Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (948)

Search Parameters:
Keywords = electrical fires

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
32 pages, 10052 KiB  
Article
A Study on Large Electric Vehicle Fires in a Tunnel: Use of a Fire Dynamics Simulator (FDS)
by Roberto Dessì, Daniel Fruhwirt and Davide Papurello
Processes 2025, 13(8), 2435; https://doi.org/10.3390/pr13082435 - 31 Jul 2025
Abstract
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use [...] Read more.
Internal combustion engine vehicles damage the environment and public health by emitting toxic fumes, such as CO2 or CO and other trace compounds. The use of electric cars helps to reduce the emission of pollutants into the environment due to the use of batteries with no direct and local emissions. However, accidents of battery electric vehicles pose new challenges, such as thermal runaway. Such accidents can be serious and, in some cases, may result in uncontrolled overheating that causes the battery pack to spontaneously ignite. In particular, the most dangerous vehicles are heavy goods vehicles (HGVs), as they release a large amount of energy that generate high temperatures, poor visibility, and respiratory damage. This study aims to determine the potential consequences of large BEV fires in road tunnels using computational fluid dynamics (CFD). Furthermore, a comparison between a BEV and an ICEV fire shows the differences related to the thermal and the toxic impact. Furthermore, the adoption of a longitudinal ventilation system in the tunnel helped to mitigate the BEV fire risk, keeping a safer environment for tunnel users and rescue services through adequate smoke control. Full article
Show Figures

Figure 1

20 pages, 10604 KiB  
Article
A Safety-Based Approach for the Design of an Innovative Microvehicle
by Michelangelo-Santo Gulino, Susanna Papini, Giovanni Zonfrillo, Thomas Unger, Peter Miklis and Dario Vangi
Designs 2025, 9(4), 90; https://doi.org/10.3390/designs9040090 (registering DOI) - 31 Jul 2025
Abstract
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper [...] Read more.
The growing popularity of Personal Light Electric Vehicles (PLEVs), such as e-scooters, has revolutionized urban mobility by offering compact, cost-effective, and environmentally friendly transportation solutions. However, safety concerns, including inadequate infrastructure, poor protective measures, and high accident rates, remain critical challenges. This paper presents the design and development of an innovative self-balancing microvehicle under the H2020 LEONARDO project, which aims to address these challenges through advanced engineering and user-centric design. The vehicle combines features of monowheels and e-scooters, integrating cutting-edge technologies to enhance safety, stability, and usability. The design adheres to European regulations, including Germany’s eKFV standards, and incorporates user preferences identified through representative online surveys of 1500 PLEV users. These preferences include improved handling on uneven surfaces, enhanced signaling capabilities, and reduced instability during maneuvers. The prototype features a lightweight composite structure reinforced with carbon fibers, a high-torque motorized front wheel, and multiple speed modes tailored to different conditions, such as travel in pedestrian areas, use by novice riders, and advanced users. Braking tests demonstrate deceleration values of up to 3.5 m/s2, comparable to PLEV market standards and exceeding regulatory minimums, while smooth acceleration ramps ensure rider stability and safety. Additional features, such as identification plates and weight-dependent motor control, enhance compliance with local traffic rules and prevent misuse. The vehicle’s design also addresses common safety concerns, such as curb navigation and signaling, by incorporating large-diameter wheels, increased ground clearance, and electrically operated direction indicators. Future upgrades include the addition of a second rear wheel for enhanced stability, skateboard-like rear axle modifications for improved maneuverability, and hybrid supercapacitors to minimize fire risks and extend battery life. With its focus on safety, regulatory compliance, and rider-friendly innovations, this microvehicle represents a significant advancement in promoting safe and sustainable urban mobility. Full article
(This article belongs to the Section Vehicle Engineering Design)
Show Figures

Figure 1

38 pages, 21337 KiB  
Article
Full-Scale Experimental Analysis of the Behavior of Electric Vehicle Fires and the Effectiveness of Extinguishing Methods
by Ana Olona and Luis Castejon
Fire 2025, 8(8), 301; https://doi.org/10.3390/fire8080301 (registering DOI) - 29 Jul 2025
Viewed by 239
Abstract
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely [...] Read more.
The emergence of electric vehicles (EVs) has brought specific risks, including the possibility of fires or explosions resulting from mechanical, thermal, or electrical failures, which can lead to thermal runaway (TR). There is a great lack of knowledge about how to act safely in this type of fire. This study carried out two full-scale fire experiments on electric vehicles to investigate response strategies to electric vehicle fires caused by thermal runaway. Centro Zaragoza provided technical advice for these tests, so that they could be carried out safely, controlling the risks. This advice has allowed Centro Zaragoza to analyze different response strategies to the fires in electric vehicles caused by thermal runaway. On the other hand, the propagation patterns of thermal runaway fires in electric vehicles were investigated. The early-phase effectiveness of fire blankets and other extinguishing measures was tested, and the temperature distributions inside the vehicle and the type of fire generated were measured. The results showed that fire blankets successfully extinguished flames by cutting off the oxygen supply. These findings contribute to the development of effective strategies for responding to electric vehicle fires, enabling the establishment of good practice for fire suppression in electric vehicles and their batteries. Full article
Show Figures

Figure 1

17 pages, 3138 KiB  
Article
Addressing Energy Performance Challenges in a 24-h Fire Station Through Green Remodeling
by June Hae Lee, Jae-Sik Kang and Byonghu Sohn
Buildings 2025, 15(15), 2658; https://doi.org/10.3390/buildings15152658 - 28 Jul 2025
Viewed by 150
Abstract
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric [...] Read more.
This study presents a comprehensive case of green remodeling applied to a local fire station in Seoul, South Korea. The project aimed to improve energy performance through an integrated upgrade of passive systems (exterior insulation, high-performance windows, and airtightness) and active systems (electric heat pumps, energy recovery ventilation, and rooftop photovoltaic systems), while maintaining uninterrupted emergency operations. A detailed analysis of annual energy use before and after the remodeling shows a 44% reduction in total energy consumption, significantly exceeding the initial reduction target of 20%. While electricity use increased modestly during winter due to the electrification of heating systems, gas consumption dropped sharply by 63%, indicating a shift in energy source and improved efficiency. The building’s airtightness also improved significantly, with a reduction in the air change rate. The project further addressed unique challenges associated with continuously operated public facilities, such as insulating the fire apparatus garage and executing phased construction to avoid operational disruption. This study contributes valuable insights into green remodeling strategies for mission-critical public buildings, emphasizing the importance of integrating technical upgrades with operational constraints to achieve verified energy performance improvements. Full article
(This article belongs to the Section Building Materials, and Repair & Renovation)
Show Figures

Figure 1

20 pages, 5419 KiB  
Article
The Analysis of Fire Protection for Selected Historical Buildings as a Part of Crisis Management: Slovak Case Study
by Jana Jaďuďová, Linda Makovická Osvaldová, Stanislava Gašpercová and David Řehák
Sustainability 2025, 17(15), 6743; https://doi.org/10.3390/su17156743 - 24 Jul 2025
Viewed by 190
Abstract
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, [...] Read more.
Historical buildings are exposed to an increased risk of fire. The direct influence comes from the buildings’ structural design and the fire protection level. The fundamental principle for reducing the loss of heritage value in historical buildings due to fire is fire protection, as part of crisis management. This article focuses on selected castle buildings from Slovakia. Three castle buildings were selected based on their location in the country. All of them are currently used for museum purposes. Using an analytical form, we assessed fire hazards and fire safety measures in two parts, calculated the fire risk index, and proposed solutions. Qualitative research, which is more suitable for the issue at hand, was used to evaluate the selected objects. The main methods used in the research focused on visual assessment of the current condition of the objects and analysis of fire documentation and its comparison with currently valid legal regulations. Based on the results, we can conclude that Kežmarok Castle (part of the historical city center) has a small fire risk (fire risk index = 13 points). Trenčín Castle (situated on a rock above the city) and Stará Ľubovňa Castle (situated on a limestone hill outside the city, surrounded by forest) have an increased risk of fire (fire risk index = 50–63). Significant risk sources identified included surrounding forest areas, technical failures related to outdated electrical installations, open flames during cultural events, the concentration of highly flammable materials, and complex evacuation routes for both people and museum collections. Full article
Show Figures

Figure 1

18 pages, 2545 KiB  
Article
Reliable Indoor Fire Detection Using Attention-Based 3D CNNs: A Fire Safety Engineering Perspective
by Mostafa M. E. H. Ali and Maryam Ghodrat
Fire 2025, 8(7), 285; https://doi.org/10.3390/fire8070285 - 21 Jul 2025
Viewed by 474
Abstract
Despite recent advances in deep learning for fire detection, much of the current research prioritizes model-centric metrics over dataset fidelity, particularly from a fire safety engineering perspective. Commonly used datasets are often dominated by fully developed flames, mislabel smoke-only frames as non-fire, or [...] Read more.
Despite recent advances in deep learning for fire detection, much of the current research prioritizes model-centric metrics over dataset fidelity, particularly from a fire safety engineering perspective. Commonly used datasets are often dominated by fully developed flames, mislabel smoke-only frames as non-fire, or lack intra-video diversity due to redundant frames from limited sources. Some works treat smoke detection alone as early-stage detection, even though many fires (e.g., electrical or chemical) begin with visible flames and no smoke. Additionally, attempts to improve model applicability through mixed-context datasets—combining indoor, outdoor, and wildland scenes—often overlook the unique false alarm sources and detection challenges specific to each environment. To address these limitations, we curated a new video dataset comprising 1108 annotated fire and non-fire clips captured via indoor surveillance cameras. Unlike existing datasets, ours emphasizes early-stage fire dynamics (pre-flashover) and includes varied fire sources (e.g., sofa, cupboard, and attic fires), realistic false alarm triggers (e.g., flame-colored objects, artificial lighting), and a wide range of spatial layouts and illumination conditions. This collection enables robust training and benchmarking for early indoor fire detection. Using this dataset, we developed a spatiotemporal fire detection model based on the mixed convolutions ResNets (MC3_18) architecture, augmented with Convolutional Block Attention Modules (CBAM). The proposed model achieved 86.11% accuracy, 88.76% precision, and 84.04% recall, along with low false positive (11.63%) and false negative (15.96%) rates. Compared to its CBAM-free baseline, the model exhibits notable improvements in F1-score and interpretability, as confirmed by Grad-CAM++ visualizations highlighting attention to semantically meaningful fire features. These results demonstrate that effective early fire detection is inseparable from high-quality, context-specific datasets. Our work introduces a scalable, safety-driven approach that advances the development of reliable, interpretable, and deployment-ready fire detection systems for residential environments. Full article
Show Figures

Figure 1

30 pages, 4926 KiB  
Article
Impact Testing of Aging Li-Ion Batteries from Light Electric Vehicles (LEVs)
by Miguel Antonio Cardoso-Palomares, Juan Carlos Paredes-Rojas, Juan Alejandro Flores-Campos, Armando Oropeza-Osornio and Christopher René Torres-SanMiguel
Batteries 2025, 11(7), 263; https://doi.org/10.3390/batteries11070263 - 13 Jul 2025
Viewed by 365
Abstract
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. [...] Read more.
The increasing adoption of Light Electric Vehicles (LEVs) in urban areas, driven by the micromobility wave, raises significant safety concerns, particularly regarding battery fire incidents. This research investigates the electromechanical performance of aged 18650 lithium-ion batteries (LIBs) from LEVs under mechanical impact conditions. For this study, a battery module from a used e-scooter was disassembled, and its constituent cells were reconfigured into compact modules for testing. To characterize their initial condition, the cells underwent cycling tests to evaluate their state of health (SOH). Although a slight majority of the cells retained an SOH greater than 80%, a notable increase in their internal resistance (IR) was also observed, indicating degradation due to aging. The mechanical impact tests were conducted in adherence to the UL 2271:2018 standard, employing a semi-sinusoidal acceleration pulse. During these tests, linear kinematics were analyzed using videogrammetry, while key electrical and thermal parameters were monitored. Additionally, strain gauges were installed on the central cells to measure stress and deformation. The results from the mechanical shock tests revealed characteristic acceleration and velocity patterns. These findings clarify the electromechanical behavior of aged LIBs under impact, providing critical data to enhance the safety and reliability of these vehicles. Full article
Show Figures

Figure 1

18 pages, 2765 KiB  
Article
The Effects of Burning Intensity on the Soil C-Related Properties and Mineralogy of Two Contrasting Forest Soils from Chilean National Parks
by Karla Erazo, Clara Martí-Dalmau, David Badía-Villas, Silvia Quintana-Esteras, Blanca Bauluz and Carolina Merino
Fire 2025, 8(7), 277; https://doi.org/10.3390/fire8070277 - 12 Jul 2025
Viewed by 548
Abstract
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of [...] Read more.
Forest fires alter multiple soil properties, from those related to the carbon cycle to mineralogy; however, the responses of various soils to thermal impact remain unclear. This study examined the impact of fire-induced heating (300, 600, and 900 °C) on the properties of two contrasted soils (Andisol and Inceptisol) with regard to soil organic carbon (SOC), total organic carbon (TOC), dissolved organic carbon (DOC), recalcitrant organic carbon (ROC), soil pH, electrical conductivity (EC), soil water repellency (SWR), soil aggregate stability (SAS), and mineralogy using X-ray diffraction (XRD). SOC and TOC decreased as temperatures increased, with a more pronounced decrease in Andisol (90% loss) than in Inceptisol (80% loss). DOC and SWR peaked at 300 °C but disappeared above 600 °C. Further, ROC increased at 300 °C in both soils, but behaved differently at higher temperatures, remaining stable in Inceptisol and being eliminated in Andisol. Soil pH increased at 600 and 900 °C; meanwhile, EC increased progressively in Andisol but peaked at 300 °C in Inceptisol. SAS remained high in both soils (between 85 and 95%) despite heating. The mineralogical analysis demonstrated how heating induced transformations in iron minerals into more oxidized forms (as hematite and maghemite) in the Andisol, while clay minerals and gibbsite decreased feldspar and quartz accumulation promotion in the Inceptisol. In summary, the initial properties of each soil influenced their respective responses to fire. Full article
Show Figures

Graphical abstract

19 pages, 13404 KiB  
Article
A New Bronze Age Productive Site on the Margin of the Venice Lagoon: Preliminary Data and Considerations
by Cecilia Rossi, Rita Deiana, Gaia Alessandra Garosi, Alessandro de Leo, Stefano Di Stefano, Sandra Primon, Luca Peruzzo, Ilaria Barone, Samuele Rampin, Pietro Maniero and Paolo Mozzi
Land 2025, 14(7), 1452; https://doi.org/10.3390/land14071452 - 11 Jul 2025
Viewed by 432
Abstract
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology [...] Read more.
The possibility of collecting new archaeological elements useful in reconstructing the dynamics of population, production and commercial activities in the Bronze Age at the edge of the central-southern Venice Lagoon was provided between 2023 and 2024 thanks to an intervention of rescue archaeology planned during some water restoration works in the Giare–Mira area. Three small excavations revealed, approximately one meter below the current surface and covered by alluvial sediments, a rather complex palimpsest dated to the late Recent and the early Final Bronze Age. Three large circular pits containing exclusively purified grey/blue clay and very rare inclusions of vegetable fibres, and many large, fired clay vessels’ bases, walls and rims clustered in concentrated assemblages and random deposits point to potential on-site production. Two pyro-technological structures, one characterised by a sub-circular combustion chamber and a long inlet channel/praefurnium, and the second one with a sub-rectangular shape with arched niches along its southern side, complete the exceptional context here discovered. To analyse the relationship between the site and the natural sedimentary succession and to evaluate the possible extension of this site, three electrical resistivity tomography (ERT) and low-frequency electromagnetic (FDEM) measurements were collected. Several manual core drillings associated with remote sensing integrated the geophysical data in the analysis of the geomorphological evolution of this area, clearly related to different phases of fluvial activity, in a framework of continuous relative sea level rise. The typology and chronology of the archaeological structures and materials, currently undergoing further analyses, support the interpretation of the site as a late Recent/early Final Bronze Age productive site. Geophysical and geomorphological data provide information on the palaeoenvironmental setting, suggesting that the site was located on a fine-grained, stable alluvial plain at a distance of a few kilometres from the lagoon shore to the south-east and the course of the Brenta River to the north. The archaeological site was buried by fine-grained floodplain deposits attributed to the Brenta River. The good preservation of the archaeological structures buried by fluvial sediments suggests that the site was abandoned soon before sedimentation started. Full article
(This article belongs to the Special Issue Archaeological Landscape and Settlement II)
Show Figures

Figure 1

36 pages, 5532 KiB  
Article
Supporting Sustainable Development Goals with Second-Life Electric Vehicle Battery: A Case Study
by Muhammad Nadeem Akram and Walid Abdul-Kader
Sustainability 2025, 17(14), 6307; https://doi.org/10.3390/su17146307 - 9 Jul 2025
Viewed by 420
Abstract
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many [...] Read more.
To alleviate the impact of economic and environmental detriments caused by the increased demands of electric vehicle battery production and disposal, the use of spent batteries in second-life stationary applications such as energy storage for renewable sources or backup power systems, offers many benefits. This paper focuses on reducing the energy consumption cost and greenhouse gas emissions of Internet-of-Things-enabled campus microgrids by installing solar photovoltaic panels on rooftops alongside energy storage systems that leverage second-life batteries, a gas-fired campus power plant, and a wind turbine while considering the potential loads of a prosumer microgrid. A linear optimization problem is derived from the system by scheduling energy exchanges with the Ontario grid through net metering and solved by using Python 3.11. The aim of this work is to support Sustainable Development Goals, namely 7 (Affordable and Clean Energy), 11 (Sustainable Cities and Communities), 12 (Responsible Consumption and Production), and 13 (Climate Action). A comparison between a base case scenario and the results achieved with the proposed scenarios shows a significant reduction in electricity cost and greenhouse gas emissions and an increase in self-consumption rate and renewable fraction. This research work provides valuable insights and guidelines to policymakers. Full article
Show Figures

Figure 1

17 pages, 986 KiB  
Article
Safety-Oriented Coordinated Operation Algorithms for Natural Gas Pipeline Networks and Gas-Fired Power Generation Facilities
by Xinyi Wang, Feng Wang, Qin Bie, Wenlong Jia, Yong Jiang, Ying Liu, Yuanyuan Tian, Yuxin Zheng and Jie Sun
Processes 2025, 13(7), 2184; https://doi.org/10.3390/pr13072184 - 8 Jul 2025
Viewed by 227
Abstract
The natural gas pipeline network transmission system involved in the coordinated operation of pipeline networks and gas-fired power generation facilities is complex. It consists of multiple components, such as gas sources, users, valves, compressor stations, and pipelines. The addition of natural gas-fired power [...] Read more.
The natural gas pipeline network transmission system involved in the coordinated operation of pipeline networks and gas-fired power generation facilities is complex. It consists of multiple components, such as gas sources, users, valves, compressor stations, and pipelines. The addition of natural gas-fired power generation facilities overlaps with the high and low peak periods of civil gas, imposing dual peak-shaving pressures on pipeline networks and requiring more stringent operational control strategies for maintaining system stability. To address the aforementioned issues and improve the overall operating revenues of the system, we proposed the coordinated optimization model of gas-fired power generation facilities, pipeline networks, gas storage, and compressor stations. The optimization algorithm is written using the penalty function method of the Interior Point OPTimizer (IPOPT) solver. Meanwhile, the basic parameters of the system’s pipeline networks, users, gas storage, natural gas-fired power generation facilities, compressors, and electricity prices were input into the solver. The research results reveal that the algorithm ensures solution accuracy while accounting for computational efficiency and practical applicability. The algorithm can be used to effectively calculate the ideal coordinated operation solution, significantly improve the operating revenues of the system, and achieve safe, stable, coordinated, and efficient operation of the system. Full article
(This article belongs to the Section Energy Systems)
Show Figures

Figure 1

13 pages, 1068 KiB  
Review
Battery Electric Vehicles in Underground Mining: Benefits, Challenges, and Safety Considerations
by Epp Kuslap, Jiajie Li, Aibaota Talehatibieke and Michael Hitch
Energies 2025, 18(14), 3588; https://doi.org/10.3390/en18143588 - 8 Jul 2025
Viewed by 414
Abstract
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. [...] Read more.
This paper explores the implementation of battery electric vehicles (BEVs) in underground mining operations, focusing on their benefits, challenges, and safety considerations. The study examines the shift from traditional diesel-powered machinery to BEVs in response to increasing environmental concerns and stricter emission regulations. It discusses various lithium-ion battery chemistries used in BEVs, particularly lithium–iron–phosphate (LFP) and nickel–manganese–cobalt (NMC), comparing their performance, safety, and suitability for underground mining applications. The research highlights the significant benefits of BEVs, including reduced greenhouse gas emissions, improved air quality in confined spaces, and potential ventilation cost savings. However, it also addresses critical safety concerns, such as fire risks associated with lithium-ion batteries and the emission of toxic gases during thermal runaway events. The manuscript emphasises the importance of comprehensive risk assessment and mitigation strategies when introducing BEVs to underground mining environments. It concludes that while BEVs offer promising solutions for more sustainable and environmentally friendly mining operations, further research is needed to ensure their safe integration into underground mining practices. This study contributes valuable insights to the ongoing discussion on the future of mining technology and its environmental impact. Full article
Show Figures

Figure 1

9 pages, 249 KiB  
Proceeding Paper
Applications of Virtual Reality Simulations and Machine Learning Algorithms in High-Risk Environments
by Velyo Vasilev, Dilyana Budakova and Veselka Petrova-Dimitrova
Eng. Proc. 2025, 100(1), 19; https://doi.org/10.3390/engproc2025100019 - 7 Jul 2025
Viewed by 97
Abstract
In this article, the application of virtual reality technology for the realistic and immersive visualization of various tasks and scenarios in fields such as power engineering and fire safety has been examined in order to help prepare students and professional electrical engineers with [...] Read more.
In this article, the application of virtual reality technology for the realistic and immersive visualization of various tasks and scenarios in fields such as power engineering and fire safety has been examined in order to help prepare students and professional electrical engineers with electrical safety, the operation of electrical substations, potential emergencies, injury prevention, fire safety, and others. Additionally, the use of machine learning algorithms to guide evacuations from hazardous environments, fault prevention, fire prediction, and discovery of conductive materials has been examined. The most frequently used algorithms in these areas have also been described and summarized, and conclusions have been made about the combined advantages of using VR and ML algorithms. Finally, the needs, contributions, and challenges of using machine learning in virtual reality projects have been examined. Full article
18 pages, 277 KiB  
Review
Battery Electric Vehicle Safety Issues and Policy: A Review
by Sanjeev M. Naiek, Sorawich Aungsuthar, Corey Harper and Chris Hendrickson
World Electr. Veh. J. 2025, 16(7), 365; https://doi.org/10.3390/wevj16070365 - 1 Jul 2025
Viewed by 879
Abstract
Battery electric vehicles (BEVs) are seeing widespread adoption globally due to technological improvements, lower manufacturing costs, and supportive policies aimed at reducing greenhouse gas emissions. Governments have introduced incentives such as purchase subsidies and investments in charging infrastructure, while automakers continue to broaden [...] Read more.
Battery electric vehicles (BEVs) are seeing widespread adoption globally due to technological improvements, lower manufacturing costs, and supportive policies aimed at reducing greenhouse gas emissions. Governments have introduced incentives such as purchase subsidies and investments in charging infrastructure, while automakers continue to broaden their electric vehicle portfolios. Although BEVs show high overall safety performance comparable to internal combustion engine vehicles (ICEVs), they also raise distinct safety challenges that merit policy attention. This review synthesizes the current literature on safety concerns associated with BEVs, with particular attention to fire risks, vehicle weight, low-speed noise levels, and unique driving characteristics. Fire safety remains a significant issue, as lithium-ion battery fires, although less frequent than those in ICEVs, tend to be more severe and difficult to manage. Strategies such as improved thermal management, fire enclosures, and standardized response protocols are essential. BEVs are typically heavier than ICEVs, affecting crash outcomes and braking performance. These risks are especially important for interactions with pedestrians and smaller vehicles. Quiet operation at low speeds can also reduce pedestrian awareness, prompting regulations for vehicle sound alerts. Together, these issues highlight the need for policies that address both emerging safety risks and the evolving nature of BEV technology. Full article
16 pages, 5438 KiB  
Article
Fire Assessment of a Subway Train Fire: A Study Based on Full-Scale Experiments and Numerical Simulations
by Xingji Wang, Keshu Zhang, Qilong Shi, Bin Zeng, Qiang Li and Dong Li
Fire 2025, 8(7), 259; https://doi.org/10.3390/fire8070259 - 30 Jun 2025
Viewed by 530
Abstract
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the [...] Read more.
Assessments of subway train fires were conducted based on full-scale experiments and numerical simulations. The experimental platform and simulation model were established according to a real subway train in China. The results show that there was no obvious flame spread, and all the electrical circuitry maintained its integrity during a standard luggage fire. The maximum HRR (heat release rate) of the luggage fire obtained through the full-scale experiment was 155.5 kW, which was almost the same as the standard HRR curve provided in EN 45545-1. However, the fire only lasted approximately 180 s, which was much shorter than a standard fire (600 s). Through numerical simulations of an entire subway train, the side wall and roof ignited quickly, and the fire continually spread to the adjacent compartment under the extreme scenario with a gasoline pool fire and exposed winterproof material. The maximum HRRs of the luggage and gasoline pool fires were 179.7 and 17,800.0 kW, respectively. According to the experimental and simulation results, the Duggan method, which assumes that all combustibles inside a train compartment burn at the same time, was not appropriate for assessing the fires in the subway train, and a simple revised frame was proposed instead. Full article
(This article belongs to the Special Issue Modeling, Experiment and Simulation of Tunnel Fire)
Show Figures

Figure 1

Back to TopTop