Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (711)

Search Parameters:
Keywords = electrical load profile

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 2593 KiB  
Article
Preliminary Comparison of Ammonia- and Natural Gas-Fueled Micro-Gas Turbine Systems in Heat-Driven CHP for a Small Residential Community
by Mateusz Proniewicz, Karolina Petela, Christine Mounaïm-Rousselle, Mirko R. Bothien, Andrea Gruber, Yong Fan, Minhyeok Lee and Andrzej Szlęk
Energies 2025, 18(15), 4103; https://doi.org/10.3390/en18154103 (registering DOI) - 1 Aug 2025
Abstract
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two [...] Read more.
This research considers a preliminary comparative technical evaluation of two micro-gas turbine (MGT) systems in combined heat and power (CHP) mode (100 kWe), aimed at supplying heat to a residential community of 15 average-sized buildings located in Central Europe over a year. Two systems were modelled in Ebsilon 15 software: a natural gas case (benchmark) and an ammonia-fueled case, both based on the same on-design parameters. Off-design simulations evaluated performance over variable ambient temperatures and loads. Idealized, unrecuperated cycles were adopted to isolate the thermodynamic impact of the fuel switch under complete combustion assumption. Under these assumptions, the study shows that the ammonia system produces more electrical energy and less excess heat, yielding marginally higher electrical efficiency and EUF (26.05% and 77.63%) than the natural gas system (24.59% and 77.55%), highlighting ammonia’s utilization potential in such a context. Future research should target validating ammonia combustion and emission profiles across the turbine load range, and updating the thermodynamic model with a recuperator and SCR accounting for realistic pressure losses. Full article
(This article belongs to the Special Issue Clean and Efficient Use of Energy: 3rd Edition)
Show Figures

Figure 1

20 pages, 2981 KiB  
Article
Data-Driven Modelling and Simulation of Fuel Cell Hybrid Electric Powertrain
by Mehroze Iqbal, Amel Benmouna and Mohamed Becherif
Hydrogen 2025, 6(3), 53; https://doi.org/10.3390/hydrogen6030053 (registering DOI) - 1 Aug 2025
Abstract
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle [...] Read more.
Inspired by the Toyota Mirai, this study presents a high-fidelity data-driven approach for modelling and simulation of a fuel cell hybrid electric powertrain. This study utilises technical assessment data sourced from Argonne National Laboratory’s publicly available report, faithfully modelling most of the vehicle subsystems as data-driven entities. The simulation framework is developed in the MATLAB/Simulink environment and is based on a power dynamics approach, capturing nonlinear interactions and performance intricacies between different powertrain elements. This study investigates subsystem synergies and performance boundaries under a combined driving cycle composed of the NEDC, WLTP Class 3 and US06 profiles, representing urban, extra-urban and aggressive highway conditions. To emulate the real-world load-following strategy, a state transition power management and allocation method is synthesised. The proposed method dynamically governs the power flow between the fuel cell stack and the traction battery across three operational states, allowing the battery to stay within its allocated bounds. This simulation framework offers a near-accurate and computationally efficient digital counterpart to a commercial hybrid powertrain, serving as a valuable tool for educational and research purposes. Full article
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 180
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

19 pages, 4188 KiB  
Article
Enhanced Mechanical and Electrical Performance of Epoxy Nanocomposites Through Hybrid Reinforcement of Carbon Nanotubes and Graphene Nanoplatelets: A Synergistic Route to Balanced Strength, Stiffness, and Dispersion
by Saba Yaqoob, Zulfiqar Ali, Alberto D’Amore, Alessandro Lo Schiavo, Antonio Petraglia and Mauro Rubino
J. Compos. Sci. 2025, 9(7), 374; https://doi.org/10.3390/jcs9070374 - 17 Jul 2025
Viewed by 313
Abstract
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical [...] Read more.
Carbon nanotubes (CNTs) and graphene nanoplatelets (GNPs) have attracted significant interest as hybrid reinforcements in epoxy (Ep) composites for enhancing mechanical performance in structural applications, such as aerospace and automotive. These 1D and 2D nanofillers possess exceptionally high aspect ratios and intrinsic mechanical properties, substantially improving composite stiffness and tensile strength. In this study, epoxy nanocomposites were fabricated with 0.1 wt.% and 0.3 wt.% of CNTs and GNPs individually, and with 1:1 CNT:GNP hybrid fillers at equivalent total loadings. Scanning electron microscopy of fracture surfaces confirmed that the CNTGNP hybrids dispersed uniformly, forming an interconnected nanostructured network. Notably, the 0.3 wt.% CNTGNP hybrid system exhibited minimal agglomeration and voids, preventing crack initiation and propagation. Mechanical testing revealed that the 0.3 wt.% CNTGNP/Ep composite achieved the highest tensile strength of approximately 84.5 MPa while maintaining a well-balanced stiffness profile (elastic modulus ≈ 4.62 GPa). The hybrid composite outperformed both due to its synergistic reinforcement mechanisms and superior dispersion despite containing only half the concentration of each nanofiller relative to the individual 0.3 wt.% CNT or GNP systems. In addition to mechanical performance, electrical conductivity analysis revealed that the 0.3 wt.% CNTGNP hybrid composite exhibited the highest conductivity of 0.025 S/m, surpassing the 0.3 wt.% CNT-only system (0.022 S/m), owing to forming a well-connected three-dimensional conductive network. The 0.1 wt.% CNT-only composite also showed enhanced conductivity (0.0004 S/m) due to better dispersion at lower filler loadings. These results highlight the dominant role of CNTs in charge transport and the effectiveness of hybrid networks in minimizing agglomeration. These findings demonstrate that CNTGNP hybrid fillers can deliver optimally balanced mechanical enhancement in epoxy matrices, offering a promising route for designing lightweight, high-performance structural composites. Further optimization of nanofiller dispersion and interfacial chemistry may yield even greater improvements. Full article
(This article belongs to the Special Issue Feature Papers in Journal of Composites Science in 2025)
Show Figures

Figure 1

31 pages, 2741 KiB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 355
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

16 pages, 2756 KiB  
Article
Development of a Surface-Inset Permanent Magnet Motor for Enhanced Torque Density in Electric Mountain Bikes
by Jun Wei Goh, Shuangchun Xie, Huanzhi Wang, Shengdao Zhu, Kailiang Yu and Christopher H. T. Lee
Energies 2025, 18(14), 3709; https://doi.org/10.3390/en18143709 - 14 Jul 2025
Viewed by 317
Abstract
Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack [...] Read more.
Electric mountain bikes (eMTBs) demand compact, high-torque motors capable of handling steep terrain and variable load conditions. Surface-mounted permanent magnet synchronous motors (SPMSMs) are widely used in this application due to their simple construction, ease of manufacturing, and cost-effectiveness. However, SPMSMs inherently lack reluctance torque, limiting their torque density and performance at high speeds. While interior PMSMs (IPMSMs) can overcome this limitation via reluctance torque, they require complex rotor machining and may compromise mechanical robustness. This paper proposes a surface-inset PMSM topology as a compromise between both approaches—introducing reluctance torque while maintaining a structurally simple rotor. The proposed motor features inset magnets shaped with a tapered outer profile, allowing them to remain flush with the rotor surface. This geometric configuration eliminates the need for a retaining sleeve during high-speed operation while also enabling saliency-based torque contribution. A baseline SPMSM design is first analyzed through finite element analysis (FEA) to establish reference performance. Comparative simulations show that the proposed design achieves a 20% increase in peak torque and a 33% reduction in current density. Experimental validation confirms these findings, with the fabricated prototype achieving a torque density of 30.1 kNm/m3. The results demonstrate that reluctance-assisted torque enhancement can be achieved without compromising mechanical simplicity or manufacturability. This study provides a practical pathway for improving motor performance in eMTB systems while retaining the production advantages of surface-mounted designs. The surface-inset approach offers a scalable and cost-effective solution that bridges the gap between conventional SPMSMs and more complex IPMSMs in high-demand e-mobility applications. Full article
Show Figures

Figure 1

26 pages, 3806 KiB  
Article
A Novel Approach for Voltage Stability Assessment and Optimal Siting and Sizing of DGs in Radial Power Distribution Networks
by Salah Mokred, Yifei Wang, Mohammed Alruwaili and Moustafa Ahmed Ibrahim
Processes 2025, 13(7), 2239; https://doi.org/10.3390/pr13072239 - 14 Jul 2025
Viewed by 424
Abstract
The increasing integration of renewable energy sources and the rising demand for electricity has intensified concerns over voltage stability in radial distribution systems. These networks are particularly susceptible to voltage collapse under heavy loading conditions, posing serious system reliability and efficiency risks. Integrating [...] Read more.
The increasing integration of renewable energy sources and the rising demand for electricity has intensified concerns over voltage stability in radial distribution systems. These networks are particularly susceptible to voltage collapse under heavy loading conditions, posing serious system reliability and efficiency risks. Integrating distributed generation (DG) has emerged as a strategic solution to strengthen voltage profiles and reduce power losses. To address this challenge, this study proposes a novel distribution voltage stability index (NDVSI) for accurately assessing voltage stability and guiding optimal DG placement and sizing. The NDVSI provides a reliable tool to identify weak buses and their neighboring nodes that critically impact stability. By targeting these locations, the method ensures DG units are installed where they offer maximum improvement in voltage support and minimum power losses. The approach is implemented using MATLAB R2019a (MathWorks Inc., Natick, MA, USA) and validated on three benchmark radial distribution systems, including IEEE 12-bus, 33-bus, and 69-bus systems, demonstrating its scalability and effectiveness across different grid complexities. Comparative analysis with existing voltage stability indices confirms the superiority of NDVSI in both diagnostic precision and practical application. The proposed approach offers a technically sound and economically viable tool for enhancing the reliability, stability, and performance of modern distribution networks. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

35 pages, 11934 KiB  
Article
A Data-Driven Approach for Generating Synthetic Load Profiles with GANs
by Tsvetelina Kaneva, Irena Valova, Katerina Gabrovska-Evstatieva and Boris Evstatiev
Appl. Sci. 2025, 15(14), 7835; https://doi.org/10.3390/app15147835 - 13 Jul 2025
Viewed by 332
Abstract
The generation of realistic electrical load profiles is essential for advancing smart grid analytics, demand forecasting, and privacy-preserving data sharing. Traditional approaches often rely on large, high-resolution datasets and complex recurrent neural architectures, which can be unstable or ineffective when training data are [...] Read more.
The generation of realistic electrical load profiles is essential for advancing smart grid analytics, demand forecasting, and privacy-preserving data sharing. Traditional approaches often rely on large, high-resolution datasets and complex recurrent neural architectures, which can be unstable or ineffective when training data are limited. This paper proposes a data-driven framework based on a lightweight 1D Convolutional Wasserstein GAN with Gradient Penalty (Conv1D-WGAN-GP) for generating high-fidelity synthetic 24 h load profiles. The model is specifically designed to operate on small- to medium-sized datasets, where recurrent models often fail due to overfitting or training instability. The approach leverages the ability of Conv1D layers to capture localized temporal patterns while remaining compact and stable during training. We benchmark the proposed model against vanilla GAN, WGAN-GP, and Conv1D-GAN across four datasets with varying consumption patterns and sizes, including industrial, agricultural, and residential domains. Quantitative evaluations using statistical divergence measures, Real-vs-Synthetic Distinguishability Score, and visual similarity confirm that Conv1D-WGAN-GP consistently outperforms baselines, particularly in low-data scenarios. This demonstrates its robustness, generalization capability, and suitability for privacy-sensitive energy modeling applications where access to large datasets is constrained. Full article
(This article belongs to the Special Issue Innovations in Artificial Neural Network Applications)
Show Figures

Figure 1

21 pages, 3422 KiB  
Article
Techno-Economic Optimization of a Grid-Tied PV/Battery System in Johannesburg’s Subtropical Highland Climate
by Webster J. Makhubele, Bonginkosi A. Thango and Kingsley A. Ogudo
Sustainability 2025, 17(14), 6383; https://doi.org/10.3390/su17146383 - 11 Jul 2025
Viewed by 377
Abstract
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) [...] Read more.
With rising energy costs and the need for sustainable power solutions in urban South African settings, grid-tied renewable energy systems have become viable alternatives for reducing dependence on traditional grid supply. This study investigates the techno-economic feasibility of a grid-connected hybrid photovoltaic (PV) and battery storage system designed for a commercial facility located in Johannesburg, South Africa—an area characterized by a subtropical highland climate. We conducted the analysis using the HOMER Grid software and evaluated the performance of the proposed PV/battery system against the baseline grid-only configuration. Simulation results indicate that the optimal systems, comprising 337 kW of flat-plate PV and 901 kWh of lithium-ion battery storage, offers a significant reduction in electricity expenditure, lowering the annual utility cost from $39,229 to $897. The system demonstrates a simple payback period of less than two years and achieves a net present value (NPV) of approximately $449,491 over a 25-year project lifespan. In addition to delivering substantial cost savings, the proposed configuration also enhances energy resilience. Sensitivity analyses were conducted to assess the impact of variables such as inflation rate, discount rate, and load profile fluctuations on system performance and economic returns. The results affirm the suitability of hybrid grid-tied PV/battery systems for cost-effective, sustainable urban energy solutions in climates with high solar potential. Full article
Show Figures

Figure 1

30 pages, 6991 KiB  
Article
A Hybrid EV Charging Approach Based on MILP and a Genetic Algorithm
by Syed Abdullah Al Nahid and Junjian Qi
Energies 2025, 18(14), 3656; https://doi.org/10.3390/en18143656 - 10 Jul 2025
Viewed by 333
Abstract
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a [...] Read more.
Uncoordinated electric vehicle (EV) charging can significantly complicate power system operations. In this paper, we develop a hybrid EV charging method that seamlessly integrates centralized EV charging and distributed control schemes to address EV energy demand challenges. The proposed method includes (1) a centralized day-ahead optimal scheduling mechanism and EV shifting process based on mixed-integer linear programming (MILP) and (2) a distributed control strategy based on a genetic algorithm (GA) that dynamically adjusts the charging rate in real-time grid scenarios. The MILP minimizes energy imbalance at overloaded slots by reallocating EVs based on supply–demand mismatch. By combining full and minimum charging strategies with MILP-based shifting, the method significantly reduces network stress due to EV charging. The centralized model schedules time slots using valley-filling and EV-specific constraints, and the local GA-based distributed control adjusts charging currents based on minimum energy, system availability, waiting time, and a priority index (PI). This PI enables user prioritization in both the EV shifting process and power allocation decisions. The method is validated using demand data on a radial feeder with residential and commercial load profiles. Simulation results demonstrate that the proposed hybrid EV charging framework significantly improves grid-level efficiency and user satisfaction. Compared to the baseline without EV integration, the average-to-peak demand ratio is improved from 61% to 74% at Station-A, from 64% to 80% at Station-B, and from 51% to 63% at Station-C, highlighting enhanced load balancing. The framework also ensures that all EVs receive energy above their minimum needs, achieving user satisfaction scores of 88.0% at Stations A and B and 81.6% at Station C. This study underscores the potential of hybrid charging schemes in optimizing energy utilization while maintaining system reliability and user convenience. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

20 pages, 2142 KiB  
Article
Life Estimation of HVDC Extruded Cables Subjected to Extension of Qualification Test Conditions and Comparison with Prequalification Test Conditions
by Bassel Diban, Giovanni Mazzanti and Rolando Ezequiel Diaz
Energies 2025, 18(14), 3651; https://doi.org/10.3390/en18143651 - 10 Jul 2025
Viewed by 243
Abstract
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained [...] Read more.
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained by the authors in the case of the prequalification test (PQT) load cycles. This goal has been achieved in the present investigation by properly modifying a previously developed procedure for the life and reliability estimation of HVDC cables—implemented in MatlabTM environment—to make it applicable to EQT load cycles in addition to PQT and type test load cycles, which are already considered in the former version of the procedure. Considering a 500 kV DC-XLPE cable as the case study, the time-varying temperature profile and electric field profile within the cable insulation are calculated. Then, the fractions of life lost and the life of the cable at five locations within the insulation thickness are evaluated by means of a proper electrothermal life model. A comparison between the electric field distributions, fractions of life lost, and cable life under EQT and PQT is carried out. In this way, important features of the EQT compared to the PQT load cycles are singled out, and eventually, a new modified extension of qualification test (MEQT) is proposed as a feasible and meaningful compromise between the pros and cons of the EQT and PQT. Full article
Show Figures

Figure 1

46 pages, 9390 KiB  
Article
Multi-Objective Optimization of Distributed Generation Placement in Electric Bus Transit Systems Integrated with Flash Charging Station Using Enhanced Multi-Objective Grey Wolf Optimization Technique and Consensus-Based Decision Support
by Yuttana Kongjeen, Pongsuk Pilalum, Saksit Deeum, Kittiwong Suthamno, Thongchai Klayklueng, Supapradit Marsong, Ritthichai Ratchapan, Krittidet Buayai, Kaan Kerdchuen, Wutthichai Sa-nga-ngam and Krischonme Bhumkittipich
Energies 2025, 18(14), 3638; https://doi.org/10.3390/en18143638 - 9 Jul 2025
Viewed by 466
Abstract
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, [...] Read more.
This study presents a comprehensive multi-objective optimization framework for optimal placement and sizing of distributed generation (DG) units in electric bus (E-bus) transit systems integrated with a high-power flash charging infrastructure. An enhanced Multi-Objective Grey Wolf Optimizer (MOGWO), utilizing Euclidean distance-based Pareto ranking, is developed to minimize power loss, voltage deviation, and voltage violations. The framework incorporates realistic E-bus operation characteristics, including a 31-stop, 62 km route, 600 kW pantograph flash chargers, and dynamic load profiles over a 90 min simulation period. Statistical evaluation on IEEE 33-bus and 69-bus distribution networks demonstrates that MOGWO consistently outperforms MOPSO and NSGA-II across all DG deployment scenarios. In the three-DG configuration, MOGWO achieved minimum power losses of 0.0279 MW and 0.0179 MW, and voltage deviations of 0.1313 and 0.1362 in the 33-bus and 69-bus systems, respectively, while eliminating voltage violations. The proposed method also demonstrated superior solution quality with low variance and faster convergence, requiring under 7 h of computation on average. A five-method compromise solution strategy, including TOPSIS and Lp-metric, enabled transparent and robust decision-making. The findings confirm the proposed framework’s effectiveness and scalability for enhancing distribution system performance under the demands of electric transit electrification and smart grid integration. Full article
Show Figures

Figure 1

24 pages, 3447 KiB  
Article
Vehicle-to-Grid Services in University Campuses: A Case Study at the University of Rome Tor Vergata
by Antonio Comi and Elsiddig Elnour
Future Transp. 2025, 5(3), 89; https://doi.org/10.3390/futuretransp5030089 - 8 Jul 2025
Viewed by 316
Abstract
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) [...] Read more.
As electric vehicles (EVs) become increasingly integrated into urban mobility, the load on electrical grids increases, prompting innovative energy management strategies. This paper investigates the deployment of vehicle-to-grid (V2G) services at the University of Rome Tor Vergata, leveraging high-resolution floating car data (FCD) to forecast and schedule energy transfers from EVs to the grid. The methodology follows a four-step process: (1) vehicle trip detection, (2) the spatial identification of V2G in the campus, (3) a real-time scheduling algorithm for V2G services, which accommodates EV user mobility requirements and adheres to charging infrastructure constraints, and finally, (4) the predictive modelling of transferred energy using ARIMA and LSTM models. The results demonstrate that substantial energy can be fed back to the campus grid during peak hours, with predictive models, particularly LSTM, offering high accuracy in anticipating transfer volumes. The system aligns energy discharge with campus load profiles while preserving user mobility requirements. The proposed approach shows how campuses can function as microgrids, transforming idle EV capacity into dynamic, decentralised energy storage. This framework offers a scalable model for urban energy optimisation, supporting broader goals of grid resilience and sustainable development. Full article
(This article belongs to the Special Issue Innovation in Last-Mile and Long-Distance Transportation)
Show Figures

Figure 1

18 pages, 2458 KiB  
Article
Co-Optimized Design of Islanded Hybrid Microgrids Using Synergistic AI Techniques: A Case Study for Remote Electrification
by Ramia Ouederni and Innocent E. Davidson
Energies 2025, 18(13), 3456; https://doi.org/10.3390/en18133456 - 1 Jul 2025
Viewed by 458
Abstract
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy [...] Read more.
Off-grid and isolated rural communities in developing countries with limited resources require energy supplies for daily residential use and social, economic, and commercial activities. The use of data from space assets and space-based solar power is a feasible solution for addressing ground-based energy insecurity when harnessed in a hybrid manner. Advances in space solar power systems are recognized to be feasible sources of renewable energy. Their usefulness arises due to advances in satellite and space technology, making valuable space data available for smart grid design in these remote areas. In this case study, an isolated village in Namibia, characterized by high levels of solar irradiation and limited wind availability, is identified. Using NASA data, an autonomous hybrid system incorporating a solar photovoltaic array, a wind turbine, storage batteries, and a backup generator is designed. The local load profile, solar irradiation, and wind speed data were employed to ensure an accurate system model. Using HOMER Pro software V 3.14.2 for system simulation, a more advanced AI optimization was performed utilizing Grey Wolf Optimization and Harris Hawks Optimization, which are two metaheuristic algorithms. The results obtained show that the best performance was obtained with the Grey Wolf Optimization algorithm. This method achieved a minimum energy cost of USD 0.268/kWh. This paper presents the results obtained and demonstrates that advanced optimization techniques can enhance both the hybrid system’s financial cost and energy production efficiency, contributing to a sustainable electricity supply regime in this isolated rural community. Full article
(This article belongs to the Section F2: Distributed Energy System)
Show Figures

Figure 1

14 pages, 3334 KiB  
Article
Quantitative Assessment of EV Energy Consumption: Applying Coast Down Testing to WLTP and EPA Protocols
by Teeraphon Phophongviwat, Piyawong Poopanya and Kanchana Sivalertporn
World Electr. Veh. J. 2025, 16(7), 360; https://doi.org/10.3390/wevj16070360 - 27 Jun 2025
Viewed by 301
Abstract
This study presents a comprehensive methodology for evaluating electric vehicle (EV) energy consumption by integrating coast down testing with standardized chassis dynamometer protocols under WLTP Class 3b and EPA driving cycles. Coast down tests were conducted to determine road load coefficients—critical for replicating [...] Read more.
This study presents a comprehensive methodology for evaluating electric vehicle (EV) energy consumption by integrating coast down testing with standardized chassis dynamometer protocols under WLTP Class 3b and EPA driving cycles. Coast down tests were conducted to determine road load coefficients—critical for replicating real-world resistance profiles on a dynamometer. Energy usage data were measured using On-Board Diagnostics II (OBD-II) and dynamometer measurements to assess power flow from the battery to the wheels. The results reveal that OBD-II consistently recorded higher cumulative energy usage, particularly under urban driving conditions, highlighting limitations in dynamometer responsiveness to transient loads and regenerative events. Notably, the WLTP low-speed cycle exhibited a significantly lower efficiency of 62.42%, with nearly half of the battery energy consumed by non-propulsion systems. In contrast, the EPA cycle demonstrated consistently higher efficiencies of 84.52% (low-speed) and 93.00% (high-speed). Interestingly, high-speed efficiencies between WLTP and EPA were nearly identical, despite differences in total energy consumption. These findings underscore the importance of aligning test protocols with actual driving conditions and demonstrate the effectiveness of combining coast down data with real-time diagnostics for robust EV performance assessments. Full article
Show Figures

Figure 1

Back to TopTop