Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (57)

Search Parameters:
Keywords = electro-hydraulic servo valve

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 11763 KB  
Article
Prescribed Performance Trajectory Tracking Control for Electro-Hydraulic Servo Pump-Controlled Systems with Input and State Delays
by Gengting Qiu, Yujie Hao, Gexin Chen, Guishan Yan and Yao Chen
Machines 2025, 13(12), 1147; https://doi.org/10.3390/machines13121147 - 17 Dec 2025
Viewed by 255
Abstract
Electro-hydraulic servo pump-controlled systems have advantages such as energy saving and high integration and are widely applied in aerospace, engineering machinery, and other fields. However, the input and state delays introduced by drive circuit, control period, and oil leakage result in lower dynamic [...] Read more.
Electro-hydraulic servo pump-controlled systems have advantages such as energy saving and high integration and are widely applied in aerospace, engineering machinery, and other fields. However, the input and state delays introduced by drive circuit, control period, and oil leakage result in lower dynamic response speed compared to traditional valve control systems, which restricts the promotion of the system. In this paper, a prescribed performance trajectory tracking control method is proposed to improve the transient and steady-state performance of the system. A performance function is designed to constrain the range of trajectory tracking errors. The constrained space is mapped to an unconstrained space via a homeomorphic transformation, and the control laws are designed by integrating it with the backstepping method. In the final step of the backstepping design, the input and state delays are processed using Lyapunov–Krasovskii functionals. The simulation and experimental results show that under the condition of fixed input delay and state delay, the trajectory tracking errors converge within the preset range, and all states of the system are uniformly bounded. The results demonstrate the effectiveness of the proposed method in this paper. Full article
(This article belongs to the Special Issue Advances in the Control of Electro-Hydraulic Servo Systems)
Show Figures

Figure 1

16 pages, 14053 KB  
Article
An Enhanced Active Disturbance Rejection Control for Time-Delay Compensation in Altitude Test Facility
by Hongyu Lin, Guyue Wu, Xiang Xu, Bo Feng, Chao Zhai and Hehong Zhang
Aerospace 2025, 12(12), 1057; https://doi.org/10.3390/aerospace12121057 - 27 Nov 2025
Viewed by 225
Abstract
The accurate execution of aeroengine flight environment simulation tests relies on the electro-hydraulic servo valve control system in the altitude test facility. However, time delays arising from various factors, such as friction or sensor latency, impose significant constraints on system responsiveness and control [...] Read more.
The accurate execution of aeroengine flight environment simulation tests relies on the electro-hydraulic servo valve control system in the altitude test facility. However, time delays arising from various factors, such as friction or sensor latency, impose significant constraints on system responsiveness and control precision. To address this challenge, an enhanced active disturbance rejection control has been developed. The proposed method employs an improved output prediction constructed by tracking differentiator to mitigate delay effects, introduces the Taylor compensator to more accurately capture future signal trends, and incorporates a dynamic adjustment mechanism based on error variation to optimize the parameters of the extended state observer in real time, thereby enhancing robustness under varying operating conditions. The simulation results demonstrate that under fixed-delay conditions, the proposed algorithm exhibits fast response characteristics; under varying-delay conditions, unlike model-dependent approaches, it remains less affected by delay fluctuations and maintains superior response speed and stability, thereby ensuring the accuracy of flight environment simulation tests. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

25 pages, 5023 KB  
Article
Multi-State Recognition of Electro-Hydraulic Servo Fatigue Testers via Spatiotemporal Fusion and Bidirectional Cross-Attention
by Guotai Huang, Shuang Bai, Xiuguang Yang, Xiyu Gao and Peng Liu
Sensors 2025, 25(23), 7229; https://doi.org/10.3390/s25237229 - 26 Nov 2025
Viewed by 537
Abstract
Electro-hydraulic servo fatigue testing machines are susceptible to concurrent degradation and failure of multiple components during high-frequency, high-load, and long-duration cyclic operations, posing significant challenges for online health monitoring. To address this, this paper proposes a multi-state recognition method based on spatiotemporal feature [...] Read more.
Electro-hydraulic servo fatigue testing machines are susceptible to concurrent degradation and failure of multiple components during high-frequency, high-load, and long-duration cyclic operations, posing significant challenges for online health monitoring. To address this, this paper proposes a multi-state recognition method based on spatiotemporal feature fusion and bidirectional cross-attention. The method employs a Bidirectional Temporal Convolutional Network (BiTCN) to extract multi-scale local features, a Bidirectional Gated Recurrent Unit (BiGRU) to capture forward and backward temporal dependencies, and Bidirectional Cross-Attention (BiCrossAttention) to achieve fine-grained bidirectional interaction and fusion of spatial and temporal features. During training, GradNorm is introduced to dynamically balance task weights and mitigate gradient conflicts. Experimental validation was conducted using a real-world multi-sensor dataset collected from an SDZ0100 electro-hydraulic servo fatigue testing machine. The results show that on the validation set, the cooler and servo valve achieved both accuracy and F1-scores of 100%, the motor-pump unit achieved an accuracy of 98.32% and an F1-score of 97.72%, and the servo actuator achieved an accuracy of 96.39% and an F1-score of 95.83%. Compared to single-task models with the same backbone, multi-task learning improved performance by approximately 3% to 4% for the hydraulic pump and servo actuator tasks, while significantly reducing overall deployment resources. Compared to single-task baselines, multi-task learning improves performance by 3–4% while reducing deployment parameters by 75%. Ablation studies further confirmed the critical contributions of the bidirectional structure and individual components, as well as the effectiveness of GradNorm in multi-task learning for testing machines, achieving an average F1-score of 98.38%. The method also demonstrated strong robustness under varying learning rates and resampling conditions. Compared to various deep learning and fusion baseline methods, the proposed approach achieved optimal performance in most tasks. This study provides an effective technical solution for high-precision, lightweight, and robust online health monitoring of electro-hydraulic servo fatigue testing machines under complex operating conditions. Full article
(This article belongs to the Section Fault Diagnosis & Sensors)
Show Figures

Figure 1

21 pages, 2556 KB  
Article
Multi-Objective Optimization of Torque Motor Structural Parameters in Direct-Drive Valves Based on Genetic Algorithm
by Jian Zhang, Qiusong Liang, Jipeng Sun, Baosen Yan, Zhidong Hu and Wei Sun
Actuators 2025, 14(11), 527; https://doi.org/10.3390/act14110527 - 29 Oct 2025
Cited by 1 | Viewed by 411
Abstract
This paper presents a genetic algorithm (GA) approach to optimize key structural parameters of the torque motor used in a direct-drive slide knife gate valve. The optimization aims at enhancing the performance of the torque motor by improving the output torque, minimizing the [...] Read more.
This paper presents a genetic algorithm (GA) approach to optimize key structural parameters of the torque motor used in a direct-drive slide knife gate valve. The optimization aims at enhancing the performance of the torque motor by improving the output torque, minimizing the overshoot, and reducing the response time. A mathematical model based on these performance indicators is formulated to guide the optimization process. Compared to the original design, the optimized design is shown to achieve a 26.4% increase in output torque, a 0.14 ms reduction in response time, and a 9% decrease in overshoot. Additionally, AMESim simulations confirm that the optimized motor significantly improves valve control accuracy, dynamic response, and flow stability, while also decreasing sensitivity to pressure fluctuations under high-current conditions. Finally, experimental results are provided to corroborate the simulation findings, validating the accuracy and effectiveness of the proposed optimization methodology. This study provides novel theoretical insights and practical guidance for the design of high-performance torque motors used in direct-drive electro-hydraulic servo valves within aerospace applications. Full article
(This article belongs to the Special Issue Design, Hydrodynamics, and Control of Valve Systems)
Show Figures

Figure 1

20 pages, 2608 KB  
Article
Influence of Vibration on Servo Valve Performance and Vibration Suppression in Electro-Hydraulic Shaking Table
by Tao Wang, Sizhuo Liu, Zhenyu Guo and Yuelei Lu
Machines 2025, 13(10), 913; https://doi.org/10.3390/machines13100913 - 3 Oct 2025
Viewed by 570
Abstract
With the rapid progress of industrial technology in recent years, servo controllers have the characteristics of precise control and short response time and are widely used in different industrial fields. As for the electro-hydraulic servo valve being an important control element of the [...] Read more.
With the rapid progress of industrial technology in recent years, servo controllers have the characteristics of precise control and short response time and are widely used in different industrial fields. As for the electro-hydraulic servo valve being an important control element of the entire hydraulic system, the quality of its own characteristics has a significant impact on the normal operation and safety of the mechanical equipment. Therefore, the working stability of the servo valve in actual operation is of great importance to its body and the overall servo system. Similarly, during the vibration test of the electro-hydraulic servo shaking table, servo valve inevitably experiences various vibrations and shocks, which requires the servo system to be able to withstand the test and assessment under the extreme conditions in actual operation to ensure the smooth operation. This paper takes function of the shaker as the research target and studies the servo valve under various vibration conditions by constructing a digital modeling system. On this basis, an adaptive format filter is established, and corresponding vibration suppression methods are adopted for the vibration conditions inside the system. Finally, simulation examples are used to prove that this method can more effectively control the vibration in the servo valve and suppress the interference with shaking table function. Full article
(This article belongs to the Section Machine Design and Theory)
Show Figures

Figure 1

18 pages, 3921 KB  
Article
One Innovative Method for Improving the Power Density and Efficiency of Electro-Hydrostatic Actuators
by Zhenfei Ling, Fengqi Zhou, Hao Liu, Bo Yang and Xiaoping Ouyang
Actuators 2025, 14(10), 467; https://doi.org/10.3390/act14100467 - 25 Sep 2025
Viewed by 787
Abstract
Although electro-hydrostatic actuators (EHAs) hold broad application prospects in more-electric aircraft and high-end equipment, they face a difficult trade-off between dynamic response and energy efficiency. To simultaneously enhance the dynamic response and energy efficiency of the EHA, this paper designs an innovative variable [...] Read more.
Although electro-hydrostatic actuators (EHAs) hold broad application prospects in more-electric aircraft and high-end equipment, they face a difficult trade-off between dynamic response and energy efficiency. To simultaneously enhance the dynamic response and energy efficiency of the EHA, this paper designs an innovative variable pump displacement and variable motor speed (VPVM) configuration that utilizes an electro-hydraulic servo valve for active displacement control. To address the flow mismatch problem associated with traditional asymmetric single-rod cylinders without reducing the power density of EHA, this paper also designs an innovative symmetric single-rod cylinder configuration. Based on the above two innovative configurations, this paper further develops a corresponding EHA prototype with a rated power density of 0.72 kW/kg. Simulation and experimental results demonstrate that compared to the traditional EHA with the fixed pump displacement and variable motor speed configuration (FPVM-EHA), the EHA with the proposed VPVM configuration (VPVM-EHA) not only improves energy efficiency and reduces motor heat generation under low-speed and heavy-load conditions, but also achieves a dynamic response close to that of the FPVM-EHA under fast dynamic response conditions. Full article
(This article belongs to the Section Control Systems)
Show Figures

Figure 1

32 pages, 10218 KB  
Article
A Study of the Collision Characteristics of Colloidal Particles in Fuel Servo Valves
by Jin Zhang, Ranheng Du, Jie Ni, Wenlong Yin, Geng Cao, Ying Li and Huan Wang
Aerospace 2025, 12(9), 812; https://doi.org/10.3390/aerospace12090812 - 8 Sep 2025
Cited by 1 | Viewed by 551
Abstract
The fuel electro-hydraulic servo valve is a core component of the aero-engine fuel control system, playing a crucial role in engine performance. Due to the operational characteristics of the aviation fuel supply and injection system, fuel is directly sprayed through the nozzle for [...] Read more.
The fuel electro-hydraulic servo valve is a core component of the aero-engine fuel control system, playing a crucial role in engine performance. Due to the operational characteristics of the aviation fuel supply and injection system, fuel is directly sprayed through the nozzle for combustion after passing through the pipeline. The working environment and medium are subject to a wide temperature range, and the medium lacks a circulating filtration process, making it difficult to effectively remove impurities. As a result, the fuel contains a high concentration of contaminant particles. Under high-temperature conditions, colloidal particles precipitated from the fuel medium collide and adhere to metallic and other contaminant particles carried by the fuel, subsequently attaching to the internal surfaces of the fuel servo valve, causing valve sticking. This study aims to establish an adhesion criterion suitable for colloidal particles in fuel systems based on a traditional particle collision model. The adhesion criterion incorporates the viscoelastic and surface energy characteristics of colloidal particles, providing a more accurate description of their deposition behavior under the conditions studied. A particle–particle and particle–wall collision test apparatus was designed, and experiments were conducted. A comparison between experimental results and theoretical calculations shows that the overall error for collisions between colloidal particles and walls is controlled within 10%, validating the feasibility of the adhesion criterion. The Young’s modulus, Poisson’s ratio, and surface free energy of the colloidal particles were measured as 688 MPa, 0.39, and 77 mJ/m2, respectively. These results provide theoretical and experimental foundations for particle migration and deposition processes in fuel systems. The analytical method clarifies the key mechanism of adhesion caused by colloidal particles, providing guidance for improving the reliability, safety, and maintenance of fuel servo valves in aero-engine applications. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

34 pages, 3299 KB  
Project Report
On Control Synthesis of Hydraulic Servomechanisms in Flight Controls Applications
by Ioan Ursu, Daniela Enciu and Adrian Toader
Actuators 2025, 14(7), 346; https://doi.org/10.3390/act14070346 - 14 Jul 2025
Viewed by 769
Abstract
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The [...] Read more.
This paper presents some of the most significant findings in the design of a hydraulic servomechanism for flight controls, which were primarily achieved by the first author during his activity in an aviation institute. These results are grouped into four main topics. The first one outlines a classical theory, from the 1950s–1970s, of the analysis of nonlinear automatic systems and namely the issue of absolute stability. The uninformed public may be misled by the adjective “absolute”. This is not a “maximalist” solution of stability but rather highlights in the system of equations a nonlinear function that describes, for the case of hydraulic servomechanisms, the flow-control dependence in the distributor spool. This function is odd, and it is therefore located in quadrants 1 and 3. The decision regarding stability is made within the so-called Lurie problem and is materialized by a matrix inequality, called the Lefschetz condition, which must be satisfied by the parameters of the electrohydraulic servomechanism and also by the components of the control feedback vector. Another approach starts from a classical theorem of V. M. Popov, extended in a stochastic framework by T. Morozan and I. Ursu, which ends with the description of the local and global spool valve flow-control characteristics that ensure stability in the large with respect to bounded perturbations for the mechano-hydraulic servomechanism. We add that a conjecture regarding the more pronounced flexibility of mathematical models in relation to mathematical instruments (theories) was used. Furthermore, the second topic concerns, the importance of the impedance characteristic of the mechano-hydraulic servomechanism in preventing flutter of the flight controls is emphasized. Impedance, also called dynamic stiffness, is defined as the ratio, in a dynamic regime, between the output exerted force (at the actuator rod of the servomechanism) and the displacement induced by this force under the assumption of a blocked input. It is demonstrated in the paper that there are two forms of the impedance function: one that favors the appearance of flutter and another that allows for flutter damping. It is interesting to note that these theoretical considerations were established in the institute’s reports some time before their introduction in the Aviation Regulation AvP.970. However, it was precisely the absence of the impedance criterion in the regulation at the appropriate time that ultimately led, by chance or not, to a disaster: the crash of a prototype due to tailplane flutter. A third topic shows how an important problem in the theory of automatic systems of the 1970s–1980s, namely the robust synthesis of the servomechanism, is formulated, applied and solved in the case of an electrohydraulic servomechanism. In general, the solution of a robust servomechanism problem consists of two distinct components: a servo-compensator, in fact an internal model of the exogenous dynamics, and a stabilizing compensator. These components are adapted in the case of an electrohydraulic servomechanism. In addition to the classical case mentioned above, a synthesis problem of an anti-windup (anti-saturation) compensator is formulated and solved. The fourth topic, and the last one presented in detail, is the synthesis of a fuzzy supervised neurocontrol (FSNC) for the position tracking of an electrohydraulic servomechanism, with experimental validation, in the laboratory, of this control law. The neurocontrol module is designed using a single-layered perceptron architecture. Neurocontrol is in principle optimal, but it is not free from saturation. To this end, in order to counteract saturation, a Mamdani-type fuzzy logic was developed, which takes control when neurocontrol has saturated. It returns to neurocontrol when it returns to normal, respectively, when saturation is eliminated. What distinguishes this FSNC law is its simplicity and efficiency and especially the fact that against quite a few opponents in the field, it still works very well on quite complicated physical systems. Finally, a brief section reviews some recent works by the authors, in which current approaches to hydraulic servomechanisms are presented: the backstepping control synthesis technique, input delay treated with Lyapunov–Krasovskii functionals, and critical stability treated with Lyapunov–Malkin theory. Full article
(This article belongs to the Special Issue Advanced Technologies in Actuators for Control Systems)
Show Figures

Figure 1

22 pages, 11772 KB  
Article
Effect of Slide Valve Gap Surface Roughness on Particle Transport Properties
by Jin Zhang, Ranheng Du, Pengpeng Dong, Kuohang Zhang, Shengrong Wang, Ying Li and Kuo Zhang
Aerospace 2025, 12(7), 608; https://doi.org/10.3390/aerospace12070608 - 5 Jul 2025
Cited by 1 | Viewed by 559
Abstract
Fuel electro-hydraulic servo valves are core components in the fuel control system of aero-engines, and their performance directly affects thrust regulation and power output precision. Due to the combustibility of the working medium in fuel systems and the lack of effective circulation filtration, [...] Read more.
Fuel electro-hydraulic servo valves are core components in the fuel control system of aero-engines, and their performance directly affects thrust regulation and power output precision. Due to the combustibility of the working medium in fuel systems and the lack of effective circulation filtration, the retention of micron-sized particles within the valve gap can lead to valve spool jamming, which is a critical reliability issue. This study, based on fractal theory and the liquid–solid two-phase flow model, proposes a parametric model for non-ideal surface valve gaps and analyzes the dynamics of particles subjected to drag, lift, and buoyant forces on rough surfaces. By numerically analyzing flow field models with different roughness levels and comparing them with an ideal smooth gap model, the migration characteristics of particles were studied. To verify the accuracy of the model, an upscaled experimental setup was built based on similarity theory, and PIV experiments were conducted for validation. Experimental results show that the particle release position and valve surface roughness significantly affect particle migration time. The weight of the release position on particle migration time is 63%, while the impact of valve surface roughness is 37%. In models with different roughness levels, the particle migration time increases more rapidly for roughness values greater than Ra0.4, while for values less than Ra0.4, the increase in migration time is slower. Furthermore, the study reveals that particle migration trajectories are independent of flow velocity, with velocity only affecting particle migration time. This research provides theoretical support for enhancing the reliability of fuel electro-hydraulic servo valves and offers a new perspective for the design of highly reliable hydraulic components. Full article
(This article belongs to the Section Aeronautics)
Show Figures

Figure 1

19 pages, 9531 KB  
Article
Stability Analysis and Static–Dynamic Characterization of Subminiature Two-Dimensional (2D) Electro-Hydraulic Servo Valves
by Lei Pan, Quanchao Dai, Zhankai Song, Chengtao Zhu and Sheng Li
Machines 2025, 13(5), 388; https://doi.org/10.3390/machines13050388 - 6 May 2025
Cited by 1 | Viewed by 863
Abstract
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density [...] Read more.
Aiming to solve the difficult problem of the miniaturization of servo valves, this paper designs a subminiature two-dimensional (2D) electro-hydraulic servo valve, which realizes the integration of the pilot stage and the power stage and significantly improves the work-to-weight ratio. Meanwhile, a high-power-density brushless DC motor (BLDC) is adopted as the electro-mechanical converter to further reduce the volume and mass. Firstly, the structure and working principle of the two-dimensional (2D) servo valve are described, and the mathematical model of the electro-mechanical converter is established. Aiming at the special working condition of the electro-mechanical converter with high-frequency oscillation at a small turning angle, this paper designs a position–current double closed-loop PID control algorithm based on the framework of the vector control algorithm (FOC). At the same time, the current feedforward compensation technique is included to cope with the high-frequency nonlinear disturbance problem of the electro-mechanical converter. The stability conditions of the electro-mechanical converter and the main valve were established based on the Routh–Hurwitz criterion, and the effects of the control algorithm of the electro-mechanical converter and the main parameters of the main valve on the stability of the system were analyzed. The dynamic and static characteristics of the 2D valve were simulated and analyzed by establishing a joint simulation model in Matlab/Simulink and AMESim. The prototype was fabricated, and the experimental bench was built; the size of the experimental prototype was 31.7 mm × 29.3 mm × 31 mm, and its mass was 73 g. Under a system pressure of 7 MPa, the flow rate of this valve was 5 L/min; the hysteresis loop of the spool-displacement input–output curve was 4.8%, and the linearity was 2.54%, which indicated that it had the ability of high-precision control and that it was suitable for the precision fluid system. The step response time was 7.5 ms, with no overshoot; the frequency response amplitude bandwidth was about 90 Hz (−3 dB); the phase bandwidth was about 95 Hz (−90°); and the dynamic characterization experiment showed that it had a fast response characteristic, which can satisfy the demand of high-frequency and high-dynamic working conditions. Full article
(This article belongs to the Section Electromechanical Energy Conversion Systems)
Show Figures

Figure 1

15 pages, 3935 KB  
Article
Study on the Vibration Characteristics of Separated Armature Assembly in an Electro-Hydraulic Servo Valve Under Interference Fit
by Tong Li, Jinghui Peng, Songjing Li, Juan Zhang and Aiying Zhang
Actuators 2025, 14(2), 98; https://doi.org/10.3390/act14020098 - 19 Feb 2025
Cited by 1 | Viewed by 1185
Abstract
The electro-hydraulic servo valve is a critical component that transforms electrical signals into hydraulic signals, thereby controlling the hydraulic system. It finds extensive application in precision control systems. The stability of the electro-hydraulic servo valve is primarily influenced by the armature assembly. Unlike [...] Read more.
The electro-hydraulic servo valve is a critical component that transforms electrical signals into hydraulic signals, thereby controlling the hydraulic system. It finds extensive application in precision control systems. The stability of the electro-hydraulic servo valve is primarily influenced by the armature assembly. Unlike integral armature assembly, the separated armature assembly, comprising the armature, spring tube, flapper, and feedback spring, is joined through an interference fit, which introduces prestress within the assembly. The existence of prestress may affect the operational mode of the armature assembly. Consequently, this paper investigates the vibration characteristics of the separated armature assembly under interference fit conditions. Comparative analysis reveals that interference fit indeed generates prestress, which cannot be overlooked. To further validate the reliability of the simulation results, the natural frequency of the separated armature assembly is determined by applying a sweeping frequency signal to the torque motor using an electric drive, thereby verifying the feasibility of the simulation analysis. Additionally, the impact of interference on the vibration characteristics of the separated armature assembly is examined, confirming the accuracy of the simulation analysis method based on the interference fit. The research on vibration characteristics of a separated armature assembly provides technical support for the structural optimization design of the electro-hydraulic servo valve, thereby enhancing its performance. Full article
(This article belongs to the Special Issue Recent Developments in Precision Actuation Technologies)
Show Figures

Figure 1

22 pages, 10072 KB  
Article
Studies on the Thermal Behavior of an Electro-Hydrostatic Servo Actuator
by Liviu Dinca, Jenica-Ileana Corcau, Teodor Lucian Grigorie, Andra-Adelina Cucu and Bogdan Vasilescu
Actuators 2025, 14(2), 48; https://doi.org/10.3390/act14020048 - 23 Jan 2025
Cited by 3 | Viewed by 1862
Abstract
This paper presents a study on the thermal behavior of an electro-hydrostatic servo actuator designed to actuate the ailerons of an airliner. The considered servo actuator was designed using existing commercial off-the-shelf components (electric motor, pump, hydraulic cylinder, valves, hydro-accumulator), and the control [...] Read more.
This paper presents a study on the thermal behavior of an electro-hydrostatic servo actuator designed to actuate the ailerons of an airliner. The considered servo actuator was designed using existing commercial off-the-shelf components (electric motor, pump, hydraulic cylinder, valves, hydro-accumulator), and the control part was tuned using numerical simulations performed in SIMCENTER/AMESIM. This study begins with the functional parameters of the components used in the design and uses numerical simulations to test the thermal behavior of the components. A continuous stress spectrum of the servo actuator is considered, with the servo actuator located in a compartment inside the wing. Different external conditions are also considered, such as situations where component wear occurs and component efficiencies deteriorate, thus producing more heat in the system. Based on the energy losses identified, the average efficiency of the studied servo actuator is also evaluated. Full article
Show Figures

Figure 1

25 pages, 28811 KB  
Article
Analysis of Honing Material Removal Rate and Surface Quality Using Electroplated Oilstone
by Hao Su, Changyong Yang, Yucan Fu and Rui Nie
Materials 2024, 17(24), 6170; https://doi.org/10.3390/ma17246170 - 17 Dec 2024
Viewed by 1620
Abstract
The manufacturing precision of electro-hydraulic servo valve sleeves is critical to the performance and longevity of the valves. To ensure the service life of these valves, the valve sleeve is typically made from high-hardness martensitic stainless steel, which is considered a hard-to-cut material. [...] Read more.
The manufacturing precision of electro-hydraulic servo valve sleeves is critical to the performance and longevity of the valves. To ensure the service life of these valves, the valve sleeve is typically made from high-hardness martensitic stainless steel, which is considered a hard-to-cut material. Current honing methods often suffer from inefficiency and instability. This study compares the honing processes using electroplated and sintered oilstones, emphasizing processing efficiency and surface quality. Initially, the morphology of the oilstones was examined. Equivalent honing depth and material removal rate per unit width were developed to characterized material removal. The influence of various parameters on honing depth and material removal rates was explored, along with the surface morphology and roughness after honing. The results indicated that electroplated oilstones achieved a material removal rate 2.5 times higher than sintered oilstones. In contrast, sintered oilstones produced superior surface quality. To optimize both surface quality and efficiency, we proposed a sequential honing method: using electroplated oilstones for significant material removal followed by sintered oilstones for surface finishing, which enhanced efficiency by 1.6 times. Electroplated oilstone has broad application prospects in the field of precision and efficient machining of hydraulic components. Full article
(This article belongs to the Special Issue Advanced Abrasive Processing Technology and Applications)
Show Figures

Figure 1

20 pages, 2094 KB  
Article
Fractional Calculus Applied to the Generalized Model and Control of an Electrohydraulic System
by Edgar Hiram Robles, Felipe J. Torres, Antonio J. Balvantín-García, Israel Martínez-Ramírez, Gustavo Capilla and Juan-Pablo Ramírez-Paredes
Fractal Fract. 2024, 8(12), 679; https://doi.org/10.3390/fractalfract8120679 - 21 Nov 2024
Cited by 3 | Viewed by 1470
Abstract
In this paper, fractional calculus is used to develop a generalized fractional dynamic model of an electrohydraulic system composed of a servo valve and a hydraulic cylinder, where a fractional position controller PIγDμ is proposed for minimizing the performance [...] Read more.
In this paper, fractional calculus is used to develop a generalized fractional dynamic model of an electrohydraulic system composed of a servo valve and a hydraulic cylinder, where a fractional position controller PIγDμ is proposed for minimizing the performance index according to the integral of the time-weighted absolute error (ITAE). First, the general mathematical equations of the cylinder and servo valve are used to obtain the transfer functions in fractional order by applying Caputo’s definition and a Laplace transform. Then, through a block diagram of the closed-loop system without a controller, the fractional model is validated by comparing its performance concerning the integer-order electrohydraulic system model reported in the literature. Subsequently, a fractional PID controller is designed to control the cylinder position. This controller is included in the closed-loop system to determine the fractional exponents of the transfer functions of the servo valve, cylinder, and control, as well as to tune the controller gains, by using the ITAE objective function, with a comparison of the following: (1) the electrohydraulic system model in integer order and the controller in fractional order; (2) the electrohydraulic system model in fractional order and the controller in integer order; and (3) both the system model and the controller in fractional order. For each of the above alternatives, numerical simulations were carried out using MATLAB®/Simulink® R2023b and adding white noise as a perturbation. The results show that strategy (3), where electrohydraulic system and controller model are given in fractional order, develops the best performance because it generates the minimum value of ITAE. Full article
(This article belongs to the Special Issue Fractional-Order Approaches in Automation: Models and Algorithms)
Show Figures

Figure 1

20 pages, 1947 KB  
Article
Pressure Control of Multi-Mode Variable Structure Electro–Hydraulic Load Simulation System
by He Hao, Hao Yan, Qi Zhang and Haoyu Li
Sensors 2024, 24(22), 7400; https://doi.org/10.3390/s24227400 - 20 Nov 2024
Cited by 1 | Viewed by 1489
Abstract
During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. [...] Read more.
During the loading process, significant external position disturbances occur in the electro–hydraulic load simulation system. To address these position disturbances and effectively mitigate the impact of uncertainty on system performance, this paper first treats model parameter uncertainty and external disturbances as lumped disturbances. The various states of the servo valve and the pressures within the hydraulic cylinder chambers are then examined. Building on this foundation, the paper proposes a nonlinear multi-mode variable structure independent load port electro–hydraulic load simulation system that is tailored for specific loading conditions. Secondly, in light of the significant motion disturbances present, this paper proposes an integral sliding mode active disturbance rejection composite control strategy that is based on fixed-time convergence. Based on the structure of the active disturbance rejection control framework, the fixed-time integral sliding mode and active disturbance rejection control algorithms are integrated. An extended state observer is designed to accurately estimate the lumped disturbance, effectively compensating for it to achieve precise loading of the independent load port electro–hydraulic load simulation system. The stability of the designed controller is also demonstrated. The results of the simulation research indicate that when the command input is a step signal, the pressure control accuracy under the composite control strategy is 99.94%, 99.86%, and 99.76% for disturbance frequencies of 1 Hz, 3 Hz, and 5 Hz, respectively. Conversely, when the command input is a sinusoidal signal, the pressure control accuracy remains high, measuring 99.94%, 99.8%, and 99.6% under the same disturbance frequencies. Furthermore, the simulation demonstrates that the influence of sensor random noise on the system remains within acceptable limits, highlighting the effective filtering capabilities of the extended state observer. This research establishes a solid foundation for the collaborative control of load ports and the engineering application of the independent load port electro–hydraulic load simulation system. Full article
(This article belongs to the Section Electronic Sensors)
Show Figures

Figure 1

Back to TopTop