventional fermentation process has a number of limitations in terms of usability and economic feasibility, whereas electro-fermentation presents a hybrid technology, minimizing redox instabilities and enhancing the metabolic process in general to achieve increased product production and a higher biomass yield. Electrochemically active microorganisms such as Geobacter and Shewanella species can carry out the exchange of electrons with electrodes directly or indirectly by using electron mediators. Furthermore, the integration of microbial fuel cells (MFCs) with microbial electrolysis cells (MECs) precludes the need for external manipulation of the fermentation system as the required change in electrochemical gradient is provided by the MFC counterpart. The major beneficial aspects of electro-fermentation include its role as a potential tool for enhancing the production of value-added compounds. The mixed-culture system clearly had a favorable impact on the synthesis of butyric acid from rice straw. Furthermore, cathodic electro-fermentation (CEF) exhibited benefits over anaerobic fermentation, influencing NADH/NAD+, enabling a higher product titer, and reducing the accumulation of byproducts. Hence, in this review, we emphasize the importance of electro-fermentation over conventional fermentation for biofuel and biochemical production, covering its fundamentals, interactions, types, future challenges, and ability to provide several benefits to boost the fermentation process, such as the process efficiency and product yield, on an industrial scale. Full article
(This article belongs to the Special Issue Microbial Fuel Cell Advances)
Show Figures

Figure 1

17 pages, 4733 KB  
Article
Distinguishing the Contribution of Extracellular Electron Transfer in the Desulfovibrio caledoniensis-Induced Total Corrosion of Q235 Carbon Steel
by Keliang Fan, Fang Guan, Xiaofan Zhai, Guanhua Jiao, Yugang Sang, Min Jing and Jizhou Duan
Materials 2025, 18(7), 1613; https://doi.org/10.3390/ma18071613 - 2 Apr 2025
Viewed by 854
Abstract
Microbially influenced corrosion (MIC) in anaerobic environments accounts for many severe failures and losses in different industries. Sulfate-reducing bacteria (SRB) represent a typical class of corrosive microorganisms capable of acquiring electrons from steel through extracellular electron transfer processes, thereby inducing severe electrical microbially [...] Read more.
Microbially influenced corrosion (MIC) in anaerobic environments accounts for many severe failures and losses in different industries. Sulfate-reducing bacteria (SRB) represent a typical class of corrosive microorganisms capable of acquiring electrons from steel through extracellular electron transfer processes, thereby inducing severe electrical microbially influenced corrosion (EMIC). Although prior research has underscored the significance of extracellular electron transfer, the contribution of EMIC to the whole MIC has not been comprehensively studied. In this study, Q235 steel coupons were employed in an H-shaped electrochemical cell to conduct electrochemical and coupon immersion experiments, aiming to determine the contribution of EMIC to the overall MIC. The experiments were conducted under two distinct carbon source conditions: 100% carbon source (CS) and 1% CS environments. It was observed that the biotic electrodes exhibited significantly higher cathodic currents, with the most pronounced biological cathodic activity detected in the 100% CS biotic medium. The voltammetric responses of the electrodes before and after changes in the medium confirmed the biocatalytic capability of the attached biofilm in stimulating the cathodic reaction. The proportion of EMIC in MIC was calculated using linear polarization resistance, revealing a trend over time. Additionally, weight loss tests indicated that the contribution of EMIC to the total MIC was approximately 27.69%. Furthermore, the results demonstrated that while the overall corrosion rate was lower in the 1% CS environment, the proportion of EMIC in MIC increased to approximately 37.68%. Full article
Show Figures

Graphical abstract

13 pages, 1618 KB  
Article
Painted Electrode with Activated Coconut Carbon for Microbial Fuel Cell
by Paweł P. Włodarczyk and Barbara Włodarczyk
Energies 2025, 18(6), 1350; https://doi.org/10.3390/en18061350 - 10 Mar 2025
Viewed by 1212
Abstract
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based [...] Read more.
A microbial fuel cell (MFC) is a bio-electrochemical system that utilizes electroactive microorganisms to generate electricity. These microorganisms, which convert the energy stored in substrates such as wastewater into electricity, grow on the anode. To ensure biocompatibility, anodes are typically made from carbon-based materials. Therefore, a carbon-based material (by-product of coconut processing) was selected for testing in this study. The anode was prepared by bonding activated coconut carbon with carbon paint on a glass electrode. The aim of this study was to analyze the feasibility of using an electrode prepared in this manner as a surface layer on the anode of an MFC. The performance of an electrode coated only with carbon paint was also evaluated. These two electrodes were compared with a carbon felt electrode, which is commonly used as an anode material in MFCs. In this research, the MFC was fed with a by-product of yeast production, namely a molasses decoction from yeast processing. Measurements were conducted in a standard two-chamber glass MFC with a glass membrane separating the chambers. During the experiment, parameters such as start-up time, cell voltage during MFC start-up, output cell voltage, and power density curves were analyzed. The carbon paint-coated electrode with the activated coconut carbon additive demonstrated operating parameters similar to those of the carbon felt electrode. The results indicate that it is possible to produce electrodes (on a base of by-product of coconut processing) for MFCs using a painting method; however, to achieve a performance comparable to carbon felt, the addition of activated coconut carbon is necessary. This study demonstrates the feasibility of forming a biocompatible layer on various surfaces. Incorporating activated coconut carbon does not complicate the anode fabrication process, as fine ACC grains can be directly applied to the wet carbon paint layer. Additionally, the use of carbon paint as a conductive layer for the active anode in MFCs offers versatility in designing electrodes of various shapes, enabling them to be coated with a suitable active and conductive layer to promote biofilm formation. Moreover, the findings of this study confirm that waste-derived materials can be effectively utilized as electrode components in MFC anodes. The results validate the chosen research approach and emphasize the potential for further investigations in this field, contributing to the development of cost-efficient electrodes derived from by-products for MFC applications. Full article
(This article belongs to the Section A4: Bio-Energy)
Show Figures

Figure 1

19 pages, 14510 KB  
Article
The Influence of Roughness on the Protective Layer Formation Induced by Marine Microorganisms on 5083 Aluminum Alloy
by Julien Jaume, Marie-Line Délia and Régine Basséguy
Materials 2025, 18(3), 708; https://doi.org/10.3390/ma18030708 - 6 Feb 2025
Cited by 1 | Viewed by 1021
Abstract
This study investigates the formation of a protective layer on a 5083 aluminum alloy surface induced by microorganisms from salt marsh. The influence of the initial surface roughness was examined to identify optimal conditions for maximum coverage and thickness of the protective layer. [...] Read more.
This study investigates the formation of a protective layer on a 5083 aluminum alloy surface induced by microorganisms from salt marsh. The influence of the initial surface roughness was examined to identify optimal conditions for maximum coverage and thickness of the protective layer. As two opposing effects are suspected, where high surface roughness enhances bacterial adhesion but reduces the resistance to abiotic corrosion, various degrees of roughness were tested. Using electrochemical experiments (OCP measurement, 1/Rp determination, and pitting sensitivity), SEM/TEM observation and EDX characterization, a compromise was found on the initial roughness to obtain a thick protective layer through good bacterial adhesion while minimizing abiotic corrosion. The optimal roughness, achieved through 240-grit grinding, facilitates a uniform distribution of microorganisms and the development of a dense, evenly thick protective layer that significantly enhances the alloy’s resistance to pitting corrosion. The passivity domain doubled when comparing the electrochemical behavior of electrodes immersed in the presence of microbial activity to those immersed without it. Full article
(This article belongs to the Special Issue Corrosion Mechanism and Protection Technology of Metallic Materials)
Show Figures

Figure 1

26 pages, 949 KB  
Review
Biosensors for Detecting Food Contaminants—An Overview
by António Inês and Fernanda Cosme
Processes 2025, 13(2), 380; https://doi.org/10.3390/pr13020380 - 30 Jan 2025
Cited by 16 | Viewed by 8966
Abstract
Food safety is a pressing global concern due to the risks posed by contaminants such as pesticide residues, heavy metals, allergens, mycotoxins, and pathogenic microorganisms. While accurate, traditional detection methods like ELISA, HPLC, and mass spectrometry are often time-consuming and resource-intensive, highlighting the [...] Read more.
Food safety is a pressing global concern due to the risks posed by contaminants such as pesticide residues, heavy metals, allergens, mycotoxins, and pathogenic microorganisms. While accurate, traditional detection methods like ELISA, HPLC, and mass spectrometry are often time-consuming and resource-intensive, highlighting the need for innovative alternatives. Biosensors based on biological recognition elements such as enzymes, antibodies, and aptamers, offer fast, sensitive, and cost-effective solutions. Using transduction mechanisms like electrochemical, optical, piezoelectric, and thermal systems, biosensors provide versatile tools for detecting contaminants. Advances in DNAzyme- and aptamer-based technologies enable the precise detection of heavy metals, while enzyme- and protein-based biosensors monitor metal-induced changes in biological activity. Innovations like microbial biosensors and DNA-modified electrodes enhance detection accuracy. Biosensors are also highly effective in identifying pesticide residues, allergens, mycotoxins, and pathogens through immunological, enzymatic, and nucleic acid-based techniques. The integration of nanomaterials and bioelectronics has significantly improved the sensitivity and performance of biosensors. By facilitating real-time, on-site monitoring, these devices address the limitations of conventional methods to ensure food quality and regulatory compliance. This review highlights the transformative role of biosensors and how biosensors are improved by emerging technologies in food contamination detection, emphasizing their potential to mitigate public health risks and enhance food safety throughout the supply chain. Full article
Show Figures

Figure 1

17 pages, 3725 KB  
Article
Electrochemically Coupled Anaerobic Membrane Bioreactor Facilitates Remediation of Microplastic-Containing Wastewater
by Kunpeng Zhou, Huilin Yin, Zhenyu Ding, Nuchao Xu and Yun Fan
Water 2024, 16(22), 3236; https://doi.org/10.3390/w16223236 - 11 Nov 2024
Cited by 3 | Viewed by 1599
Abstract
Ubiquitous microplastics (MPs) severely affect the efficiency of anaerobic membrane bioreactors (AMBR) for wastewater treatment and energy recovery by inhibiting the metabolic activity of anaerobic microorganisms. The electrochemical system can not only accelerate waste metabolism but also improve microbial resistance by promoting interspecies [...] Read more.
Ubiquitous microplastics (MPs) severely affect the efficiency of anaerobic membrane bioreactors (AMBR) for wastewater treatment and energy recovery by inhibiting the metabolic activity of anaerobic microorganisms. The electrochemical system can not only accelerate waste metabolism but also improve microbial resistance by promoting interspecies electron transfer within the system, which has broad application potential in the remediation of MPs wastewater. This paper attempts to evaluate the effect of electrical stimulation on the efficiency of biological wastewater treatment processes containing MPs employing an electrochemical system coupled to an anaerobic membrane bioreactor (ECAMBR). The results showed that although MP exposure inhibited methanogenic performance, electrical stimulation effectively alleviated this inhibitory effect. Further analysis showed that microplastics increased cell damage and affected enzyme activity, but electrical stimulation could affect the stress response of microorganisms, leading to changes in their cell viability and enzyme activities. The 16S-rRNA sequencing indicated that the highest abundance of hydrolytic–acidogenic bacteria Firmicutes and Bacteroidota was found at the phylum level, whereas at the genus level, it was Christensenellaceae_R-7_group, and methanogens were dominated by Methylomonas, Methyloversatilis, and Methylobacter. Functional prediction analysis indicated that carbohydrate metabolism, amino acid metabolism, and energy metabolism were the dominant metabolic pathways and that electrical stimulation could enhance their activities. This study demonstrated the important role of electrochemical stimulation in the remediation of wastewater containing high concentrations of MPs. Full article
Show Figures

Figure 1

16 pages, 5216 KB  
Article
Design and Optimization of PEDOT/Graphene Oxide and PEDOT/Reduced Graphene Oxide Electrodes to Improve the Performance of Microbial Fuel Cells, Accompanied by Comprehensive Electrochemical Analysis
by Gean Arteaga-Arroyo, Andrea Ramos-Hernández, Aldeir De Los Reyes-Rios, Maximiliano Méndez-López, Karina Pastor-Sierra, Daniel Insuasty, Edgar Marquez and Jayson Fals
Polymers 2024, 16(22), 3134; https://doi.org/10.3390/polym16223134 - 10 Nov 2024
Cited by 3 | Viewed by 2384
Abstract
A comprehensive investigation into the design and electrochemical optimization of composite electrodes consisting of poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene oxide (GO)/Methanococcus deltae and reduced graphene oxide (rGO)/Methanococcus deltae hybrids, anchored onto stainless-steel (SS) substrates, has been conducted. The GO and rGO materials were synthesized [...] Read more.
A comprehensive investigation into the design and electrochemical optimization of composite electrodes consisting of poly(3,4-ethylenedioxythiophene) (PEDOT)/graphene oxide (GO)/Methanococcus deltae and reduced graphene oxide (rGO)/Methanococcus deltae hybrids, anchored onto stainless-steel (SS) substrates, has been conducted. The GO and rGO materials were synthesized using a modified Hummer method. The resulting SS/PEDOT/GO and SS/PEDOT/rGO composite electrodes were subjected to systematic electrochemical characterization, focusing on the PEDOT p-type and n-type doping/undoping processes within diverse solvent environments (CH3CN and H2O) and electrolyte compositions (LiClO4 and KCl). Raman spectroscopy analysis confirmed the successful integration of graphene derivatives into the electrode structures, while field-emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM) revealed increased surface roughness upon GO and rGO incorporation. This increase in surface roughness is believed to enhance the adhesion of Methanococcus deltae microorganisms and facilitate efficient electron transport. Electrochemical measurements showed that the resulting SS/PEDOT/GO and SS/PEDOT/rGO anodes exhibit remarkable electrocatalytic activity. The SS/PEDOT/GO electrode achieved a maximum power density of 1014.420 mW/cm2, while the SS/PEDOT/rGO electrode reached 632.019 mW/cm2. Full article
(This article belongs to the Special Issue Functional Graphene-Polymer Composites, 2nd Edition)
Show Figures

Figure 1

17 pages, 13470 KB  
Article
Hydrocarbonoclastic Biofilm-Based Microbial Fuel Cells: Exploiting Biofilms at Water-Oil Interface for Renewable Energy and Wastewater Remediation
by Nicola Lovecchio, Roberto Giuseppetti, Lucia Bertuccini, Sandra Columba-Cabezas, Valentina Di Meo, Mario Figliomeni, Francesca Iosi, Giulia Petrucci, Michele Sonnessa, Fabio Magurano and Emilio D’Ugo
Biosensors 2024, 14(10), 484; https://doi.org/10.3390/bios14100484 - 8 Oct 2024
Cited by 2 | Viewed by 3600
Abstract
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water–oil interface, creating a distinct environment for [...] Read more.
Microbial fuel cells (MFCs) represent a promising technology for sustainable energy generation, which leverages the metabolic activities of microorganisms to convert organic substrates into electrical energy. In oil spill scenarios, hydrocarbonoclastic biofilms naturally form at the water–oil interface, creating a distinct environment for microbial activity. In this work, we engineered a novel MFC that harnesses these biofilms by strategically positioning the positive electrode at this critical junction, integrating the biofilm’s natural properties into the MFC design. These biofilms, composed of specialized hydrocarbon-degrading bacteria, are vital in supporting electron transfer, significantly enhancing the system’s power generation. Next-generation sequencing and scanning electron microscopy were used to characterize the microbial community, revealing a significant enrichment of hydrocarbonoclastic Gammaproteobacteria within the biofilm. Notably, key genera such as Paenalcaligenes, Providencia, and Pseudomonas were identified as dominant members, each contributing to the degradation of complex hydrocarbons and supporting the electrogenic activity of the MFCs. An electrochemical analysis demonstrated that the MFC achieved a stable power output of 51.5 μW under static conditions, with an internal resistance of about 1.05 kΩ. The system showed remarkable long-term stability, which maintained consistent performance over a 5-day testing period, with an average daily energy storage of approximately 216 mJ. Additionally, the MFC effectively recovered after deep discharge cycles, sustaining power output for up to 7.5 h before requiring a recovery period. Overall, the study indicates that MFCs based on hydrocarbonoclastic biofilms provide a dual-functionality system, combining renewable energy generation with environmental remediation, particularly in wastewater treatment. Despite lower power output compared to other hydrocarbon-degrading MFCs, the results highlight the potential of this technology for autonomous sensor networks and other low-power applications, which required sustainable energy sources. Moreover, the hydrocarbonoclastic biofilm-based MFC presented here offer significant potential as a biosensor for real-time monitoring of hydrocarbons and other contaminants in water. The biofilm’s electrogenic properties enable the detection of organic compound degradation, positioning this system as ideal for environmental biosensing applications. Full article
(This article belongs to the Special Issue Microbial Biosensor: From Design to Applications)
Show Figures

Figure 1

11 pages, 2534 KB  
Article
Enrichment of Geobacter on Anode Biofilms from Domestic Wastewater without Posing Anode Potential in Microbial Electrochemical Cells
by Ravi Shankar Yadav, Weihua He, Dandan Liang, Chao Li, Yanling Yu and Yujie Feng
Microbiol. Res. 2024, 15(3), 1859-1869; https://doi.org/10.3390/microbiolres15030124 - 13 Sep 2024
Cited by 2 | Viewed by 2143
Abstract
Microbial electrochemical cells (MxCs) offer a sustainable approach for wastewater treatment and energy recovery by harnessing the electroactive properties of microorganisms. This study explores the enrichment of Geobacter species on anode biofilms in single-(S-MxCs) and double-chambered (D-MxCs) MxCs, using domestic wastewater without an [...] Read more.
Microbial electrochemical cells (MxCs) offer a sustainable approach for wastewater treatment and energy recovery by harnessing the electroactive properties of microorganisms. This study explores the enrichment of Geobacter species on anode biofilms in single-(S-MxCs) and double-chambered (D-MxCs) MxCs, using domestic wastewater without an external anode potential. Stable current densities were achieved within 10 days for S-MxCs (9.52 ± 0.8 A/m2) and 14 days for D-MxCs (4.28 ± 0.9 A/m2), with S-MxCs showing a superior electrochemical performance. Hydrogen production rates were higher in D-MxCs (14.93 ± 0.66 mmol H2/L/day) compared to S-MxCs (9.46 ± 0.8 mmol H2/L/day), with cumulative production rates of 12.9 ± 1.3 mmol H2/g COD and 6.48 ± 1.4 mmol H2/g COD, respectively. Cyclic voltammetry confirmed enhanced bioelectrocatalytic activity in S-MxCs, while SEM imaging showed denser biofilms on S-MxC anodes. The novelty of this study lies in its demonstration of efficient biofilm development and microbial community resilience under non-potentialized conditions, providing insights that advance the practical application of MxCs in environmental biotechnology. Full article
Show Figures

Figure 1

Back to TopTop