Two-Objective Optimization of Tidal Array Micro-Sitting Accounting for Yaw Angle Effects
Abstract
1. Introduction
2. Materials and Methods
2.1. Hydrodynamic Model
2.2. Presentation of Yawed Tidal Stream Turbines
2.3. Economic Evaluation Model
2.4. Two-Objective Optimization Function
3. Case Setting
3.1. Computational Domain
3.2. Boundary Conditions
3.3. Initial Conditions
3.4. Solver Setting
3.5. Studying Cases Set Up
- (1)
- Case 1:
- (2)
- Case 2:
- (3)
- Case 3:
- (4)
- Case 4:
- (5)
- Case 5:
- (6)
- Case 6:
4. Model Validation
4.1. Validation Metrics
4.2. Hydrodynamic Model Validation
4.3. Turbine Model Validation
4.3.1. Validation of Turbine Wake
4.3.2. Validation of Turbine Power Output and Thrust Force
4.4. Optimization Model Validation Results
4.4.1. Validation of the Gradient-Based Model
4.4.2. Validation of the Genetic Algorithm
5. Results and Discussion
5.1. Results of Scenario 1
5.2. Results of Scenario 2
5.3. Comparing Scenario 1 to Scenario 2
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
GA | Genetic Algorithm |
HWA | Huludao Water Area |
RMSE | Root Mean Square Error |
LCOE | Levelized Cost of Energy |
References
- Nash, S.; Phoenix, A. A Review of the Current Understanding of the Hydro-Environmental Impacts of Energy Removal by Tidal Turbines. Renew. Sustain. Energy Rev. 2017, 80, 648–662. [Google Scholar] [CrossRef]
- Liu, H.; Ma, S.; Li, W.; Gu, H.; Lin, Y.; Sun, X. A Review on the Development of Tidal Current Energy in China. Renew. Sustain. Energy Rev. 2011, 15, 1141–1146. [Google Scholar] [CrossRef]
- Li, Z.; Li, G.; Du, L.; Guo, H.; Yuan, W. Optimal Design of Horizontal Axis Tidal Current Turbine Blade. Ocean Eng. 2023, 271, 113666. [Google Scholar] [CrossRef]
- Zhu, F.; Ding, L.; Huang, B.; Bao, M.; Liu, J.-T. Blade Design and Optimization of a Horizontal Axis Tidal Turbine. Ocean Eng. 2020, 195, 106652. [Google Scholar] [CrossRef]
- Vennell, R.; Funke, S.W.; Draper, S.; Stevens, C.; Divett, T. Designing Large Arrays of Tidal Turbines: A Synthesis and Review. Renew. Sustain. Energy Rev. 2015, 41, 454–472. [Google Scholar] [CrossRef]
- Tan, J.; Wang, S.; Yuan, P.; Wang, D.; Ji, H. The Energy Capture Efficiency Increased by Choosing the Optimal Layout of Turbines in Tidal Power Farm. In Energy Solutions to Combat Global Warming; Zhang, X., Dincer, I., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 207–226. ISBN 978-3-319-26950-4. [Google Scholar]
- Gauvin-Tremblay, O.; Dumas, G. Hydrokinetic Turbine Array Analysis and Optimization Integrating Blockage Effects and Turbine-Wake Interactions. Renew. Energy 2022, 181, 851–869. [Google Scholar] [CrossRef]
- Funke, S.W.; Farrell, P.E.; Piggott, M.D. Tidal Turbine Array Optimisation Using the Adjoint Approach. Renew. Energy 2014, 63, 658–673. [Google Scholar] [CrossRef]
- Ciri, U.; Rotea, M.A.; Leonardi, S. Effect of the Turbine Scale on Yaw Control. Wind Energy 2018, 21, 1395–1405. [Google Scholar] [CrossRef]
- Zhang, C.; Zhang, J.; Angeloudis, A.; Zhou, Y.; Kramer, S.C.; Piggott, M.D. Physical Modelling of Tidal Stream Turbine Wake Structures under Yaw Conditions. Energies 2023, 16, 1742. [Google Scholar] [CrossRef]
- Lin, M.; Porté-Agel, F. Power Maximization and Fatigue-Load Mitigation in a Wind-Turbine Array by Active Yaw Control: An LES Study. J. Phys. Conf. Ser. 2020, 1618, 042036. [Google Scholar] [CrossRef]
- Dou, B.; Qu, T.; Lei, L.; Zeng, P. Optimization of Wind Turbine Yaw Angles in a Wind Farm Using a Three-Dimensional Yawed Wake Model. Energy 2020, 209, 118415. [Google Scholar] [CrossRef]
- Qian, Y.; Zhang, Y.; Sun, Y.; Zhang, H.; Zhang, Z.; Li, C. Experimental and Numerical Investigations on the Performance and Wake Characteristics of a Tidal Turbine under Yaw. Ocean Eng. 2023, 289, 116276. [Google Scholar] [CrossRef]
- Goss, Z.; Coles, D.; Piggott, M. Economic Analysis of Tidal Stream Turbine Arrays: A Review. arXiv 2021, arXiv:2105.04718. [Google Scholar]
- Culley, D.M.; Funke, S.W.; Kramer, S.C.; Piggott, M.D. Integration of Cost Modelling within the Micro-Siting Design Optimisation of Tidal Turbine Arrays. Renew. Energy 2016, 85, 215–227. [Google Scholar] [CrossRef]
- Jin, R.; Hou, P.; Yang, G.; Qi, Y.; Chen, C.; Chen, Z. Cable Routing Optimization for Offshore Wind Power Plants via Wind Scenarios Considering Power Loss Cost Model. Appl. Energy 2019, 254, 113719. [Google Scholar] [CrossRef]
- Cerveira, A.; de Sousa, A.; Pires, E.J.S.; Baptista, J. Optimal Cable Design of Wind Farms: The Infrastructure and Losses Cost Minimization Case. IEEE Trans. Power Syst. 2016, 31, 4319–4329. [Google Scholar] [CrossRef]
- Wang, Q.; Guo, J.; Wang, Z.; Tahchi, E.; Wang, X.; Moran, B.; Zukerman, M. Cost-Effective Path Planning for Submarine Cable Network Extension. IEEE Access 2019, 7, 61883–61895. [Google Scholar] [CrossRef]
- Segura, E.; Morales, R.; Somolinos, J.A. Cost Assessment Methodology and Economic Viability of Tidal Energy Projects. Energies 2017, 10, 1806. [Google Scholar] [CrossRef]
- Vazquez, A.; Iglesias, G. Capital Costs in Tidal Stream Energy Projects—A Spatial Approach. Energy 2016, 107, 215–226. [Google Scholar] [CrossRef]
- Goss, Z.L. Efficient Economic Optimisation of Large-Scale Tidal Stream Arrays. Appl. Energy 2021, 295, 116975. [Google Scholar] [CrossRef]
- Goss, Z.; Piggott, M.; Kramer, S.; Avdis, A.; Angeloudis, A.; Cotter, C. Competition Effects between Nearby Tidal Turbine Arrays—Optimal Design for Alderney Race. In Proceedings of the Advances in Renewable Energies Offshore, Lisbon, Portugal, 8–10 October 2018; pp. 255–262. [Google Scholar]
- Kramer, S.C.; Piggott, M.D. A Correction to the Enhanced Bottom Drag Parameterisation of Tidal Turbines. Renew. Energy 2016, 92, 385–396. [Google Scholar] [CrossRef]
- Zhang, C.; Kramer, S.C.; Angeloudis, A.; Zhang, J.; Lin, X.; Piggott, M.D. Improving Tidal Turbine Array Performance through the Optimisation of Layout and Yaw Angles. Int. Mar. Energy J. 2022, 5, 273–280. [Google Scholar] [CrossRef]
- Funke, S. The Automation of PDE-Constrained Optimisation and Its Applications. Ph.D. Thesis, Imperial College London, London, UK, 2013. [Google Scholar]
- Zhang, C.; Zhang, J.; Tong, L.; Guo, Y.; Zhang, P. Investigation of Array Layout of Tidal Stream Turbines on Energy Extraction Efficiency. Ocean Eng. 2020, 196, 106775. [Google Scholar] [CrossRef]
- Avdis, A.; Candy, A.S.; Hill, J.; Piggott, M.D.; Hill, J. Efficient Unstructured Mesh Generation for Marine Renewable Energy Applications. Renew. Energy 2018, 116, 842–856. [Google Scholar] [CrossRef]
- Geuzaine, C.; Remacle, J.-F. Gmsh: A 3-D Finite Element Mesh Generator with Built-in Pre- and Post-Processing Facilities. Int. J. Numer. Methods Eng. 2009, 79, 1309–1331. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient Inverse Modeling of Barotropic Ocean Tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, C.; Angeloudis, A.; Kramer, S.C.; He, R.; Piggott, M.D. Interactions between Tidal Stream Turbine Arrays and Their Hydrodynamic Impact around Zhoushan Island, China. Ocean Eng. 2022, 246, 110431. [Google Scholar] [CrossRef]
- Liu, Y. Optimum Design of Straight Thin-Walled Box Section Beams for Crashworthiness Analysis. Finite Elem. Anal. Des. 2008, 44, 139–147. [Google Scholar] [CrossRef]
- Dou, Y.; Ricks, T.M.; DuBien, J.L.; Lacy, T.E.; Liu, Y. Response Surface Modeling to Facilitate the Parametric Study of Transversely Impacted Pressurized Pipelines. Thin-Walled Struct. 2017, 119, 646–652. [Google Scholar] [CrossRef]
- Schwedes, T.; Ham, D.A.; Funke, S.W.; Piggott, M.D. Mesh Dependence in PDE-Constrained Optimisation. In Mesh Dependence in PDE-Constrained Optimisation: An Application in Tidal Turbine Array Layouts; Schwedes, T., Ham, D.A., Funke, S.W., Piggott, M.D., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 53–78. ISBN 978-3-319-59483-5. [Google Scholar]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behaviour. Part I: One Single Turbine. Renew. Energy 2014, 66, 729–746. [Google Scholar] [CrossRef]
- Mycek, P.; Gaurier, B.; Germain, G.; Pinon, G.; Rivoalen, E. Experimental Study of the Turbulence Intensity Effects on Marine Current Turbines Behaviour. Part II: Two Interacting Turbines. Renew. Energy 2014, 68, 876–892. [Google Scholar] [CrossRef]
- Slama, M.; Choma Bex, C.; Pinon, G.; Togneri, M.; Evans, I. Lagrangian Vortex Computations of a Four Tidal Turbine Array: An Example Based on the NEPTHYD Layout in the Alderney Race. Energies 2021, 14, 3826. [Google Scholar] [CrossRef]
- Vazquez, A.; Iglesias, G. LCOE (Levelised Cost of Energy) Mapping: A New Geospatial Tool for Tidal Stream Energy. Energy 2015, 91, 192–201. [Google Scholar] [CrossRef]
Time Zones | Types | RMSE | |||
---|---|---|---|---|---|
Case L | Case S | Case L | Case S | ||
15~25 August 2013 | Tidal elevation (m) | 0.149 | 0.148 | 0.977 | 0.978 |
Neap Tide 16 August 2013 10:00~ 17 August 2013 11:00 | Tidal flow velocity (m/s) | 0.126 | 0.157 | 0.715 | 0.558 |
Tidal flow direction (°) | 44.3 | 43.9 | --- | --- | |
Intermediate Tide 19 August 2013 14:00~ 20 August 2013 15:00 | Tidal flow velocity (m/s) | 0.149 | 0.156 | 0.852 | 0.839 |
Tidal flow direction (°) | 20.9 | 20.7 | --- | --- | |
Spring Tide 23 August 2013 10:00~ 24 August 2013 11:00 | Tidal flow velocity (m/s) | 0.196 | 0.170 | 0.814 | 0.859 |
Tidal flow direction (°) | 32.0 | 29.1 | --- | --- |
Initial Population Size | Maximum Number of Iterations | The Cable Capacity Is 3 Turbines | The Cable Capacity Is 4 Turbines | ||
---|---|---|---|---|---|
Submarine Cable Length (m) | Computation Time (s) | Submarine Cable Length (m) | Computation Time (s) | ||
1000 | 500 | 2758.55 | 1.97 | 2150.47 | 2.17 |
1000 | 2758.55 | 1.98 | 2150.47 | 2.16 | |
1500 | 2758.55 | 1.91 | 2150.47 | 2.13 | |
3000 | 500 | 2746.71 | 5.27 | 2144.55 | 6.08 |
1000 | 2746.71 | 5.29 | 2144.55 | 6.10 | |
1500 | 2746.71 | 5.32 | 2144.55 | 6.20 | |
5000 | 500 | 2746.71 | 8.88 | 2144.55 | 10.27 |
1000 | 2746.71 | 9.00 | 2144.55 | 10.24 | |
1500 | 2746.71 | 8.92 | 2144.55 | 10.20 |
Cases | Scenario 1: The Cable Capacity Is 3 Turbines | Scenario 2: The Cable Capacity Is 4 Turbines | ||
---|---|---|---|---|
(kW) | (m) | (kW) | (m) | |
Case 1: | 3946.49 | 2490.21 | 3946.49 | 1952.32 |
Case 2: | 3625.90 | 2464.06 | 3878.73 | 1939.54 |
Case 3: | 3521.02 | 2440.95 | 3782.91 | 1905.34 |
Case 4: | 3135.99 | 2405.62 | 3766.74 | 1884.78 |
Case 5: | 2990.97 | 2361.19 | 3165.51 | 1850.72 |
Case 6: | 1448.02 | 2306.95 | 1181.80 | 1818.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, C.; Zhang, Y.; Zhang, J.; Cheng, X.; Lin, X.; Wu, C.; Ding, Z. Two-Objective Optimization of Tidal Array Micro-Sitting Accounting for Yaw Angle Effects. J. Mar. Sci. Eng. 2025, 13, 1210. https://doi.org/10.3390/jmse13071210
Zhang C, Zhang Y, Zhang J, Cheng X, Lin X, Wu C, Ding Z. Two-Objective Optimization of Tidal Array Micro-Sitting Accounting for Yaw Angle Effects. Journal of Marine Science and Engineering. 2025; 13(7):1210. https://doi.org/10.3390/jmse13071210
Chicago/Turabian StyleZhang, Can, Yichi Zhang, Jisheng Zhang, Xiaoming Cheng, Xiangfeng Lin, Chengsheng Wu, and Zihan Ding. 2025. "Two-Objective Optimization of Tidal Array Micro-Sitting Accounting for Yaw Angle Effects" Journal of Marine Science and Engineering 13, no. 7: 1210. https://doi.org/10.3390/jmse13071210
APA StyleZhang, C., Zhang, Y., Zhang, J., Cheng, X., Lin, X., Wu, C., & Ding, Z. (2025). Two-Objective Optimization of Tidal Array Micro-Sitting Accounting for Yaw Angle Effects. Journal of Marine Science and Engineering, 13(7), 1210. https://doi.org/10.3390/jmse13071210