error_outline You can access the new MDPI.com website here. Explore and share your feedback with us.
 
 
Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (107)

Search Parameters:
Keywords = electroanalytical chemistry

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
14 pages, 4225 KB  
Article
Portable Bacterial Cellulose-Based Fluorescent Sensor for Rapid and Sensitive Detection of Copper in Food and Environmental Samples
by Hongyuan Zhang, Qian Zhang, Xiaona Ji, Bing Han, Jieqiong Wang and Ce Han
Molecules 2025, 30(17), 3633; https://doi.org/10.3390/molecules30173633 - 5 Sep 2025
Cited by 1 | Viewed by 1525
Abstract
Copper ions (Cu2+), indispensable in physiological processes yet toxic at elevated concentrations, require sensitive on-site monitoring. Here, a portable fluorescent sensing film (Y-CDs@BCM) was fabricated by anchoring yellow-emitting carbon dots (Y-CDs) into bacterial cellulose films, which enables rapid and sensitive detection [...] Read more.
Copper ions (Cu2+), indispensable in physiological processes yet toxic at elevated concentrations, require sensitive on-site monitoring. Here, a portable fluorescent sensing film (Y-CDs@BCM) was fabricated by anchoring yellow-emitting carbon dots (Y-CDs) into bacterial cellulose films, which enables rapid and sensitive detection of Cu2+ in complex real-world samples. The yellow fluorescent carbon dots (Y-CDs) were synthesized with the aid of o-phenylenediamine and 1-octyl-3-methylimidazolium tetrafluoroborate as precursors, exhibiting excellent fluorescence stability. The fluorescence of Y-CDs was selectively quenched by Cu2+ via the inner filter effect (IFE), allowing quantitative analysis with superior sensitivity compared to existing methods. By adding bacterial cellulose (BC) as a solid support, aggregation-induced fluorescence quenching was effectively reduced, and sensor robustness and portability were improved. Through smartphone-based colorimetric analysis, the Y-CDs@BCM sensor enabled rapid, visual interpretation of Cu2+ detection (within 1 min). Furthermore, cell viability and in vivo assays confirmed the biocompatibility of Y-CDs, indicating their suitability for biological imaging. This work presents an environmentally friendly, reliable, and practical method for on-site Cu2+ monitoring, emphasizing its broad application potential in food safety control and environmental analysis. Full article
(This article belongs to the Special Issue Applications of Fluorescent Sensors in Food and Environment)
Show Figures

Figure 1

13 pages, 2198 KB  
Article
A Portable and Thermally Degradable Hydrogel Sensor Based on Eu-Doped Carbon Dots for Visual and Ultrasensitive Detection of Ferric Ion
by Hongyuan Zhang, Qian Zhang, Juan Tang, Huanxin Yang, Xiaona Ji, Jieqiong Wang and Ce Han
Molecules 2025, 30(15), 3280; https://doi.org/10.3390/molecules30153280 - 5 Aug 2025
Viewed by 778
Abstract
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require [...] Read more.
Degradable fluorescent sensors present a promising portable approach for heavy metal ion detection, aiming to prevent secondary environmental pollution. Additionally, the excessive intake of ferric ions (Fe3+), an essential trace element for human health, poses critical health risks that urgently require effective monitoring. In this study, we developed a thermally degradable fluorescent hydrogel sensor (Eu-CDs@DPPG) based on europium-doped carbon dots (Eu-CDs). The Eu-CDs, synthesized via a hydrothermal method, exhibited selective fluorescence quenching by Fe3+ through the inner filter effect (IFE). Embedding Eu-CDs into the hydrogel significantly enhanced their stability and dispersibility in aqueous environments, effectively resolving issues related to aggregation and matrix interference in traditional sensing methods. The developed sensor demonstrated a broad linear detection range (0–2.5 µM), an extremely low detection limit (1.25 nM), and rapid response (<40 s). Furthermore, a smartphone-assisted LAB color analysis allowed portable, visual quantification of Fe3+ with a practical LOD of 6.588 nM. Importantly, the hydrogel was thermally degradable at 80 °C, thus minimizing environmental impact. The sensor’s practical applicability was validated by accurately detecting Fe3+ in spinach and human urine samples, achieving recoveries of 98.7–108.0% with low relative standard deviations. This work provides an efficient, portable, and sustainable sensing platform that overcomes the limitations inherent in conventional analytical methods. Full article
(This article belongs to the Section Photochemistry)
Show Figures

Graphical abstract

20 pages, 1471 KB  
Article
A New Approach for Interferent-Free Amperometric Biosensor Production Based on All-Electrochemically Assisted Procedures
by Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco, Angela Di Capua and Antonio Guerrieri
Biosensors 2025, 15(8), 470; https://doi.org/10.3390/bios15080470 - 22 Jul 2025
Viewed by 908
Abstract
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). [...] Read more.
A new approach in amperometric enzyme electrodes production based on all-electrochemically assisted procedures will be described. Enzyme (glucose oxidase) immobilization was performed by in situ co-crosslinking of enzyme molecules through electrophoretic protein deposition, assuring enzyme immobilization exclusively onto the transducer surface (Pt electrode). Analogously, the poor selectivity of the transducer was dramatically improved by the electrosynthesis of non-conducting polymers with built-in permselectivity, permitting the formation of a thin permselective film onto the transducer surface, able to reject common interferents usually found in real samples. Since both approaches required a proper and distinct electrochemical perturbation (a pulsed current sequence for electrophoretic protein deposition and cyclic voltammetry for the electrosynthesis of non-conducting polymers), an appropriate coupling of the two all-electrochemical approaches was assured by a thorough study of the likely combinations of the electrosynthesis of permselective polymers with enzyme immobilization by electrophoretic protein deposition and by the use of several electrosynthesized polymers. For each investigated combination and for each polymer, the analytical performances and the rejection capabilities of the resulting biosensor were acquired so to gain information about their sensing abilities eventually in real sample analysis. This study shows that the proper coupling of the two all-electrochemical approaches and the appropriate choice of the electrosynthesized, permselective polymer permits the easy fabrication of novel glucose oxidase biosensors with good analytical performance and low bias in glucose measurement from typical interferent in serum. This novel approach, resembling classical electroplating procedures, is expected to allow all the advantages expected from such procedures like an easy preparation biosensor, a bi-dimensional control of enzyme immobilization and thickness, interferent- and fouling-free transduction of the electrodic sensor and, last but not the least, possibility of miniaturization of the biosensing device. Full article
(This article belongs to the Special Issue Novel Designs and Applications for Electrochemical Biosensors)
Show Figures

Figure 1

37 pages, 4353 KB  
Article
Tribo-Electrochemical Characterization of Brush-Scrubbed Post-CMP Cleaning: Results for Tartrate-Supported Removal of Residual Oxides from Copper Films
by Collin M. Reff, Kassapa U. Gamagedara, David R. Santefort and Dipankar Roy
Lubricants 2025, 13(7), 301; https://doi.org/10.3390/lubricants13070301 - 8 Jul 2025
Cited by 2 | Viewed by 2320
Abstract
Wafer cleaning after chemical mechanical planarization (CMP) is a critical processing step for copper metallization in integrated circuits. Post-CMP cleaning (PCMPC) commonly combines surface (electro)chemistry with the tribology of brush scrubbing to remove CMP residues from wafer surfaces. While the complex mechanisms of [...] Read more.
Wafer cleaning after chemical mechanical planarization (CMP) is a critical processing step for copper metallization in integrated circuits. Post-CMP cleaning (PCMPC) commonly combines surface (electro)chemistry with the tribology of brush scrubbing to remove CMP residues from wafer surfaces. While the complex mechanisms of brush-operated PCMPC are supported by this combination, the conventional electroanalytical methods of assessing PCMPC efficiency are typically operated in the absence of surface brushing. Using a model experimental system with tartaric acid (TA) as a cost-effective cleaner of Cu-oxides, we illustrate here how post-CMP Cu samples can be electrochemically examined using brush cleaning to design/assess PCMPC test solutions. A pH-neutral cleaning solution is employed, where TA also serves as a partial dissolution suppressor of Cu, and CMP-treated wafer samples are scrubbed with a commercial PCMPC brush as sample surfaces are simultaneously probed with electrochemical measurements. The results show the active roles of tribology/lubrication and surface chemistry in the removal of CMP residues. The electrochemically determined residue removal efficiencies of PCMPC are found to be ~97% and ~56% in the presence and in the absence of surface brushing, respectively. The implications of these findings are explored in the general context of evaluating PCMPC formulations. Full article
(This article belongs to the Special Issue Advances in Tribochemistry)
Show Figures

Figure 1

24 pages, 12948 KB  
Article
An Open Quantum System Interacting with an Interference Engineering Environment
by He Wang and Jin Wang
Entropy 2025, 27(3), 228; https://doi.org/10.3390/e27030228 - 23 Feb 2025
Cited by 2 | Viewed by 1123
Abstract
In this paper, we investigate the interference engineering of the open quantum system, where the environment is made indefinite either through the use of an interferometer or the introduction of auxiliary qubits. The environments are modeled by fully connected qubit baths with exact [...] Read more.
In this paper, we investigate the interference engineering of the open quantum system, where the environment is made indefinite either through the use of an interferometer or the introduction of auxiliary qubits. The environments are modeled by fully connected qubit baths with exact analytical dynamics. As the system passes through the interferometer or is controlled by auxiliary qubits, it is propagated along different paths or their superpositions, leading to distinct interactions with the environment in each path. This results in the superposition of the environments, which can be detected through specific measurements that retain certain coherent information about the paths. Our results demonstrate that the indefiniteness of the environment can significantly enhance the quantum correlations. However, only the statistical mixture of the influences from the environments is preserve provided that the path coherence is destructed. We also examine the serviceability of the indefiniteness as a resource for teleportation and quantum parameter estimation. Additionally, we discuss how to quantify the indefiniteness and the ways in which it affects the system’s dynamics from the perspective of wave–particle-entanglement-ignorance complementarity. Our study highlights the potential benefits of an indefinite environment in quantum information processing and sheds light on the fundamental principles underlying its effects. Full article
(This article belongs to the Special Issue Non-Markovian Open Quantum Systems)
Show Figures

Figure 1

25 pages, 4635 KB  
Review
Recent Advances and Challenges in Hybrid Supercapacitors Based on Metal Oxides and Carbons
by Lili Gao, Fuyuan Liu, Jiaxing Qi, Wenyue Gao and Guobao Xu
Inorganics 2025, 13(2), 49; https://doi.org/10.3390/inorganics13020049 - 8 Feb 2025
Cited by 21 | Viewed by 7678
Abstract
Hybrid supercapacitors (HSCs) are a novel type of supercapacitor composed of battery-type electrodes and capacitor-type electrodes, which have directly transformed the global energy landscape. On one hand, they can replace clean energy sources that are heavily dependent on climatic conditions in specific regions, [...] Read more.
Hybrid supercapacitors (HSCs) are a novel type of supercapacitor composed of battery-type electrodes and capacitor-type electrodes, which have directly transformed the global energy landscape. On one hand, they can replace clean energy sources that are heavily dependent on climatic conditions in specific regions, thereby enhancing the effective utilization of intermittent energy sources. On the other hand, with their high energy density akin to secondary batteries and the long lifespan and high power density characteristic of supercapacitors, they perfectly bridge the gap between secondary batteries and supercapacitors. This article reviews the fundamental energy storage principles of HSCs and highlights the latest optimization strategies for HSCs based on transition metal oxides (TMOs) and carbon over the past two years. These strategies include heteroatom doping, heterostructured materials, nanocomposites, and metal–organic frameworks (MOF). Finally, prospects on future research directions of HSCs are discussed. Full article
Show Figures

Figure 1

15 pages, 4602 KB  
Article
Electrochemical Sensing of Metribuzin Utilizing the Synergistic Effects of Cationic and Anionic Bio-Polymers with Hetero-Doped Carbon
by Thirukumaran Periyasamy, Shakila Parveen Asrafali, Seong-Cheol Kim and Jaewoong Lee
Polymers 2025, 17(1), 39; https://doi.org/10.3390/polym17010039 - 27 Dec 2024
Cited by 1 | Viewed by 1141
Abstract
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with [...] Read more.
The development of innovative, cost effective, and biocompatible sensor materials for rapid and efficient practical applications is a key area of focus in electroanalytical chemistry. In this research, we report on a novel biocompatible sensor, made using a unique polybenzoxazine-based carbon combined with amino cellulose and hyaluronic acid to produce a bio-polymer complex (PBC-ACH) (polybenzoxazine-based carbon with amino cellulose and hyaluronic acid). This sensor material is fabricated for the first time to enable the electroreduction of the herbicide, metribuzin (MTZ). The PBC-ACH sensor presents multiple advantages, including ease of fabrication, excellent biocompatibility, and low-cost production, making it suitable for various applications. In optimized experimental conditions, the sensor was fabricated by modifying a glassy carbon electrode (GCE) with the PBC-ACH complex, resulting in the creation of a GCE/PBC-ACH electrode. This modified electrode demonstrated the ability to detect MTZ at nanomolar levels, with an LoD of 13.04 nM, showcasing a high sensitivity of 1.40 µA µM−1 cm−2. Moreover, the GCE/PBC-ACH sensor exhibited remarkable selectivity, stability, and reproducibility in terms of its electrochemical performance, which are essential features for reliable sensing applications. The potential mechanism behind the detection of MTZ using the GCE/PBC-ACH sensor was investigated thoroughly, providing insights into its sensing behavior. Additionally, tests on real samples validated the sensor’s practicality and efficiency in detecting specific analytes. These findings emphasize the potential of the GCE/PBC-ACH sensor as a highly effective electrochemical sensor, with promising applications in environmental monitoring and other fields requiring precise analyte detection. Full article
Show Figures

Figure 1

18 pages, 6326 KB  
Article
Nitrogen and Sulfur Co-Doped Graphene-Quantum-Dot-Based Fluorescent Sensor for Rapid Visual Detection of Water Content in Organic Solvents
by Hongyuan Zhang, Jieqiong Wang, Xiaona Ji, Yanru Bao, Ce Han and Guoying Sun
Molecules 2024, 29(21), 5178; https://doi.org/10.3390/molecules29215178 - 1 Nov 2024
Cited by 3 | Viewed by 2153
Abstract
Accurate water content detection is crucial for optimizing chemical reactions, ensuring product quality in pharmaceutical manufacturing, and maintaining food safety. In this study, nitrogen and sulfur co-doped graphene quantum dots (R-GQDs) were synthesized via a one-step hydrothermal method using o-phenylenediamine as the carbon [...] Read more.
Accurate water content detection is crucial for optimizing chemical reactions, ensuring product quality in pharmaceutical manufacturing, and maintaining food safety. In this study, nitrogen and sulfur co-doped graphene quantum dots (R-GQDs) were synthesized via a one-step hydrothermal method using o-phenylenediamine as the carbon source. The synthesis conditions, including reaction time, temperature, o-phenylenediamine concentration, and H2SO4/water ratio, were optimized using the Box-Behnken response surface methodology. The R-GQDs exhibited excellent fluorescence stability and distinct solvent-dependent characteristics, alongside a broad linear detection range and high sensitivity, making them highly suitable for dual-mode water content detection (colorimetric and fluorescent). To enhance the accuracy of visual detection, R-GQDs were incorporated into portable test strips with smartphone-assisted analysis, compensating for the human eye’s limitations in distinguishing subtle color changes. The sensor’s practical utility was validated through spiked recovery experiments in food samples, and the R-GQDs demonstrated good biocompatibility for in vivo imaging in shrimp. These findings highlight a novel strategy for developing portable, real-time water content sensors with potential applications in both portable detection systems and biological imaging. Full article
(This article belongs to the Special Issue Research Progress of Fluorescent Probes)
Show Figures

Figure 1

21 pages, 1080 KB  
Review
Chemical Transformation of Biomass-Derived Furan Compounds into Polyols
by Qihang Gong, Peikai Luo, Jian Li, Xinluona Su and Haiyang Cheng
Chemistry 2024, 6(5), 941-961; https://doi.org/10.3390/chemistry6050055 - 8 Sep 2024
Cited by 5 | Viewed by 3446
Abstract
Polyols such as 1,5-pentadiol, 1,6-hexanediol, and 1,2,6-hexanetriol are crucial chemicals, traditionally derived from non-renewable fossil sources. In the pursuit of sustainable development, exploring renewable and environmentally benign routes for their production becomes imperative. Furfural and 5-hydroxymethylfurfural are C5 and C6 biomass-derived [...] Read more.
Polyols such as 1,5-pentadiol, 1,6-hexanediol, and 1,2,6-hexanetriol are crucial chemicals, traditionally derived from non-renewable fossil sources. In the pursuit of sustainable development, exploring renewable and environmentally benign routes for their production becomes imperative. Furfural and 5-hydroxymethylfurfural are C5 and C6 biomass-derived platform molecules, which have potential in the synthesis of various polyols through hydrogenation and hydrogenolysis reactions. Currently, there is an extensive body of literature exploring the transformation of biomass-derived furan compounds. However, a comprehensive review of the transformation of furan compounds to polyols is lacking. We summarized the literature from recent years about the ring-opening reaction involved in converting furan compounds to polyols. This article reviews the research progress on the transformation of furfural, furfuryl alcohol, and 2-methylfuran to 1,2-pentadiol, 1,4-pentadiol, 1,5-pentadiol, and 1,2,5-pentanetriol, as well as the transformation of 5-hydroxymethylfurfural to 1,2-hexanediol, 1,6-hexanediol, and 1,2,6-hexanetriol. The effects of the supported Pd, Pt, Ru, Ni, Cu, Co, and bimetallic catalysts are discussed through examining the synergistic effects of the catalysts and the effects of metal sites, acidic/basic sites, hydrogen spillover, etc. Reaction parameters like temperature, hydrogen pressure, and solvent are considered. The ring opening catalytic reaction of furan rings is summarized, and the catalytic mechanisms of single-metal and bimetallic catalysts and their catalytic processes and reaction conditions are discussed and summarized. It is believed that this review will act as a key reference and inspiration for researchers in this field. Full article
(This article belongs to the Section Catalysis)
Show Figures

Graphical abstract

19 pages, 520 KB  
Article
Non-Equilibrium Enhancement of Classical Information Transmission
by Qian Zeng and Jin Wang
Entropy 2024, 26(7), 581; https://doi.org/10.3390/e26070581 - 8 Jul 2024
Cited by 2 | Viewed by 1417
Abstract
Information transmission plays a crucial role across various fields, including physics, engineering, biology, and society. The efficiency of this transmission is quantified by mutual information and its associated information capacity. While studies in closed systems have yielded significant progress, understanding the impact of [...] Read more.
Information transmission plays a crucial role across various fields, including physics, engineering, biology, and society. The efficiency of this transmission is quantified by mutual information and its associated information capacity. While studies in closed systems have yielded significant progress, understanding the impact of non-equilibrium effects on open systems remains a challenge. These effects, characterized by the exchange of energy, information, and materials with the external environment, can influence both mutual information and information capacity. Here, we delve into this challenge by exploring non-equilibrium effects using the memoryless channel model, a cornerstone of information channel coding theories and methodology development. Our findings reveal that mutual information exhibits a convex relationship with non-equilibriumness, quantified by the non-equilibrium strength in transmission probabilities. Notably, channel information capacity is enhanced by non-equilibrium effects. Furthermore, we demonstrate that non-equilibrium thermodynamic cost, characterized by the entropy production rate, can actually improve both mutual information and information channel capacity, leading to a boost in overall information transmission efficiency. Our numerical results support our conclusions. Full article
(This article belongs to the Collection Disorder and Biological Physics)
Show Figures

Figure 1

18 pages, 3534 KB  
Review
Recent Developments and Challenges in Solid-Contact Ion-Selective Electrodes
by Lili Gao, Ye Tian, Wenyue Gao and Guobao Xu
Sensors 2024, 24(13), 4289; https://doi.org/10.3390/s24134289 - 1 Jul 2024
Cited by 24 | Viewed by 8075
Abstract
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site [...] Read more.
Solid-contact ion-selective electrodes (SC-ISEs) have the advantages of easy miniaturization, even chip integration, easy carrying, strong stability, and more favorable detection in complex environments. They have been widely used in conjunction with portable, wearable, and intelligent detection devices, as well as in on-site analysis and timely monitoring in the fields of environment, industry, and medicine. This article provides a comprehensive review of the composition of sensors based on redox capacitive and double-layer capacitive SC-ISEs, as well as the ion–electron transduction mechanisms in the solid-contact (SC) layer, particularly focusing on strategies proposed in the past three years (since 2021) for optimizing the performance of SC-ISEs. These strategies include the construction of ion-selective membranes, SC layer, and conductive substrates. Finally, the future research direction and possibilities in this field are discussed and prospected. Full article
Show Figures

Figure 1

14 pages, 2494 KB  
Article
One-Step Synthesis of 3D Graphene Aerogel Supported Pt Nanoparticles as Highly Active Electrocatalysts for Methanol Oxidation Reaction
by Xiaoye Wo, Rui Yan, Xiao Yu, Gang Xie, Jinlong Ma, Yanpeng Cao, Aijun Li, Jian Huang, Caixia Huo, Fenghua Li, Yu Wang, Liqiang Luo and Qixian Zhang
Nanomaterials 2024, 14(6), 547; https://doi.org/10.3390/nano14060547 - 20 Mar 2024
Cited by 11 | Viewed by 2389
Abstract
Nowadays, two of the biggest obstacles restricting the further development of methanol fuel cells are excessive cost and insufficient catalytic activity of platinum-based catalysts. Herein, platinum nanoparticle supported graphene aerogel (Pt/3DGA) was successfully synthesized by a one-step hydrothermal self-assembly method. The loose three-dimensional [...] Read more.
Nowadays, two of the biggest obstacles restricting the further development of methanol fuel cells are excessive cost and insufficient catalytic activity of platinum-based catalysts. Herein, platinum nanoparticle supported graphene aerogel (Pt/3DGA) was successfully synthesized by a one-step hydrothermal self-assembly method. The loose three-dimensional structure of the aerogel is stabilized by a simple one-step method, which not only reduces cost compared to the freeze-drying technology, but also optimizes the loading method of nanoparticles. The prepared Pt/3DGA catalyst has a three-dimensional porous structure with a highly cross-linked, large specific surface area, even dispersion of Pt NPs and good electrical conductivity. It is worth noting that its catalytic activity is 438.4 mA/mg with long-term stability, which is consistent with the projected benefits of anodic catalytic systems in methanol fuel cells.. Our study provides an applicable method for synthesizing nano metal particles/graphene-based composites. Full article
Show Figures

Figure 1

15 pages, 3857 KB  
Article
A Novel Thin-Layer Flow Cell Sensor System Based on BDD Electrode for Heavy Metal Ion Detection
by Danlin Xiao, Junfeng Zhai, Zhongkai Shen, Qiang Wang, Shengnan Wei, Yang Li and Chao Bian
Micromachines 2024, 15(3), 363; https://doi.org/10.3390/mi15030363 - 4 Mar 2024
Cited by 7 | Viewed by 2550
Abstract
An electrochemical sensor based on a thin-layer flow cell and a boron-doped diamond (BDD) working electrode was fabricated for heavy metal ions determination using anodic stripping voltammetry. Furthermore, a fluidic automatic detection system was developed. With the wide potential window of the BDD [...] Read more.
An electrochemical sensor based on a thin-layer flow cell and a boron-doped diamond (BDD) working electrode was fabricated for heavy metal ions determination using anodic stripping voltammetry. Furthermore, a fluidic automatic detection system was developed. With the wide potential window of the BDD electrode, Zn2+ with high negative stripping potential was detected by this system. Due to the thin-layer and fluidic structure of the sensor system, the electrodepositon efficiency for heavy metal ions were improved without using conventional stirring devices. With a short deposition time of 60 s, the system consumed only 0.75 mL reagent per test. A linear relationship for Zn2+ determination was displayed ranging from 10 μg/L to 150 μg/L with a sensitivity of 0.1218 μA·L·μg−1 and a detection limit of 2.1 μg/L. A high repeatability was indicated from the relative standard deviation of 1.60% for 30 repeated current responses of zinc solution. The system was applied to determine Zn2+ in real water samples by using the standard addition method with the recoveries ranging from 92% to 118%. The system was also used for the simultaneous detection of Zn2+, Cd2+, and Pb2+. The detection results indicate its potential application in on-site monitoring for mutiple heavy metal ions. Full article
Show Figures

Figure 1

14 pages, 2841 KB  
Article
Establishment of Polydopamine-Modified HK-2 Cell Membrane Chromatography and Screening of Active Components from Plantago asiatica L.
by Hongxue Gao, Zhiqiang Liu, Fengrui Song, Junpeng Xing, Zhong Zheng, Zong Hou and Shu Liu
Int. J. Mol. Sci. 2024, 25(2), 1153; https://doi.org/10.3390/ijms25021153 - 18 Jan 2024
Cited by 5 | Viewed by 2225
Abstract
Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between [...] Read more.
Cell membrane chromatography (CMC) has been widely recognized as a highly efficient technique for in vitro screening of active compounds. Nevertheless, conventional CMC approaches suffer from a restricted repertoire of cell membrane proteins, making them susceptible to oversaturation. Moreover, the binding mechanism between silica gel and proteins primarily relies on intermolecular hydrogen bonding, which is inherently unstable and somewhat hampers the advancement of CMC. Consequently, this investigation aimed to establish a novel CMC column that could augment protein loading, enhance detection throughput, and bolster binding affinity through the introduction of covalent bonding with proteins. This study utilizes polydopamine (PDA)-coated silica gel, which is formed through the self-polymerization of dopamine (DA), as the carrier for the CMC column filler. The objective is to construct the HK-2/SiO2-PDA/CMC model to screen potential therapeutic drugs for gout. To compare the quantity and characteristics of Human Kidney-2 (HK-2) cell membrane proteins immobilized on SiO2-PDA and silica gel, the proteins were immobilized on both surfaces. The results indicate that SiO2-PDA has a notably greater affinity for membrane proteins compared to silica gel, resulting in a significant improvement in detection efficiency. Furthermore, a screening method utilizing HK-2/SiO2-PDA/CMC was utilized to identify seven potential anti-gout compounds derived from Plantago asiatica L. (PAL). The effectiveness of these compounds was further validated using an in vitro cell model of uric acid (UA) reabsorption. In conclusion, this study successfully developed and implemented a novel CMC filler, which has practical implications in the field. Full article
(This article belongs to the Section Molecular Biophysics)
Show Figures

Graphical abstract

15 pages, 2606 KB  
Article
Electrophoretic Protein Deposition as a Tool for In Situ Co-Crosslinking Enzyme Immobilization: An Electrochemical/Quartz Crystal Microbalance Study
by Antonio Guerrieri, Rosanna Ciriello, Maria Assunta Acquavia, Giuliana Bianco and Angela Di Capua
Appl. Sci. 2024, 14(1), 212; https://doi.org/10.3390/app14010212 - 26 Dec 2023
Cited by 2 | Viewed by 2170
Abstract
Electrophoretic deposition is a powerful tool for depositing materials onto a substrate by using an electric field; its application in biotechnological areas, namely, electrophoretic protein deposition (EPD), is the most promising for, e.g., fabricating novel amperometric biosensors. Unfortunately, EPD suffers from several drawbacks [...] Read more.
Electrophoretic deposition is a powerful tool for depositing materials onto a substrate by using an electric field; its application in biotechnological areas, namely, electrophoretic protein deposition (EPD), is the most promising for, e.g., fabricating novel amperometric biosensors. Unfortunately, EPD suffers from several drawbacks due to coupled parasite electrochemical processes damaging the deposit; moreover, the nature of the deposition process, the deposit, and its stability are still controversial and unknown. The present research presents a deep investigation of the EPD processes conducted by using several electroanalytical techniques and an electrochemical quartz crystal microbalance (EQCM); notably, EPD was used here as a novel tool for performing an electrophoretically assisted, classical enzyme immobilization technique like co-crosslinking, thus permitting the immobilization of the desired protein in situ, i.e., exclusively onto the deposition electrode. An electrochemical study permitted the acquisition of useful insights about electrophoresis processes as well as solvent discharge and gas evolution at the deposition electrode; further, the use of appropriate current or potential pulse sequences, as investigated and improved in this study, together with fine-tuned chemical conditions, allowed the optimization of this novel EPD approach. Moreover, an EQCM study gave useful insights into the kinetics of the process, permitting a quantitative estimate of the deposit. Full article
Show Figures

Figure 1

Back to TopTop