Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (692)

Search Parameters:
Keywords = electrical cables

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2448 KiB  
Article
A Body-Powered Underactuated Prosthetic Finger Driven by MCP Joint Motion
by Worathris Chungsangsatiporn, Chaiwuth Sithiwichankit, Ratchatin Chancharoen, Ronnapee Chaichaowarat, Nopdanai Ajavakom and Gridsada Phanomchoeng
Robotics 2025, 14(8), 107; https://doi.org/10.3390/robotics14080107 - 31 Jul 2025
Viewed by 61
Abstract
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting [...] Read more.
This study presents the design, fabrication, and clinical validation of a lightweight, body-powered prosthetic index finger actuated via metacarpophalangeal (MCP) joint motion. The proposed system incorporates an underactuated, cable-driven mechanism combining rigid and compliant elements to achieve passive adaptability and embodied intelligence, supporting intuitive user interaction. Results indicate that the prosthesis successfully mimics natural finger flexion and adapts effectively to a variety of grasping tasks with minimal effort. This study was conducted in accordance with ethical standards and approved by the Institutional Review Board (IRB), Project No. 670161, titled “Biologically-Inspired Synthetic Finger: Design, Fabrication, and Application.” The findings suggest that the device offers a viable and practical solution for individuals with partial hand loss, particularly in settings where electrically powered systems are unsuitable or inaccessible. Full article
(This article belongs to the Section Neurorobotics)
Show Figures

Figure 1

21 pages, 964 KiB  
Article
A Data-Driven Strategy Assisted by Effective Parameter Optimization for Cable Fault Diagnosis in the Secondary Circuit of a Substation
by Dongbin Yu, Yanjing Zhang, Sijin Luo, Wei Zou, Junting Liu, Zhiyong Ran and Wei Liu
Processes 2025, 13(8), 2407; https://doi.org/10.3390/pr13082407 - 29 Jul 2025
Viewed by 179
Abstract
As power systems evolve rapidly, cables, essential for electric power transmission, demand accurate and timely fault diagnosis to ensure grid safety and stability. However, current cable fault diagnosis technologies often struggle with incomplete feature extraction from complex fault signals and inefficient parameter tuning [...] Read more.
As power systems evolve rapidly, cables, essential for electric power transmission, demand accurate and timely fault diagnosis to ensure grid safety and stability. However, current cable fault diagnosis technologies often struggle with incomplete feature extraction from complex fault signals and inefficient parameter tuning in diagnostic models, hindering efficient and precise fault detection in modern power systems. To address these, this paper proposes a data-driven strategy for cable fault diagnosis in substation secondary circuits, enhanced by effective parameter optimization. Initially, wavelet packet decomposition is employed to finely divide collected cable fault current signals into multiple levels and bands, effectively extracting fault feature vectors. To tackle the challenge of selecting penalty and kernel parameters in Support Vector Machine (SVM) models, an improved Golden Jackal Optimization (GJO) algorithm is introduced. This algorithm simulates the predatory behavior of golden jackals in nature, enabling efficient global optimization of SVM parameters and significantly improving the classification accuracy and generalization capability of the fault diagnosis model. Simulation verification using real cable fault cases confirms that the proposed method outperforms traditional techniques in fault recognition accuracy, diagnostic speed, and robustness, proving its effectiveness and feasibility. This study offers a novel and efficient solution for cable fault diagnosis. Full article
Show Figures

Figure 1

25 pages, 1696 KiB  
Article
Dual-Level Electric Submersible Pump (ESP) Failure Classification: A Novel Comprehensive Classification Bridging Failure Modes and Root Cause Analysis
by Mostafa A. Sobhy, Gehad M. Hegazy and Ahmed H. El-Banbi
Energies 2025, 18(15), 3943; https://doi.org/10.3390/en18153943 - 24 Jul 2025
Viewed by 262
Abstract
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with [...] Read more.
Electric submersible pumps (ESPs) are critical for artificial lift operations; however, they are prone to frequent failures, often resulting in high operational costs and production downtime. Traditional ESP failure classifications are limited by lack of standardization and the conflation of failure modes with root causes. To address these limitations, this study proposes a new two-step integrated failure modes and root cause (IFMRC) classification system. The new framework clearly distinguishes between failure modes and root causes, providing a systematic, structured approach that enhances fault diagnosis and failure analysis and can lead to better failure prevention strategies. This methodology was validated using a case study of over 4000 ESP installations. The data came from Egypt’s Western Desert, covering a decade of operational data. The sources included ESP databases, workover records, and detailed failure investigation (DIFA) reports. The failure modes were categorized into electrical, mechanical, hydraulic, chemical, and operational types, while root causes were linked to environmental, design, operational, and equipment factors. Statistical analysis, in this case study, revealed that motor short circuits, low flow conditions, and cable short circuits were the most frequent failure modes, with excessive heat, scale deposition, and electrical grounding faults being the dominant root causes. This study underscores the importance of accurate root cause failure classification, robust data acquisition, and expanded failure diagnostics to improve ESP reliability. The proposed IFMRC framework addresses limitations in conventional taxonomies and facilitates ongoing enhancement of ESP design, operation, and maintenance in complex field conditions. Full article
(This article belongs to the Section H1: Petroleum Engineering)
Show Figures

Figure 1

14 pages, 1959 KiB  
Article
Experimental Investigation of Environmental Factors Affecting Cable Bolt Corrosion in Simulated Underground Conditions
by Saisai Wu, Pengbo Cui, Chunshan Zheng, Krzysztof Skrzypkowski and Krzysztof Zagórski
Materials 2025, 18(15), 3460; https://doi.org/10.3390/ma18153460 - 23 Jul 2025
Viewed by 208
Abstract
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation [...] Read more.
Corrosion-related failures have emerged as a critical driver of premature support bolt failures in underground mines, emphasizing the urgency of understanding the phenomenon with respect to enhancing safety in underground environments. This study investigated key factors influencing bolt degradation through extensive experimental evaluation of cable bolts in simulated underground bolt environments. Multi-stranded cable specimens were exposed to saturated clay, coal, mine water, and grout/cement environments. Water samples were collected weekly from critical packing sections and analyzed for pH, electrical conductivity, and dissolved oxygen. The mineralogy and atmospheric conditions were identified as principal corrosion factors, and clay-rich and coal matrices accelerated corrosion, linked to high ion mobility and oxygen diffusion. Secondary factors correlated context-dependently: pH was negatively associated with corrosion in mineral-packed environments, while conductivity was correlated with non-mineral matrices. Notably, multi-stranded cables exhibited higher localized galvanic corrosion in inter-strand zones, highlighting design vulnerabilities. This work provides pioneering evidence that geological conditions are primary drivers for corrosion-related failures, offering actionable guidance for corrosion mitigation strategies in mining infrastructure. Full article
Show Figures

Figure 1

18 pages, 1587 KiB  
Article
Management of Mobile Resonant Electrical Systems for High-Voltage Generation in Non-Destructive Diagnostics of Power Equipment Insulation
by Anatolii Shcherba, Dmytro Vinnychenko, Nataliia Suprunovska, Sergy Roziskulov, Artur Dyczko and Roman Dychkovskyi
Electronics 2025, 14(15), 2923; https://doi.org/10.3390/electronics14152923 - 22 Jul 2025
Viewed by 219
Abstract
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality [...] Read more.
This research presents the development and management principles of mobile resonant electrical systems designed for high-voltage generation, intended for non-destructive diagnostics of insulation in high-power electrical equipment. The core of the system is a series inductive–capacitive (LC) circuit characterized by a high quality (Q) factor and operating at high frequencies, typically in the range of 40–50 kHz or higher. Practical implementations of the LC circuit with Q-factors exceeding 200 have been achieved using advanced materials and configurations. Specifically, ceramic capacitors with a capacitance of approximately 3.5 nF and Q-factors over 1000, in conjunction with custom-made coils possessing Q-factors above 280, have been employed. These coils are constructed using multi-core, insulated, and twisted copper wires of the Litzendraht type to minimize losses at high frequencies. Voltage amplification within the system is effectively controlled by adjusting the current frequency, thereby maximizing voltage across the load without increasing the system’s size or complexity. This frequency-tuning mechanism enables significant reductions in the weight and dimensional characteristics of the electrical system, facilitating the development of compact, mobile installations. These systems are particularly suitable for on-site testing and diagnostics of high-voltage insulation in power cables, large rotating machines such as turbogenerators, and other critical infrastructure components. Beyond insulation diagnostics, the proposed system architecture offers potential for broader applications, including the charging of capacitive energy storage units used in high-voltage pulse systems. Such applications extend to the synthesis of micro- and nanopowders with tailored properties and the electrohydropulse processing of materials and fluids. Overall, this research demonstrates a versatile, efficient, and portable solution for advanced electrical diagnostics and energy applications in the high-voltage domain. Full article
(This article belongs to the Special Issue Energy Harvesting and Energy Storage Systems, 3rd Edition)
Show Figures

Figure 1

16 pages, 4966 KiB  
Article
Electrical–Thermal Aging Performance of PAH-Modified Interfacial Coating Agent for HVDC Cable Accessory
by Wenbo Zhu, Kaulya Pathiraja, Xu Guo, Baojun Hui, Mingli Fu, Linjie Zhao, Yuhuai Wang and Jin Li
Energies 2025, 18(14), 3767; https://doi.org/10.3390/en18143767 - 16 Jul 2025
Viewed by 323
Abstract
A novel interfacial coating agent was developed by modifying silicone oil with polycyclic aromatic hydrocarbons (PAHs) to enhance the insulation performance of HVDC cable accessories. This study investigates the effects of corona and hot–cold cycle aging on the DC breakdown characteristics of the [...] Read more.
A novel interfacial coating agent was developed by modifying silicone oil with polycyclic aromatic hydrocarbons (PAHs) to enhance the insulation performance of HVDC cable accessories. This study investigates the effects of corona and hot–cold cycle aging on the DC breakdown characteristics of the Cross-Linked Poly Ethylene and Ethylene Propylene Diene Monomer (XLPE/EPDM) interface. Interfacial breakdown tests, infrared spectroscopy, and a microstructural analysis were employed to investigate aging mechanisms. The results show that PAH-modified silicone oil significantly increases the breakdown voltage, with 2,4-dihydroxybenzophenone (C13H10O3) identified as the optimal additive via quantum chemical calculations (QCCs). Even after aging, the modified interface maintains its superior performance, confirming the long-term reliability of the coating. Full article
Show Figures

Figure 1

21 pages, 3487 KiB  
Article
Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy
by Athul Thomas, Teresa Lemainque, Marco Baragona, Joachim-Georg Pfeffer and Andreas Ritter
Appl. Sci. 2025, 15(14), 7922; https://doi.org/10.3390/app15147922 - 16 Jul 2025
Viewed by 312
Abstract
High-voltage unipolar square wave pulsed electric fields (PEFs) can cause cell membrane rupture and cell death during a process termed irreversible electroporation (IRE). PEF effects are influenced by pulse parameters like number of pulses (NP), voltage (PV), width (PW), and interval (PI). This [...] Read more.
High-voltage unipolar square wave pulsed electric fields (PEFs) can cause cell membrane rupture and cell death during a process termed irreversible electroporation (IRE). PEF effects are influenced by pulse parameters like number of pulses (NP), voltage (PV), width (PW), and interval (PI). This study systematically evaluates their effects on the conductivity and relative conductivity changes between untreated and PEF-treated regions of potato tissue across a frequency range of 1 Hz to 5 MHz by means of electrochemical impedance spectroscopy (EIS), using a custom-made four-point EIS probe with RG58/U coaxial cables. Potatoes were chosen as a plant-based PEF model to reduce animal experiments and untreated tissue showed minimal conductivity variation across regions. Relative conductivity changes were maximal at 1000 Hz. At 1000 Hz, significant conductivity differences between untreated and PEF-treated regions were observed from PV = 200 V, NP = 10, PW = 10 µs, and PI = 50 ms onwards (most significant changes occurred for PV = 700 V; NP = 70; PW = 70 µs; PI = 250 ms and 500 ms). Our results may be beneficial for multiphysics modelling of IRE with specific electrical properties, conductivity mapping with optimal contrast—such as in electrical impedance tomography—and development of IRE procedures. Full article
(This article belongs to the Special Issue Advances in Electroporation Systems and Applications)
Show Figures

Figure 1

20 pages, 2142 KiB  
Article
Life Estimation of HVDC Extruded Cables Subjected to Extension of Qualification Test Conditions and Comparison with Prequalification Test Conditions
by Bassel Diban, Giovanni Mazzanti and Rolando Ezequiel Diaz
Energies 2025, 18(14), 3651; https://doi.org/10.3390/en18143651 - 10 Jul 2025
Viewed by 243
Abstract
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained [...] Read more.
The goal of this paper is to evaluate the life of HVDC extruded cables subjected to the extension of qualification test (EQT) load cycles, introduced by Cigrè Technical Brochure 852, as well as to compare the results thus obtained with those formerly obtained by the authors in the case of the prequalification test (PQT) load cycles. This goal has been achieved in the present investigation by properly modifying a previously developed procedure for the life and reliability estimation of HVDC cables—implemented in MatlabTM environment—to make it applicable to EQT load cycles in addition to PQT and type test load cycles, which are already considered in the former version of the procedure. Considering a 500 kV DC-XLPE cable as the case study, the time-varying temperature profile and electric field profile within the cable insulation are calculated. Then, the fractions of life lost and the life of the cable at five locations within the insulation thickness are evaluated by means of a proper electrothermal life model. A comparison between the electric field distributions, fractions of life lost, and cable life under EQT and PQT is carried out. In this way, important features of the EQT compared to the PQT load cycles are singled out, and eventually, a new modified extension of qualification test (MEQT) is proposed as a feasible and meaningful compromise between the pros and cons of the EQT and PQT. Full article
Show Figures

Figure 1

10 pages, 3595 KiB  
Article
EM Characterization of a Compact RFQ Cold Model Prototype Employing a New Power Injection Scheme
by Marco A. López, Joaquín Portilla, Victor Etxebarria, Iñigo Arredondo and Jorge Feuchtwanger
Particles 2025, 8(3), 67; https://doi.org/10.3390/particles8030067 - 1 Jul 2025
Viewed by 316
Abstract
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. [...] Read more.
The experimental and computational characterization of a cold model prototype designed to test the electromagnetic properties of a new RFQ (Radio-Frequency Quadrupole) cavity is reported. This cavity is intended to be an essential part of a compact, high-gradient proton accelerator for medical purposes. The RFQ’s design employs a novel RF power-coupler injection solution. One common way to couple the RF power in proton RFQs has been the use of loop-couplers inserted into the mid-section of the RFQ’s lobe sections. This technique has been demonstrated to be reliable and effective but introduces a significant perturbation into the lobe that can be more noticeable when dealing with compact structures. We propose a RF injection scheme that uses direct transition from a coaxial cable to the RFQ by connecting the inner coaxial conductor to the RFQ vane body. As a consequence, the lobe geometry is not perturbed, and the transversal electrical fields are directly excited through the vanes. Moreover, by using a pair of such couplers connected to opposite vanes at a given transversal plane of the RFQ, it is also possible to excite the desired quadrupolar TE210 modes while avoiding the excitation of dipolar TE110 modes. The resonances corresponding to different RFQ modes have been characterized, and the dependence of the amplitude of the modes on the relative phase of the field injected through the RF power ports has been demonstrated both by measurements and simulations. Full article
(This article belongs to the Section Experimental Physics and Instrumentation)
Show Figures

Figure 1

15 pages, 4884 KiB  
Article
Influence of Cable Spacing on Flame Interaction and Combustion Characteristics of Parallel Thermoplastic Cables
by Rongshui Qin, Xiangxiang Zhang, Yuyao Li, Jinchao Wei, Chao Ding and Yan Jiao
Fire 2025, 8(7), 258; https://doi.org/10.3390/fire8070258 - 30 Jun 2025
Viewed by 336
Abstract
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, [...] Read more.
Cable fires pose significant risks to electrical infrastructures, and cable spacing plays a crucial role in influencing fire propagation behaviors. In this study, the combustion characteristics of two parallel thermoplastic cables under varying spacing conditions were systematically investigated through controlled experiments. Key parameters, including flame merging behavior, flame morphology, mass loss rate, flame spread rate, flame temperature, and radiant heat flux, were analyzed. The results revealed that cable spacing critically affects flame interaction, with three distinct flame merging modes—continuous merging, intermittent merging, and non-merging—identified as spacing increases. A critical spacing of 2.5 mm was found, at which the flame spread rate and mass loss rate reached their maximum, approximately 1.7 times higher than that of a single cable. At intermediate spacings (2.5–12.5 mm), enhanced flame interaction and radiative feedback significantly intensified combustion, leading to higher flame temperatures and radiant heat peaks. Conversely, insufficient oxygen supply at zero spacing and reduced flame interaction at large spacings (15 mm) resulted in diminished combustion efficiency. These findings highlight the importance of cable spacing as a key design parameter for mitigating fire hazards in electrical installations, providing valuable insights for fire safety engineering and risk assessment. Full article
(This article belongs to the Special Issue Cable and Wire Fires)
Show Figures

Figure 1

25 pages, 10333 KiB  
Article
Design of a Bionic Self-Insulating Mechanical Arm for Concealed Space Inspection in the Live Power Cable Tunnels
by Jingying Cao, Jie Chen, Xiao Tan and Jiahong He
Appl. Sci. 2025, 15(13), 7350; https://doi.org/10.3390/app15137350 - 30 Jun 2025
Viewed by 227
Abstract
Adopting mobile robots for high voltage (HV) live-line operations can mitigate personnel casualties and enhance operational efficiency. However, conventional mechanical arms cannot inspect concealed spaces in the power cable tunnel because their joint integrates metallic motors or hydraulic serial-drive mechanisms, which limit the [...] Read more.
Adopting mobile robots for high voltage (HV) live-line operations can mitigate personnel casualties and enhance operational efficiency. However, conventional mechanical arms cannot inspect concealed spaces in the power cable tunnel because their joint integrates metallic motors or hydraulic serial-drive mechanisms, which limit the arm’s length and insulation performance. Therefore, this study proposes a 7-degree-of-freedom (7-DOF) bionic mechanical arm with rigid-flexible coupling, mimicking human arm joints (shoulder, elbow, and wrist) designed for HV live-line operations in concealed cable tunnels. The arm employs a tendon-driven mechanism to remotely actuate joints, analogous to human musculoskeletal dynamics, thereby physically isolating conductive components (e.g., motors) from the mechanical arm. The arm’s structure utilizes dielectric materials and insulation-optimized geometries to reduce peak electric field intensity and increase creepage distance, achieving intrinsic self-insulation. Furthermore, the mechanical design addresses challenges posed by concealed spaces (e.g., shield tunnels and multi-circuit cable layouts) through the analysis of joint kinematics, drive mechanisms, and dielectric performance. The workspace of the proposed arm is an oblate ellipsoid with minor and major axes measuring 1.25 m and 1.65 m, respectively, covering the concealed space in the cable tunnel, while the arm’s quality is 4.7 kg. The maximum electric field intensity is 74.3 kV/m under 220 kV operating voltage. The field value is less than the air breakdown threshold. The proposed mechanical arm design significantly improves spatial adaptability, operational efficiency, and reliability in HV live-line inspection, offering theoretical and practical advancements for intelligent maintenance in cable tunnel environments. Full article
Show Figures

Figure 1

26 pages, 9190 KiB  
Article
Two-Objective Optimization of Tidal Array Micro-Sitting Accounting for Yaw Angle Effects
by Can Zhang, Yichi Zhang, Jisheng Zhang, Xiaoming Cheng, Xiangfeng Lin, Chengsheng Wu and Zihan Ding
J. Mar. Sci. Eng. 2025, 13(7), 1210; https://doi.org/10.3390/jmse13071210 - 22 Jun 2025
Viewed by 263
Abstract
Power output and economic cost are two critical factors influencing the layout of tidal stream turbine arrays. To identify the optimal configuration, this study establishes a two-objective optimization framework that simultaneously considers these factors. Both the spatial location and yaw angle of each [...] Read more.
Power output and economic cost are two critical factors influencing the layout of tidal stream turbine arrays. To identify the optimal configuration, this study establishes a two-objective optimization framework that simultaneously considers these factors. Both the spatial location and yaw angle of each turbine are optimized to enhance overall power output, while the total length of submarine cables, which is used to transmit electricity from the turbines to the onshore power station, is adopted as the metric for economic cost. The Huludao water area is selected as the study domain. A 12-turbine array is examined under varying weight coefficients to investigate the trade-off between maximizing power output and minimizing economic cost. The optimization results show that submarine cable length decreases linearly as its economic weight coefficient increases, while the array’s power output exhibits a stepwise decline. This indicates that, with carefully chosen weight coefficients, economic costs can be significantly reduced without a proportional sacrifice in power output. Furthermore, increasing the number of turbines connected by a single cable not only enhances power output but also reduces total cable length, thereby improving the overall profitability of the optimized array layout. Full article
(This article belongs to the Section Marine Energy)
Show Figures

Figure 1

17 pages, 4135 KiB  
Article
Temperature Estimation Method on Optic–Electric Composite Submarine Power Cable Based on Optical Fiber Distributed Sensing
by Chao Luo, Zhitao Feng, Yihua Zhu, Yuyan Liu, Yi Zhang, Ying Zhou, Muning Zhang and Lijuan Zhao
Photonics 2025, 12(6), 622; https://doi.org/10.3390/photonics12060622 - 19 Jun 2025
Viewed by 256
Abstract
The status of an optic–electric composite high-voltage submarine cable (referred to as submarine cable) can be monitored based on optical fiber-distributed sensing technology, and at the same time, no additional sensor is needed in the monitoring system. Currently, this technology is widely used [...] Read more.
The status of an optic–electric composite high-voltage submarine cable (referred to as submarine cable) can be monitored based on optical fiber-distributed sensing technology, and at the same time, no additional sensor is needed in the monitoring system. Currently, this technology is widely used in submarine cable monitoring systems. To estimate the temperatures of conductor and XLPE (cross-linked polyethylene) insulation of the submarine cable based on the ambient temperature and optical fiber temperature, the thermoelectric coupling field model of the 110 kV single-core submarine cable is established and validated. The thermoelectric coupling field models of the submarine cable with different values of ambient temperature and ampacity are built, and the influence of ambient temperature and ampacity on the temperatures of conductor, insulation and optical fiber is investigated. Furthermore, the relationship between the temperatures of the conductor and insulation and the ambient temperature and optical fiber temperature is obtained. Then, estimation formulas for temperatures of conductor and insulation of submarine cable according to ambient temperature and optical fiber temperature are obtained and preliminarily validated. This work lays the foundation for condition evaluation of the submarine cable insulation, life expectancy and maximum allowable ampacity estimation. Full article
(This article belongs to the Special Issue Advances in Optical Fiber Sensing Technology)
Show Figures

Figure 1

50 pages, 2738 KiB  
Review
Geophysical Survey and Monitoring of Transportation Infrastructure Slopes (TISs): A Review
by Zeynab Rosa Maleki, Paul Wilkinson, Jonathan Chambers, Shane Donohue, Jessica Lauren Holmes and Ross Stirling
Geosciences 2025, 15(6), 220; https://doi.org/10.3390/geosciences15060220 - 12 Jun 2025
Viewed by 707
Abstract
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding [...] Read more.
This review examines the application of the geophysical methods for Transportation Infrastructure Slope Monitoring (TISM). In contrast to existing works, which address geophysical methods for natural landslide monitoring, this study focuses on their application to infrastructure assets. It addresses the key aspects regarding the geophysical methods most employed, the subsurface properties revealed, and the design of monitoring systems, including sensor deployment. It evaluates the benefits and challenges associated with each geophysical approach, explores the potential for integrating geophysical techniques with other methods, and identifies the emerging technologies. Geophysical techniques such as Electrical Resistivity Tomography (ERT), Multichannel Analysis of Surface Waves (MASW), and Fiber Optic Cable (FOC) have proven effective in monitoring slope stability and detecting subsurface features, including soil moisture dynamics, slip surfaces, and material heterogeneity. Both temporary and permanent monitoring setups have been used, with increasing interest in real-time monitoring solutions. The integration of advanced technologies like Distributed Acoustic Sensing (DAS), UAV-mounted sensors, and artificial intelligence (AI) promises to enhance the resolution, accessibility, and predictive capabilities of slope monitoring systems. The review concludes with recommendations for future research, emphasizing the need for integrated monitoring frameworks that combine geophysical data with real-time analysis to improve the safety and efficiency of transportation infrastructure management. Full article
Show Figures

Figure 1

18 pages, 6117 KiB  
Article
Numerical Analysis of Conditions for Partial Discharge Inception in Spherical Gaseous Voids in XLPE Insulation of AC Cables at Rated Voltage and During AC, VLF and DAC Tests
by Paweł Mikrut and Paweł Zydroń
Energies 2025, 18(11), 2949; https://doi.org/10.3390/en18112949 - 4 Jun 2025
Viewed by 498
Abstract
AC power cables play an important role in power systems, in the transmission and distribution of electrical energy. For this reason, to ensure high operational reliability, voltage withstand tests and diagnostic tests are performed at every stage of their technical life to determine [...] Read more.
AC power cables play an important role in power systems, in the transmission and distribution of electrical energy. For this reason, to ensure high operational reliability, voltage withstand tests and diagnostic tests are performed at every stage of their technical life to determine the condition of cable insulation. Due to the large electrical capacitances of cable systems, modern testing methods use very low frequency (VLF) and damped oscillating (DAC) voltages. The research presented in the article analyzed the effect of the test voltage waveform parameters on the partial discharge (PD) inception conditions in spherical gaseous voids present in the XLPE insulation of AC cable model. Using COMSOL 6.1 and MATLAB R2021b, a coupled electro-thermal model of a 110 kV AC cable was implemented, for which the critical gaseous void dimensions were estimated and phase-resolved PD patterns were generated for the rated voltage and the VLF and DAC test voltages specified in the relevant standards. In the analyses for the rated voltage, the influence of internal temperature distribution, which causes modification of XLPE permittivity, was taken into account in the numerical cable model. Full article
Show Figures

Figure 1

Back to TopTop