Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy
Abstract
1. Introduction
2. Materials and Methods
2.1. Fabrication of an Open-Ended Coaxial Four-Point Probe
2.2. EIS Measurement System
2.3. Calibration of the Four-Point Probe
2.4. Heterogeneity Test of Untreated Potato Tissue
2.5. System Setup for PEF Treatment
2.6. Assessment of PEF-Mediated Conductivity Changes
2.7. Analysis of EIS Data
2.8. Statistical Analysis
3. Results
3.1. Study Samples Overview
3.2. Heterogeneity Test
3.3. Effect of Different Pulse Voltages on Electrical Conductivity
3.4. Electrical Conductivity Analysis for Different Number of Pulses
3.5. Effect of Different Pulse Widths on Electrical Conductivity
3.6. Effect of Different Pulse Intervals on Electrical Conductivity
3.7. Effect of Different PEF Pulse Parameters on Permittivity and Tissue Temperature
3.8. Repeatability of Conductivity and Permittivity Measurements
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ANOVA | analysis of variance |
ATP | adenosine triphosphate |
C | counter electrode |
DNA | deoxyribonucleic acid |
EIS | electrochemical impedance spectroscopy |
EIT | electrical impedance tomography |
IRE | irreversible electroporation |
NP | numbers of pulses |
NMR | nuclear magnetic resonance |
PEF | pulsed electric fields |
PI | pulse intervals |
PTFE | polytetrafluoroethylene |
PV | pulse voltage |
PW | pulse width |
R | reference electrode |
RE | reversible electroporation |
ROS | reactive oxygen species |
RSD | relative standard deviation |
SD | standard deviation |
TMV | transmembrane voltage |
VGICs | voltage-gated ion channels |
W | working electrode |
WS | working sense electrode |
References
- Angersbach, A.; Heinz, V.; Knorr, D. Effects of Pulsed Electric Fields on Cell Membranes in Real Food Systems. Innov. Food Sci. Emerg. Technol. 2000, 1, 135–149. [Google Scholar] [CrossRef]
- Weaver, J.C.; Chizmadzhev, Y.A. Theory of Electroporation: A Review. Bioelectrochem. Bioenerg. 1996, 41, 135–160. [Google Scholar] [CrossRef]
- Kotnik, T.; Rems, L.; Tarek, M.; Miklavcic, D. Membrane Electroporation and Electropermeabilization: Mechanisms and Models. Annu. Rev. Biophys. 2019, 48, 63–91. [Google Scholar] [CrossRef] [PubMed]
- Weaver, J.C.; Smith, K.C.; Esser, A.T.; Son, R.S.; Gowrishankar, T.R. A Brief Overview of Electroporation Pulse Strength–Duration Space: A Region Where Additional Intracellular Effects Are Expected. Bioelectrochemistry 2012, 87, 236–243. [Google Scholar] [CrossRef] [PubMed]
- Batista Napotnik, T.; Polajžer, T.; Miklavčič, D. Cell Death Due to Electroporation—A Review. Bioelectrochemistry 2021, 141, 107871. [Google Scholar] [CrossRef] [PubMed]
- Morozov, A.; Taratkin, M.; Barret, E.; Singla, N.; Bezrukov, E.; Chinenov, D.; Enikeev, M.; Gomez Rivas, J.; Shpikina, A.; Enikeev, D. A Systematic Review of Irreversible Electroporation in Localised Prostate Cancer Treatment. Andrologia 2020, 52, e13789. [Google Scholar] [CrossRef] [PubMed]
- Yeung, E.S.L.; Chung, M.W.Y.; Wong, K.; Wong, C.Y.K.; So, E.C.T.; Chan, A.C.Y. An Update on Irreversible Electroporation of Liver Tumours. Hong Kong Med. J. 2014, 20, 313–316. [Google Scholar] [CrossRef] [PubMed]
- Jourabchi, N.; Beroukhim, K.; Tafti, B.A.; Kee, S.T.; Lee, E.W. Irreversible Electroporation (NanoKnife) in Cancer Treatment. Gastrointest. Interv. 2014, 3, 8–18. [Google Scholar] [CrossRef]
- Valerio, M.; Dickinson, L.; Ali, A.; Ramachandran, N.; Donaldson, I.; Freeman, A.; Ahmed, H.U.; Emberton, M. A Prospective Development Study Investigating Focal Irreversible Electroporation in Men with Localised Prostate Cancer: Nanoknife Electroporation Ablation Trial (NEAT). Contemp. Clin. Trials 2014, 39, 57–65. [Google Scholar] [CrossRef] [PubMed]
- Yarmush, M.L.; Golberg, A.; Serša, G.; Kotnik, T.; Miklavčič, D. Electroporation-Based Technologies for Medicine: Principles, Applications, and Challenges. Annu. Rev. Biomed. Eng. 2014, 16, 295–320. [Google Scholar] [CrossRef] [PubMed]
- Kos, B.; Voigt, P.; Miklavcic, D.; Moche, M. Careful Treatment Planning Enables Safe Ablation of Liver Tumors Adjacent to Major Blood Vessels by Percutaneous Irreversible Electroporation (IRE). Radiol. Oncol. 2015, 49, 234–241. [Google Scholar] [CrossRef] [PubMed]
- Kotnik, T.; Pucihar, G.; Reberšek, M.; Miklavčič, D.; Mir, L.M. Role of Pulse Shape in Cell Membrane Electropermeabilization. Biochim. Biophys. Acta (BBA) Biomembr. 2003, 1614, 193–200. [Google Scholar] [CrossRef]
- Miklavčič, D.; Serša, G.; Brecelj, E.; Gehl, J.; Soden, D.; Bianchi, G.; Ruggieri, P.; Rossi, C.R.; Campana, L.G.; Jarm, T. Electrochemotherapy: Technological Advancements for Efficient Electroporation-Based Treatment of Internal Tumors. Med. Biol. Eng. Comput. 2012, 50, 1213–1225. [Google Scholar] [CrossRef] [PubMed]
- Jouni, A.; Baragona, M.; Pedersoli, F.; Ritter, A. Temperature Distribution on Classical Two Needles IRE Setup Versus a Single Needle Prototype. Technol. Cancer Res. Treat. 2024, 23, 15330338241288342. [Google Scholar] [CrossRef] [PubMed]
- Pasqualotto, E.; Ferrario, A.; Scaramuzza, M.; De Toni, A.; Maschietto, M. Monitoring Electropermeabilization of Adherent Mammalian Cells Through Electrochemical Impedance Spectroscopy. Procedia Chem. 2012, 6, 79–88. [Google Scholar] [CrossRef]
- Scuderi, M.; Dermol-Cern, J.; Scancar, J.; Markovic, S.; Rems, L.; Miklavcic, D. The Equivalence of Different Types of Electric Pulses for Electrochemotherapy with Cisplatin—An In Vitro Study. Radiol. Oncol. 2024, 58, 51–66. [Google Scholar] [CrossRef] [PubMed]
- Ivorra, A.; Al-Sakere, B.; Rubinsky, B.; Mir, L.M. In Vivo Electrical Conductivity Measurements during and after Tumor Electroporation: Conductivity Changes Reflect the Treatment Outcome. Phys. Med. Biol. 2009, 54, 5949. [Google Scholar] [CrossRef] [PubMed]
- Ivorra, A.; Rubinsky, B. In Vivo Electrical Impedance Measurements during and after Electroporation of Rat Liver. Bioelectrochemistry 2007, 70, 287–295. [Google Scholar] [CrossRef] [PubMed]
- Elez-Martínez, P.; Odriozola-Serrano, I.; Oms-Oliu, G.; Soliva-Fortuny, R.; Martín-Belloso, O. Effects of Pulsed Electric Fields Processing Strategies on Health-Related Compounds of Plant-Based Foods. Food Eng. Rev. 2017, 9, 213–225. [Google Scholar] [CrossRef]
- Leong, S.Y.; Oey, I. Pulsed Electric Fields Processing of Plant-Based Foods: An Overview. In Encyclopedia of Food Chemistry; Elsevier: Amsterdam, The Netherlands, 2019; pp. 245–254. [Google Scholar] [CrossRef]
- Hogenes, A.M.; Overduin, C.G.; Slump, C.H.; van Laarhoven, C.J.H.M.; Fütterer, J.J.; ten Broek, R.P.G.; Stommel, M.W.J. The Influence of Irreversible Electroporation Parameters on the Size of the Ablation Zone and Thermal Effects: A Systematic Review. Technol. Cancer Res. Treat. 2023, 22, 15330338221125003. [Google Scholar] [CrossRef] [PubMed]
- Pakhomova, O.N.; Gregory, B.W.; Khorokhorina, V.A.; Bowman, A.M.; Xiao, S.; Pakhomov, A.G. Electroporation-Induced Electrosensitization. PLoS ONE 2011, 6, e17100. [Google Scholar] [CrossRef] [PubMed]
- Davalos, R.V.; Bhonsle, S.; Neal, R.E. Implications and Considerations of Thermal Effects When Applying Irreversible Electroporation Tissue Ablation Therapy. Prostate 2015, 75, 1114–1118. [Google Scholar] [CrossRef] [PubMed]
- Beitel-White, N.; Lorenzo, M.F.; Zhao, Y.; Brock, R.M.; Coutermarsh-Ott, S.; Allen, I.C.; Manuchehrabadi, N.; Davalos, R.V. Multi-Tissue Analysis on the Impact of Electroporation on Electrical and Thermal Properties. IEEE Trans. Biomed. Eng. 2021, 68, 771–782. [Google Scholar] [CrossRef] [PubMed]
- Mathy, R.M.; Tinoush, P.; da Florencia, R.D.; Braun, A.; Ghamarnejad, O.; Radeleff, B.; Kauczor, H.U.; Chang, D.H. Impact of Needle Positioning on Ablation Success of Irreversible Electroporation: A Unicentric Retrospective Analysis. Sci. Rep. 2020, 10, 21902. [Google Scholar] [CrossRef] [PubMed]
- Ritter, A.; Bruners, P.; Isfort, P.; Barabasch, A.; Pfeffer, J.; Schmitz, J.; Pedersoli, F.; Baumann, M. Electroporation of the Liver: More Than 2 Concurrently Active, Curved Electrodes Allow New Concepts for Irreversible Electroporation and Electrochemotherapy. Technol. Cancer Res. Treat. 2018, 17, 153303381880999. [Google Scholar] [CrossRef] [PubMed]
- Lakshmi Narasimhan, P.; Tokoutsi, Z.; Baroli, D.; Baragona, M.; Veroy, K.; Maessen, R.; Ritter, A. Global Sensitivity Study for Irreversible Electroporation: Towards Treatment Planning under Uncertainty. Med. Phys. 2023, 50, 1290–1304. [Google Scholar] [CrossRef] [PubMed]
- Šel, D.; Cukjati, D.; Batiuskaite, D.; Slivnik, T.; Mir, L.M.; Miklavčič, D. Sequential Finite Element Model of Tissue Electropermeabilization. IEEE Trans. Biomed. Eng. 2005, 52, 816–827. [Google Scholar] [CrossRef] [PubMed]
- Rubinsky, B.; Onik, G.; Mikus, P. Irreversible Electroporation: A New Ablation Modality—Clinical Implications. Technol. Cancer Res. Treat. 2007, 6, 37–48. [Google Scholar] [CrossRef] [PubMed]
- Ben-David, E.; Appelbaum, L.; Sosna, J.; Nissenbaum, I.; Goldberg, S.N. Characterization of Irreversible Electroporation Ablation in In Vivo Porcine Liver. Am. J. Roentgenol. 2012, 198, W62–W68. [Google Scholar] [CrossRef] [PubMed]
- De Vito, F.; Ferrari, G.; Lebovka, N.I.; Shynkaryk, N.V.; Vorobiev, E. Pulse Duration and Efficiency of Soft Cellular Tissue Disintegration by Pulsed Electric Fields. Food Bioprocess Technol. 2008, 1, 307–313. [Google Scholar] [CrossRef]
- Kandušer, M.; Miklavčič, D. Electroporation in Biological Cell and Tissue: An Overview. In Food Engineering Series; Springer: New York, NY, USA, 2009; pp. 1–37. [Google Scholar] [CrossRef]
- Haider, M.W.; Nafees, M.; Iqbal, R.; Asad, H.U.; Azeem, F.; Ali, B.; Shaheen, G.; Iqbal, J.; Vyas, S.; Arslan, M.; et al. Postharvest Starch and Sugars Adjustment in Potato Tubers of Wide-Ranging Dormancy Genotypes Subjected to Various Sprout Forcing Techniques. Sci. Rep. 2023, 13, 14845. [Google Scholar] [CrossRef] [PubMed]
- Smith, A.J.; Lilley, E. The Role of the Three Rs in Improving the Planning and Reproducibility of Animal Experiments. Animals 2019, 9, 975. [Google Scholar] [CrossRef] [PubMed]
- Hubrecht, R.C.; Carter, E. The 3Rs and Humane Experimental Technique: Implementing Change. Animals 2019, 9, 754. [Google Scholar] [CrossRef] [PubMed]
- Ivorra, A.; Ausín, T.; Becerra-Fajardo, L.; del Ama, A.J.; Minguillón, J.; García-Moreno, A.; Aguiló, J.; Barroso, F.O.; Bijnens, B.; Camara, O.; et al. The Biomedical Engineer’s Pledge 1.0. Zenodo 2023. [Google Scholar] [CrossRef]
- Bhonsle, S.P.; Arena, C.B.; Sweeney, D.C.; Davalos, R. V Mitigation of Impedance Changes Due to Electroporation Therapy Using Bursts of High-Frequency Bipolar Pulses. Biomed. Eng. Online 2015, 14, S3. [Google Scholar] [CrossRef] [PubMed]
- Jeong, S.; Kim, H.; Park, J.; Kim, K.W.; Sim, S.B.; Chung, J.H. Evaluation of Electroporated Area Using 2,3,5-Triphenyltetrazolium Chloride in a Potato Model. Sci. Rep. 2021, 11, 20431. [Google Scholar] [CrossRef] [PubMed]
- Thomas, A.; Nolte, T.; Baragona, M.; Ritter, A. Finding an Effective MRI Sequence to Visualise the Electroporated Area in Plant-Based Models by Quantitative Mapping. Bioelectrochemistry 2023, 153, 108463. [Google Scholar] [CrossRef] [PubMed]
- Lindelauf, K.H.K.; Thomas, A.; Baragona, M.; Jouni, A.; Nolte, T.; Pedersoli, F.; Pfeffer, J.; Baumann, M.; Maessen, R.T.H.; Ritter, A. Plant-Based Model for the Visual Evaluation of Electroporated Area after Irreversible Electroporation and Its Comparison to in-Vivo Animal Data. Sci. Prog. 2023, 106, 00368504231156294. [Google Scholar] [CrossRef] [PubMed]
- Narkar, A.; Kaboudian, A.; Ardeshirpour, Y.; Casciola, M.; Feaster, T.; Blinova, K. In Vitro Assay Development to Study Pulse Field Ablation Outcome Using Solanum Tuberosum. Int. J. Mol. Sci. 2024, 25, 8967. [Google Scholar] [CrossRef] [PubMed]
- Galindo, F.G.; Vernier, P.T.; Dejmek, P.; Vicente, A.; Gundersen, M.A. Pulsed Electric Field Reduces the Permeability of Potato Cell Wall. Bioelectromagnetics 2008, 29, 296–301. [Google Scholar] [CrossRef] [PubMed]
- Janositz, A.; Noack, A.K.; Knorr, D. Pulsed Electric Fields and Their Impact on the Diffusion Characteristics of Potato Slices. LWT Food Sci. Technol. 2011, 44, 1939–1945. [Google Scholar] [CrossRef]
- Faridnia, F.; Burritt, D.J.; Bremer, P.J.; Oey, I. Innovative Approach to Determine the Effect of Pulsed Electric Fields on the Microstructure of Whole Potato Tubers: Use of Cell Viability, Microscopic Images and Ionic Leakage Measurements. Food Res. Int. 2015, 77, 556–564. [Google Scholar] [CrossRef]
- Castellví, Q.; Banús, J.; Ivorra, A. 3D Assessment of Irreversible Electroporation Treatments in Vegetal Models. IFMBE Proc. 2016, 53, 294–297. [Google Scholar] [CrossRef]
- Hjouj, M.; Rubinsky, B. Magnetic Resonance Imaging Characteristics of Nonthermal Irreversible Electroporation in Vegetable Tissue. J. Membr. Biol. 2010, 236, 137–146. [Google Scholar] [CrossRef] [PubMed]
- Genovese, J.; Kranjc, M.; Serša, I.; Petracci, M.; Rocculi, P.; Miklavčič, D.; Mahnič-Kalamiza, S. PEF-Treated Plant and Animal Tissues: Insights by Approaching with Different Electroporation Assessment Methods. Innov. Food Sci. Emerg. Technol. 2021, 74, 102872. [Google Scholar] [CrossRef]
- Chilcott, T.C.; Chan, M.; Gaedt, L.; Nantawisarakul, T.; Fane, A.G.; Coster, H.G.L. Electrical Impedance Spectroscopy Characterisation of Conducting Membranes: I. Theory. J. Memb. Sci. 2002, 195, 153–167. [Google Scholar] [CrossRef]
- Castellví, Q.; Mercadal, B.; Ivorra, A. Assessment of Electroporation by Electrical Impedance Methods. In Handbook of Electroporation; Springer International Publishing: Cham, Switzerland, 2017; Volume 1, pp. 671–690. [Google Scholar]
- Lazanas, A.C.; Prodromidis, M.I. Electrochemical Impedance Spectroscopy—A Tutorial. ACS Meas. Sci. Au 2023, 3, 162–193. [Google Scholar] [CrossRef] [PubMed]
- Bigdeli, I.K.; Yeganeh, M.; Shoushtari, M.T.; Zadeh, M.K. Electrochemical Impedance Spectroscopy (EIS) for Biosensing. In Nanosensors for Smart Manufacturing; Elsevier: Amsterdam, The Netherlands, 2021; pp. 533–554. [Google Scholar] [CrossRef]
- Guo, F.; Gou, X.; Sun, J.; Hong, J.; Zhang, Y. Modeling Methods in Overlapping Electroporation Treatments: Pulse Number Effects on Tissue Conductivity and Ablation Area. Electrochim. Acta 2024, 503, 144883. [Google Scholar] [CrossRef]
- Wardhana, G.; Raman, N.M.; Abayazid, M.; Fütterer, J.J. Investigating the Effect of Electrode Orientation on Irreversible Electroporation with Experiment and Simulation. Int. J. Comput. Assist. Radiol. Surg. 2022, 17, 1399–1407. [Google Scholar] [CrossRef] [PubMed]
- Mansouri, S.; Alharbi, Y.; Haddad, F.; Chabcoub, S.; Alshrouf, A.; Abd-Elghany, A.A. Electrical Impedance Tomography—Recent Applications and Developments. J. Electr. Bioimpedance 2021, 12, 50–62. [Google Scholar] [CrossRef] [PubMed]
- Granot, Y.; Ivorra, A.; Maor, E.; Rubinsky, B. In Vivo Imaging of Irreversible Electroporation by Means of Electrical Impedance Tomography. Phys. Med. Biol. 2009, 54, 4927. [Google Scholar] [CrossRef] [PubMed]
- Boone, K.; Barber, D.; Brown, B. Imaging with Electricity: Report of the European Concerted Action on Impedance Tomography. J. Med. Eng. Technol. 1997, 21, 201–232. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Wang, N.; Fan, L.-F.; Zhao, P.-F.; Li, J.-H.; Huang, L.; Wang, Z.-Y. Robust Electrical Impedance Tomography for Biological Application: A Mini Review. Heliyon 2023, 9, e15195. [Google Scholar] [CrossRef] [PubMed]
- Fafilek, G. The Use of Voltage Probes in Impedance Spectroscopy. Solid. State Ion. 2005, 176, 2023–2029. [Google Scholar] [CrossRef]
- Schwan, H.P. Electrode polarization impedance and measurements in biological materials. Ann. N. Y. Acad. Sci. 1968, 148, 191–209. [Google Scholar] [CrossRef] [PubMed]
- Ishai, P.B.; Talary, M.S.; Caduff, A.; Levy, E.; Feldman, Y. Electrode Polarization in Dielectric Measurements: A Review. Meas. Sci. Technol. 2013, 24, 102001. [Google Scholar] [CrossRef]
- Raicu, V. A Simple Theoretical and Practical Approach to Measuring Dielectric Properties with an Open-Ended Coaxial Probe. Meas. Sci. Technol. 1995, 6, 410. [Google Scholar] [CrossRef]
- Gabriel, C.; Gabriel, S.; Corthout, E. The Dielectric Properties of Biological Tissues: I. Literature Survey. Phys. Med. Biol. 1996, 41, 2231–2249. [Google Scholar] [CrossRef] [PubMed]
- Gabriel, S.; Lau, R.W.; Gabriel, C. The Dielectric Properties of Biological Tissues: III. Parametric Models for the Dielectric Spectrum of Tissues. Phys. Med. Biol. 1996, 41, 2271–2293. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Liu, H.; Bhonsle, S.P.; Wang, Y.; Davalos, R.V.; Yao, C. Ablation Outcome of Irreversible Electroporation on Potato Monitored by Impedance Spectrum under Multi-Electrode System. Biomed. Eng. Online 2018, 17, 126. [Google Scholar] [CrossRef] [PubMed]
- Oshin, E.A.; Guo, S.; Jiang, C. Determining Tissue Conductivity in Tissue Ablation by Nanosecond Pulsed Electric Fields. Bioelectrochemistry 2022, 143, 107949. [Google Scholar] [CrossRef] [PubMed]
- Miklavčič, D.; Pavšelj, N.; Hart, F.X. Electric Properties of Tissues. In Wiley Encyclopedia of Biomedical Engineering; Major Reference Works; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006; ISBN 9780471740360. [Google Scholar]
- Laufer, S.; Ivorra, A.; Reuter, V.E.; Rubinsky, B.; Solomon, S.B. Electrical Impedance Characterization of Normal and Cancerous Human Hepatic Tissue. Physiol. Meas. 2010, 31, 995. [Google Scholar] [CrossRef] [PubMed]
- Cannon, R.; Ellis, S.; Hayes, D.; Narayanan, G.; Martin, R.C.G. Safety and Early Efficacy of Irreversible Electroporation for Hepatic Tumors in Proximity to Vital Structures. J. Surg. Oncol. 2013, 107, 544–549. [Google Scholar] [CrossRef] [PubMed]
- Xu, M.; Xu, D.; Dong, G.; Ren, Z.; Zhang, W.; Aji, T.; Zhao, Q.; Chen, X.; Jiang, T. The Safety and Efficacy of Nanosecond Pulsed Electric Field in Patients With Hepatocellular Carcinoma: A Prospective Phase 1 Clinical Study Protocol. Front. Oncol. 2022, 12, 869316. [Google Scholar] [CrossRef] [PubMed]
- Raso, J.; Frey, W.; Ferrari, G.; Pataro, G.; Knorr, D.; Teissie, J.; Miklavčič, D. Recommendations Guidelines on the Key Information to Be Reported in Studies of Application of PEF Technology in Food and Biotechnological Processes. Innov. Food Sci. Emerg. Technol. 2016, 37, 312–321. [Google Scholar] [CrossRef]
- Lebar, A.M.; Troiano, G.C.; Tung, L.; Miklavčič, D. Inter-Pulse Interval between Rectangular Voltage Pulses Affects Electroporation Threshold of Artificial Lipid Bilayers. IEEE Trans. NanoBiosci. 2002, 1, 116–120. [Google Scholar] [CrossRef] [PubMed]
- Bonakdar, M.; Latouche, E.L.; Mahajan, R.L.; Davalos, R.V. The Feasibility of a Smart Surgical Probe for Verification of IRE Treatments Using Electrical Impedance Spectroscopy. IEEE Trans. Biomed. Eng. 2015, 62, 2674–2684. [Google Scholar] [CrossRef] [PubMed]
- Angersbach, A.; Heinz, V.; Knorr, D. Evaluation of Process-Induced Dimensional Changes in the Membrane Structure of Biological Cells Using Impedance Measurement. Biotechnol. Prog. 2002, 18, 597–603. [Google Scholar] [CrossRef] [PubMed]
- Romeo, S.; Wu, Y.H.; Levine, Z.A.; Gundersen, M.A.; Vernier, P.T. Water Influx and Cell Swelling after Nanosecond Electropermeabilization. Biochim. Biophys. Acta (BBA) Biomembr. 2013, 1828, 1715–1722. [Google Scholar] [CrossRef] [PubMed]
- Ruiz-Fernández, A.R.; Campos, L.; Gutierrez-Maldonado, S.E.; Núñez, G.; Villanelo, F.; Perez-Acle, T. Nanosecond Pulsed Electric Field (NsPEF): Opening the Biotechnological Pandora’s Box. Int. J. Mol. Sci. 2022, 23, 6158. [Google Scholar] [CrossRef] [PubMed]
- Moro, L.C.; Porto, R.W. Single Frequency Electrical Impedance Tomography System with Offline Reconstruction Algorithm. In Proceedings of the 2015 IEEE 6th Latin American Symposium on Circuits and Systems, LASCAS 2015—Conference Proceedings 2015, Montevideo, Uruguay, 24–27 February 2015. [Google Scholar] [CrossRef]
- Parniakov, O.; Lebovka, N.; Wiktor, A.; Alles, M.C.; Hill, K.; Toepfl, S. Applications of Pulsed Electric Fields for Processing Potatoes: Examples and Equipment Design. Res. Agric. Eng. 2022, 68, 47–62. [Google Scholar] [CrossRef]
Variable Pulse Parameters | Fixed Pulse Parameters | Standard Conductivity Solution | |||
---|---|---|---|---|---|
Pulse Parameters | Variable Values | Units | Solution Temperature (°C) | Conductivity (S/m) | |
Pulse voltage (PV) | 100, 200, 300, 400, 500, 600, 700, 800, 900, 1000 | V | NP = 70 PW = 100 µs PI = 100 ms | 20.8 | 0.1305 |
Number of pulses (NP) | 5, 10, 15, 20, 30, 40, 50, 60, 70 | - | PI = 100 ms PW = 100 µs PV = 1000 V | 21.4 | 0.1305 |
Pulse width (PW) | 10, 20, 30, 50, 70, 80, 90, 100, 200 | µs | NP = 70 PI = 100 ms PV = 1000 V | 20.8 | 0.1305 |
Pulse interval (PI) | 50, 100, 150, 200, 250, 300, 350, 400, 500 | ms | NP = 70 PW = 100 µs PV = 1000 V | 21.0 | 0.1305 |
Pulse Voltage | ||||||||||
100 V | 200 V | 300 V | 400 V | 500 V | 600 V | 700 V | 800 V | 900 V | 1000 V | |
(%) | 14 | 232 | 671 | 825 | 905 | 1131 | 1294 | 1354 | 1357 | 1671 |
(Hz) | 185,717 | 1483 | 1818 | 7 | 1483 | 1552 | 1483 | 1439 | 1660 | 1660 |
(Hz) | 100,000 | 1000 | 1000 | 10 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 |
Number of Pulses | ||||||||||
5 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | ||
(%) | 149 | 476 | 771 | 1049 | 964 | 1309 | 1523 | 1652 | 1565 | |
(Hz) | 3372 | 1660 | 1575 | 1575 | 1575 | 1724 | 1859 | 1859 | 1859 | |
(Hz) | 10,000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | |
Pulse Width | ||||||||||
10 µs | 20 µs | 30 µs | 50 µs | 70 µs | 80 µs | 90 µs | 100 µs | 200 µs | ||
(%) | 732 | 776 | 1222 | 1381 | 1367 | 1184 | 1160 | 1176 | 1410 | |
(Hz) | 1540 | 1724 | 1777 | 13 | 19 | 1975 | 1975 | 1975 | 1975 | |
(Hz) | 1000 | 1000 | 1000 | 10 | 10 | 1000 | 1000 | 1000 | 1000 | |
Pulse Interval | ||||||||||
50 ms | 100 ms | 150 ms | 200 ms | 250 ms | 300 ms | 350 ms | 400 ms | 500 ms | ||
(%) | 1029 | 1065 | 1262 | 1422 | 1381 | 1441 | 1474 | 1191 | 1192 | |
(Hz) | 1587 | 1587 | 1587 | 1790 | 1587 | 1818 | 13 | 1587 | 1587 | |
(Hz) | 1000 | 1000 | 1000 | 1000 | 1000 | 1000 | 10 | 1000 | 1000 |
Pulse Voltage | |||||||||||
Ctrl | 100 V | 200 V | 300 V | 400 V | 500 V | 600 V | 700 V | 800 V | 900 V | 1000 V | |
Average | 0.025 | 0.026 | 0.080 | 0.183 | 0.223 | 0.240 | 0.296 | 0.337 | 0.343 | 0.346 | 0.428 |
SD | 0.004 | 0.003 | 0.019 | 0.058 | 0.032 | 0.049 | 0.086 | 0.060 | 0.064 | 0.071 | 0.082 |
p value | N/A | 0.9971 | 0.0099 | 0.0158 | 0.0002 | 0.0018 | 0.008 | 0.0007 | 0.0012 | 0.0017 | 0.0009 |
Number of Pulses | |||||||||||
Ctrl | 05 | 10 | 15 | 20 | 30 | 40 | 50 | 60 | 70 | ||
Average | 0.030 | 0.077 | 0.169 | 0.257 | 0.339 | 0.315 | 0.420 | 0.480 | 0.511 | 0.491 | |
SD | 0.006 | 0.040 | 0.063 | 0.076 | 0.078 | 0.115 | 0.191 | 0.099 | 0.134 | 0.083 | |
p value | N/A | 0.2199 | 0.0333 | 0.009 | 0.0023 | 0.0207 | 0.0465 | 0.0012 | 0.0041 | 0.0004 | |
Pulse Width | |||||||||||
Ctrl | 10 µs | 20 µs | 30 µs | 50 µs | 70 µs | 80 µs | 90 µs | 100 µs | 200 µs | ||
Average | 0.031 | 0.254 | 0.267 | 0.392 | 0.428 | 0.427 | 0.387 | 0.378 | 0.376 | 0.448 | |
SD | 0.004 | 0.086 | 0.098 | 0.128 | 0.111 | 0.040 | 0.123 | 0.123 | 0.058 | 0.085 | |
p value | N/A | 0.0156 | 0.0211 | 0.012 | 0.004 | <0.0001 | 0.0097 | 0.0115 | 0.0004 | 0.001 | |
Pulse Interval | |||||||||||
Ctrl | 50 ms | 100 ms | 150 ms | 200 ms | 250 ms | 300 ms | 350 ms | 400 ms | 500 ms | ||
Average | 0.031 | 0.350 | 0.360 | 0.419 | 0.470 | 0.459 | 0.474 | 0.482 | 0.398 | 0.400 | |
SD | 0.003 | 0.068 | 0.109 | 0.066 | 0.085 | 0.044 | 0.072 | 0.109 | 0.072 | 0.032 | |
p value | N/A | 0.0011 | 0.0094 | 0.0004 | 0.0007 | <0.0001 | 0.0003 | 0.002 | 0.0008 | <0.0001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Thomas, A.; Lemainque, T.; Baragona, M.; Pfeffer, J.-G.; Ritter, A. Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy. Appl. Sci. 2025, 15, 7922. https://doi.org/10.3390/app15147922
Thomas A, Lemainque T, Baragona M, Pfeffer J-G, Ritter A. Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy. Applied Sciences. 2025; 15(14):7922. https://doi.org/10.3390/app15147922
Chicago/Turabian StyleThomas, Athul, Teresa Lemainque, Marco Baragona, Joachim-Georg Pfeffer, and Andreas Ritter. 2025. "Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy" Applied Sciences 15, no. 14: 7922. https://doi.org/10.3390/app15147922
APA StyleThomas, A., Lemainque, T., Baragona, M., Pfeffer, J.-G., & Ritter, A. (2025). Influence of Pulsed Electric Field Parameters on Electrical Conductivity in Solanum tuberosum Measured by Electrochemical Impedance Spectroscopy. Applied Sciences, 15(14), 7922. https://doi.org/10.3390/app15147922