Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (4,506)

Search Parameters:
Keywords = electric vehicle charging

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
22 pages, 828 KB  
Article
Designing Heterogeneous Electric Vehicle Charging Networks with Endogenous Service Duration
by Chao Tang, Hui Liu and Guanghua Song
World Electr. Veh. J. 2026, 17(1), 46; https://doi.org/10.3390/wevj17010046 (registering DOI) - 18 Jan 2026
Abstract
The widespread adoption of Electric Vehicles (EVs) is critically dependent on the deployment of efficient charging infrastructure. However, existing facility location models typically treat charging duration as an exogenous parameter, thereby neglecting the traveler’s autonomy to make trade-offs between service time and energy [...] Read more.
The widespread adoption of Electric Vehicles (EVs) is critically dependent on the deployment of efficient charging infrastructure. However, existing facility location models typically treat charging duration as an exogenous parameter, thereby neglecting the traveler’s autonomy to make trade-offs between service time and energy needs based on their Value of Time (VoT). This study addresses this theoretical gap by developing a heterogeneous network design model that endogenizes both charging mode selection and continuous charging duration decisions. A bi-objective optimization framework is formulated to minimize the weighted sum of infrastructure capital expenditure and users’ generalized travel costs. To ensure computational tractability for large-scale networks, an exact linearization technique is applied to reformulate the resulting Mixed-Integer Non-Linear Program (MINLP) into a Mixed-Integer Linear Program (MILP). Application of the model to the Hubei Province highway network reveals a convex Pareto frontier between investment and service quality, providing quantifiable guidance for budget allocation. Empirical results demonstrate that the marginal return on infrastructure investment diminishes rapidly. Specifically, a marginal budget increase from the minimum baseline yields disproportionately large reductions in system-wide dwell time, whereas capital allocation beyond a saturation point yields diminishing returns, offering negligible service gains. Furthermore, sensitivity analysis indicates an asymmetry in technological impact: while extended EV battery ranges significantly reduce user dwell times, they do not proportionally lower the capital required for the foundational infrastructure backbone. These findings suggest that robust infrastructure planning must be decoupled from anticipations of future battery breakthroughs and instead focus on optimizing facility heterogeneity to match evolving traffic flow densities. Full article
(This article belongs to the Section Charging Infrastructure and Grid Integration)
Show Figures

Figure 1

31 pages, 8880 KB  
Article
A Distributed Electric Vehicles Charging System Powered by Photovoltaic Solar Energy with Enhanced Voltage and Frequency Control in Isolated Microgrids
by Pedro Baltazar, João Dionísio Barros and Luís Gomes
Electronics 2026, 15(2), 418; https://doi.org/10.3390/electronics15020418 (registering DOI) - 17 Jan 2026
Abstract
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing [...] Read more.
This study presents a photovoltaic (PV)-based electric vehicle (EV) charging system designed to optimize energy use and support isolated microgrid operations. The system integrates PV panels, DC/AC, AC/DC, and DC/DC converters, voltage and frequency droop control, and two energy management algorithms: Power Sharing and SEWP (Spread Energy with Priority). The DC/AC converter demonstrated high efficiency, with stable AC output and Total Harmonic Distortion (THD) limited to 1%. The MPPT algorithm ensured optimal energy extraction under both gradual and abrupt irradiance variations. The DC/DC converter operated in constant current mode followed by constant voltage regulation, enabling stable power delivery and preserving battery integrity. The Power Sharing algorithm, which distributes PV energy equally, favored vehicles with a higher initial state of charge (SOC), while leaving low-SOC vehicles at modest levels, reducing satisfaction under limited irradiance. In contrast, SEWP prioritized low-SOC EVs, enabling them to achieve higher SOC values compared to the Power Sharing algorithm, reducing SOC dispersion and enhancing fairness. The integration of voltage and frequency droop controls allowed the station to support microgrid stability by limiting reactive power injection to 30% of apparent power and adjusting charging current in response to frequency deviation. Full article
(This article belongs to the Special Issue Recent Advances in Control and Optimization in Microgrids)
Show Figures

Figure 1

47 pages, 17315 KB  
Article
RNN Architecture-Based Short-Term Forecasting Framework for Rooftop PV Surplus to Enable Smart Energy Scheduling in Micro-Residential Communities
by Abdo Abdullah Ahmed Gassar, Mohammad Nazififard and Erwin Franquet
Buildings 2026, 16(2), 390; https://doi.org/10.3390/buildings16020390 (registering DOI) - 17 Jan 2026
Abstract
With growing community awareness of greenhouse gas emissions and their environmental consequences, distributed rooftop photovoltaic (PV) systems have emerged as a sustainable energy alternative in residential settings. However, the high penetration of these systems without effective operational strategies poses significant challenges for local [...] Read more.
With growing community awareness of greenhouse gas emissions and their environmental consequences, distributed rooftop photovoltaic (PV) systems have emerged as a sustainable energy alternative in residential settings. However, the high penetration of these systems without effective operational strategies poses significant challenges for local distribution grids. Specifically, the estimation of surplus energy production from these systems, closely linked to complex outdoor weather conditions and seasonal fluctuations, often lacks an accurate forecasting approach to effectively capture the temporal dynamics of system output during peak periods. In response, this study proposes a recurrent neural network (RNN)- based forecasting framework to predict rooftop PV surplus in the context of micro-residential communities over time horizons not exceeding 48 h. The framework includes standard RNN, long short-term memory (LSTM), bidirectional LSTM (BiLSTM), and gated recurrent unit (GRU) networks. In this context, the study employed estimated surplus energy datasets from six single-family detached houses, along with weather-related variables and seasonal patterns, to evaluate the framework’s effectiveness. Results demonstrated the significant effectiveness of all framework models in forecasting surplus energy across seasonal scenarios, with low MAPE values of up to 3.02% and 3.59% over 24-h and 48-h horizons, respectively. Simultaneously, BiLSTM models consistently demonstrated a higher capacity to capture surplus energy fluctuations during peak periods than their counterparts. Overall, the developed data-driven framework demonstrates potential to enable short-term smart energy scheduling in micro-residential communities, supporting electric vehicle charging from single-family detached houses through efficient rooftop PV systems. It also provides decision-making insights for evaluating renewable energy contributions in the residential sector. Full article
(This article belongs to the Section Building Energy, Physics, Environment, and Systems)
Show Figures

Figure 1

22 pages, 2589 KB  
Article
Optimal Bidding Strategy of Virtual Power Plant Incorporating Vehicle-to-Grid Electric Vehicles
by Honghui Zhang, Dejie Zhao, Hao Pan and Limin Jia
Energies 2026, 19(2), 465; https://doi.org/10.3390/en19020465 (registering DOI) - 17 Jan 2026
Abstract
With the increasing penetration of renewable energy and electric vehicles (EVs), virtual power plants (VPPs) have become a key mechanism for coordinating distributed energy resources and flexible loads to participate in electricity markets. However, the uncertainties of renewable generation and EV user behavior [...] Read more.
With the increasing penetration of renewable energy and electric vehicles (EVs), virtual power plants (VPPs) have become a key mechanism for coordinating distributed energy resources and flexible loads to participate in electricity markets. However, the uncertainties of renewable generation and EV user behavior pose significant challenges to bidding strategies and real-time execution. This study proposes a two-stage optimal bidding strategy for VPPs by integrating vehicle-to-grid (V2G) technology. An aggregated EV schedulable-capacity model is established to characterize the time-varying charging and discharging capability boundaries of the EV fleet. A unified day-ahead and real-time optimization framework is further developed to ensure coordinated bidding and scheduling. Case studies on a modified IEEE-33 bus system demonstrate that the proposed strategy significantly enhances renewable energy utilization and market revenues, validating the effectiveness of coordinated V2G operation and multi-type flexible load control. Full article
Show Figures

Figure 1

25 pages, 3269 KB  
Article
Dynamic Carbon-Aware Scheduling for Electric Vehicle Fleets Using VMD-BSLO-CTL Forecasting and Multi-Objective MPC
by Hongyu Wang, Zhiyu Zhao, Kai Cui, Zixuan Meng, Bin Li, Wei Zhang and Wenwen Li
Energies 2026, 19(2), 456; https://doi.org/10.3390/en19020456 (registering DOI) - 16 Jan 2026
Viewed by 27
Abstract
Accurate perception of dynamic carbon intensity is a prerequisite for low-carbon demand-side response. However, traditional grid-average carbon factors lack the spatio-temporal granularity required for real-time regulation. To address this, this paper proposes a “Prediction-Optimization” closed-loop framework for electric vehicle (EV) fleets. First, a [...] Read more.
Accurate perception of dynamic carbon intensity is a prerequisite for low-carbon demand-side response. However, traditional grid-average carbon factors lack the spatio-temporal granularity required for real-time regulation. To address this, this paper proposes a “Prediction-Optimization” closed-loop framework for electric vehicle (EV) fleets. First, a hybrid forecasting model (VMD-BSLO-CTL) is constructed. By integrating Variational Mode Decomposition (VMD) with a CNN-Transformer-LSTM network optimized by the Blood-Sucking Leech Optimizer (BSLO), the model effectively captures multi-scale features. Validation on the UK National Grid dataset demonstrates its superior robustness against prediction horizon extension compared to state-of-the-art baselines. Second, a multi-objective Model Predictive Control (MPC) strategy is developed to guide EV charging. Applied to a real-world station-level scenario, the strategy navigates the trade-offs between user economy and grid stability. Simulation results show that the proposed framework simultaneously reduces economic costs by 4.17% and carbon emissions by 8.82%, while lowering the peak-valley difference by 6.46% and load variance by 11.34%. Finally, a cloud-edge collaborative deployment scheme indicates the engineering potential of the proposed approach for next-generation low-carbon energy management. Full article
Show Figures

Figure 1

23 pages, 980 KB  
Article
Optimal Operation of EVs, EBs and BESS Considering EBs-Charging Piles Matching Problem Using a Novel Pricing Strategy Based on ICDLBPM
by Jincheng Liu, Biyu Wang, Hongyu Wang, Taoyong Li, Kai Wu, Yimin Zhao and Jing Liu
Processes 2026, 14(2), 324; https://doi.org/10.3390/pr14020324 - 16 Jan 2026
Viewed by 35
Abstract
Electric vehicles (EVs), electric buses (EBs), and battery energy storage system (BESS), as both controllable power sources and load, play a great role in providing flexibility for the power grid, especially with the increased renewable energy penetration. However, there is still a lack [...] Read more.
Electric vehicles (EVs), electric buses (EBs), and battery energy storage system (BESS), as both controllable power sources and load, play a great role in providing flexibility for the power grid, especially with the increased renewable energy penetration. However, there is still a lack of studies on EVs’ pricing strategy as well as the EBs-charging piles matching problem. To address these issues, a multi-objective optimal operation model is presented to achieve the lowest load fluctuation level, minimum electricity cost, and maximum discharging benefit. An improved load boundary prediction method (ICDLBPM) and a novel pricing strategy are proposed. In addition, reduction in the number of EBs charging piles would not only impact normal operation of EBs, but also even lead to load flexibility decline. Thus a handling method of the EBs-charging piles matching problem is presented. Several case studies were conducted on a regional distribution network comprising 100 EVs, 30 EBs, and 20 BESS units. The developed model and methodology demonstrate superior performance, improving load smoothness by 45.78% and reducing electricity costs by 19.73%. Furthermore, its effectiveness is also validated in a large-scale system, where it achieves additional reductions of 39.31% in load fluctuation and 62.45% in total electricity cost. Full article
(This article belongs to the Section Energy Systems)
23 pages, 5058 KB  
Article
Research on State of Health Assessment of Lithium-Ion Batteries Using Actual Measurement Data Based on Hybrid LSTM–Transformer Model
by Hanyu Zhang and Jifei Wang
Symmetry 2026, 18(1), 169; https://doi.org/10.3390/sym18010169 - 16 Jan 2026
Viewed by 35
Abstract
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily [...] Read more.
An accurate assessment of the state of health (SOH) of lithium-ion batteries (LIBs) is crucial for ensuring the safety and reliability of energy storage systems and electric vehicles. However, existing methods face challenges: physics-based models are computationally complex, traditional data-driven methods rely heavily on manual feature engineering, and single models lack the ability to capture both local and global degradation patterns. To address these issues, this paper proposes a novel hybrid LSTM–Transformer model for LIB SOH estimation using actual measurement data. The model integrates Long Short-Term Memory (LSTM) networks to capture local temporal dependencies with the Trans-former architecture to model global degradation trends through self-attention mechanisms. Experimental validation was conducted using eight 18650 Nickel Cobalt Manganese (NCM) LIBs subjected to 750 charge–discharge cycles under room temperature conditions. Sixteen statistical features were extracted from voltage and current data during constant current–constant voltage (CC-CV) phases, with feature selection based on the Pearson correlation coefficient and maximum information coefficient analysis. The proposed LSTM–Transformer model demonstrated superior performance compared to the standalone LSTM and Transformer models, achieving a mean absolute error (MAE) as low as 0.001775, root mean square error (RMSE) of 0.002147, and mean absolute percentage error (MAPE) of 0.196% for individual batteries. Core features including cumulative charge (CC Q), charging time, and voltage slope during the constant current phase showed a strong correlation with the SOH (absolute PCC > 0.8). The hybrid model exhibited excellent generalization across different battery cells with consistent error distributions and nearly overlapping prediction curves with actual SOH trajectories. The symmetrical LSTM–Transformer hybrid architecture provides an accurate, robust, and generalizable solution for LIB SOH assessment, effectively overcoming the limitations of traditional methods while offering potential for real-time battery management system applications. This approach enables health feature learning without manual feature engineering, representing an advancement in data-driven battery health monitoring. Full article
(This article belongs to the Section Engineering and Materials)
Show Figures

Figure 1

26 pages, 2039 KB  
Article
Modeling and Optimization of AI-Based Centralized Energy Management for a Community PV-Battery System Using PSO
by Sree Lekshmi Reghunathan Pillai Sree Devi, Chinmaya Krishnan, Preetha Parakkat Kesava Panikkar and Jayesh Santhi Bhavan
Energies 2026, 19(2), 439; https://doi.org/10.3390/en19020439 - 16 Jan 2026
Viewed by 81
Abstract
The rapid rise in energy demand, urban electrification, and the increasing prevalence of Electric Vehicles (EV) have intensified the need for reliable and decentralized energy management solutions. This study proposes an AI-driven centralized control architecture for a community-based photovoltaic–battery energy storage system (PV–BESS) [...] Read more.
The rapid rise in energy demand, urban electrification, and the increasing prevalence of Electric Vehicles (EV) have intensified the need for reliable and decentralized energy management solutions. This study proposes an AI-driven centralized control architecture for a community-based photovoltaic–battery energy storage system (PV–BESS) to enhance energy efficiency and self-sufficiency. The framework integrates a central controller which utilizes the Particle Swarm Optimization (PSO) technique which receives the Long Short-Term Memory (LSTM) forecasting output to determine optimal photovoltaic generation, battery charging, and discharging schedules. The proposed system minimizes the grid dependence, reduces the operational costs and a stable power output is ensured under dynamic load conditions by coordinating the renewable resources in the community microgrid. This system highlights that the AI-based Particle Swarm Optimization will reduce the peak load import and it maximizes the energy utilization of the system compared to the conventional optimization techniques. Full article
Show Figures

Graphical abstract

22 pages, 15052 KB  
Article
Bi-Level Decision-Making for Commercial Charging Stations in Demand Response Considering Nonlinear User Satisfaction
by Weiqing Sun, En Xie and Wenwei Yang
Sustainability 2026, 18(2), 907; https://doi.org/10.3390/su18020907 - 15 Jan 2026
Viewed by 86
Abstract
With the widespread adoption of electric vehicles, commercial charging stations (CCS) have grown rapidly as a core component of charging infrastructure. Due to the concentrated and high-power charging load characteristics of CCS, a ‘peak on peak’ phenomenon can occur in the power distribution [...] Read more.
With the widespread adoption of electric vehicles, commercial charging stations (CCS) have grown rapidly as a core component of charging infrastructure. Due to the concentrated and high-power charging load characteristics of CCS, a ‘peak on peak’ phenomenon can occur in the power distribution network. Demand response (DR) serves as an important and flexible regulation tool for power systems, offering a new approach to addressing this issue. However, when CCS participates in DR, it faces a dual dilemma between operational revenue and user satisfaction. To address this, this paper proposes a bi-level, multi-objective framework that co-optimizes station profit and nonlinear user satisfaction. An asymmetric sigmoid mapping is used to capture threshold effects and diminishing marginal utility. Uncertainty in users’ charging behaviors is evaluated using a Monte Carlo scenario simulation together with chance constraints enforced at a 0.95 confidence level. The model is solved using the fast non-dominated sorting genetic algorithm, NSGA-II, and the compromise optimal solution is identified via the entropy-weighted Technique for Order Preference by Similarity to an Ideal Solution (TOPSIS). Case studies show robust peak shaving with a 6.6 percent reduction in the daily maximum load, high satisfaction with a mean of around 0.96, and higher revenue with an improvement of about 12.4 percent over the baseline. Full article
(This article belongs to the Section Energy Sustainability)
17 pages, 1460 KB  
Article
Method of Evaluation of Potential Location of EV Charging Stations Based on Long-Term Wind Power Density in Poland
by Olga Orynycz, Magdalena Zimakowska-Laskowska, Paweł Ruchała, Piotr Laskowski, Jonas Matijošius, Stefka Fidanova, Olympia Roeva, Edgar Sokolovskij and Maciej Menes
Energies 2026, 19(2), 434; https://doi.org/10.3390/en19020434 - 15 Jan 2026
Viewed by 85
Abstract
The rapid development of electromobility increases the need for fast, accessible and robust charging stations devoted to EVs (electric vehicles). Planning a network of such stations poses new challenges—amongst others, a power supply that may power such chargers. One major concept is to [...] Read more.
The rapid development of electromobility increases the need for fast, accessible and robust charging stations devoted to EVs (electric vehicles). Planning a network of such stations poses new challenges—amongst others, a power supply that may power such chargers. One major concept is to utilise wind energy as a power source. The paper analyses meteorological data gathered since 2001 in several stations across Poland to achieve quantitative indexes, which summarise (a) wind power density (WPD) as a metric of energy amount, (b) long-term (multiannual) time trends of amount of energy, (c) short-term stability (and thus predictability) of the wind power. The indexes that cover the abovementioned factors allow the authors to answer the research questions, where the local wind conditions allow the authors to consider the integration of a wind powerplant and a network of EV chargers. Additionally, we investigated locations where the amount of available energy is sufficient, but the variability of wind power impedes its practical exploitation. In such cases, the power system may be extended by an energy storage system that acts as a buffer, smoothing power fluctuations and thereby improving the robustness and reliability of downstream charging systems. Full article
(This article belongs to the Special Issue Optimal Control of Wind and Wave Energy Converters: 2nd Edition)
Show Figures

Figure 1

30 pages, 5097 KB  
Article
The Impact of Electric Charging Unit Conversion on the Performance of Fuel Stations Located in Urban Areas: A Sustainable Approach
by Merve Yetimoğlu, Mustafa Karaşahin and Mehmet Sinan Yıldırım
Sustainability 2026, 18(2), 893; https://doi.org/10.3390/su18020893 - 15 Jan 2026
Viewed by 85
Abstract
The rapid increase in electric vehicle (EV) ownership necessitates the adaptation of fuel stations to charging infrastructure and the re-evaluation of capacity planning. In the literature, demand forecasting and installation costs are mostly examined; however, station-scale queue analyses supported by field data remain [...] Read more.
The rapid increase in electric vehicle (EV) ownership necessitates the adaptation of fuel stations to charging infrastructure and the re-evaluation of capacity planning. In the literature, demand forecasting and installation costs are mostly examined; however, station-scale queue analyses supported by field data remain limited. This study aims to examine the integration of EV charging in fuel stations through simulation-based capacity analyses, taking current conditions into account. In this context, a scenario in which one and two dual-hose pumps at a fuel station located on the Turkey–Istanbul E-5 highway side-road is converted into a charging unit has been evaluated using a discrete-event microsimulation model. The analyses were conducted using a discrete event-based microsimulation model. The simulation inputs were derived from field observations and survey data, including the hourly arrival rates of internal combustion engine vehicles (ICEVs), the dwell times at the station, and the charging durations of EVs. In the study, station capacity and service performance were evaluated under scenarios representing EV shares of 5%, 10%, and 20% within the country’s passenger vehicle fleet. Within the scope of the study, the hourly arrival rates and dwell times of ICEVs were determined through field measurements, while EV charging durations were assessed by jointly analyzing field observations and survey data. Simulation results showed that the average number of waiting vehicles increases as the EV share rises; for example, in the 10% EV share scenario, 15.6 (±0.84) EVs were observed waiting within the station, while 34.06 (±1.23) EVs were identified in the 20% scenario. These queues constrict internal circulation within the station, limiting the maneuverability of ICEVs and causing delays in overall service operations. Furthermore, when two dual-hose pumps are replaced with charging units, noticeable increases in waiting times emerge, particularly during the evening peak period. Specifically, 5.88% of ICEVs experienced queuing between 17:00–18:00, rising to 12.33% between 18:00–19:00. In conclusion, this study provides a practical and robust model for short- and medium-term capacity planning and offers data-driven, actionable insights for decision-makers during the transition of fuel stations to EV charging infrastructure. Full article
(This article belongs to the Section Sustainable Transportation)
Show Figures

Figure 1

38 pages, 13699 KB  
Review
A Comprehensive Review of Magnetic Coupling Mechanisms, Compensation Networks, and Control Strategies for Electric Vehicle Wireless Power Transfer Systems
by Yanxia Wu, Pengqiang Nie, Zhenlin Wang, Lijuan Wang, Seiji Hashimoto and Takahiro Kawaguchi
Processes 2026, 14(2), 287; https://doi.org/10.3390/pr14020287 - 14 Jan 2026
Viewed by 132
Abstract
Wireless power transfer (WPT) has emerged as a key enabling technology for the large-scale adoption of electric vehicles (EVs), offering enhanced charging flexibility, improved safety, and seamless integration with intelligent transportation and renewable energy infrastructures. This paper presents a comprehensive review and technical [...] Read more.
Wireless power transfer (WPT) has emerged as a key enabling technology for the large-scale adoption of electric vehicles (EVs), offering enhanced charging flexibility, improved safety, and seamless integration with intelligent transportation and renewable energy infrastructures. This paper presents a comprehensive review and technical synthesis of WPT technologies spanning both near-field and far-field domains, including inductive power transfer (IPT), magnetically coupled resonant WPT (MCR-WPT), capacitive power transfer (CPT), microwave power transfer (MPT), and laser wireless charging (LPT). Particular emphasis is placed on MCR-WPT, the most widely adopted approach for EV wireless charging, for which the coupler structures, resonant compensation networks, power converter architectures, and control strategies are systematically analyzed. The review further identifies that hybrid WPT architectures, adaptive compensation design and wide-coverage coupling mechanisms will be central to enabling high-power, long-distance, and misalignment-resilient wireless charging solutions for next-generation electric transportation systems. Full article
Show Figures

Figure 1

34 pages, 10017 KB  
Article
U-H-Mamba: An Uncertainty-Aware Hierarchical State-Space Model for Lithium-Ion Battery Remaining Useful Life Prediction Using Hybrid Laboratory and Real-World Datasets
by Zhihong Wen, Xiangpeng Liu, Wenshu Niu, Hui Zhang and Yuhua Cheng
Energies 2026, 19(2), 414; https://doi.org/10.3390/en19020414 - 14 Jan 2026
Viewed by 167
Abstract
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, [...] Read more.
Accurate prognosis of the remaining useful life (RUL) for lithium-ion batteries is critical for mitigating range anxiety and ensuring the operational safety of electric vehicles. However, existing data-driven methods often struggle to maintain robustness when transferring from controlled laboratory conditions to complex, sensor-limited, real-world environments. To bridge this gap, this study presents U-H-Mamba, a novel uncertainty-aware hierarchical framework trained on a massive hybrid repository comprising over 146,000 charge–discharge cycles from both laboratory benchmarks and operational electric vehicle datasets. The proposed architecture employs a two-level design to decouple degradation dynamics, where a Multi-scale Temporal Convolutional Network functions as the base encoder to extract fine-grained electrochemical fingerprints, including derived virtual impedance proxies, from high-frequency intra-cycle measurements. Subsequently, an enhanced Pressure-Aware Multi-Head Mamba decoder models the long-range inter-cycle degradation trajectories with linear computational complexity. To guarantee reliability in safety-critical applications, a hybrid uncertainty quantification mechanism integrating Monte Carlo Dropout with Inductive Conformal Prediction is implemented to generate calibrated confidence intervals. Extensive empirical evaluations demonstrate the framework’s superior performance, achieving a RMSE of 3.2 cycles on the NASA dataset and 5.4 cycles on the highly variable NDANEV dataset, thereby outperforming state-of-the-art baselines by 20–40%. Furthermore, SHAP-based interpretability analysis confirms that the model correctly identifies physics-informed pressure dynamics as critical degradation drivers, validating its zero-shot generalization capabilities. With high accuracy and linear scalability, the U-H-Mamba model offers a viable and physically interpretable solution for cloud-based prognostics in large-scale electric vehicle fleets. Full article
(This article belongs to the Section F5: Artificial Intelligence and Smart Energy)
Show Figures

Figure 1

26 pages, 5505 KB  
Article
Research on Multi-Source Data Integration Mechanisms in Vehicle-Grid Integration Based on Quadripartite Evolutionary Game Analysis
by Danting Zhong, Yang Du, Chen Fang, Lili Li, Lingyu Guo and Yu Zhao
Energies 2026, 19(2), 410; https://doi.org/10.3390/en19020410 - 14 Jan 2026
Viewed by 71
Abstract
Electric vehicles (EVs) are pivotal for enhancing the flexibility of power systems, with vehicle-grid integration (VGI) constituting the fundamental mechanism for their participation in grid regulation. VGI relies on multi-source information from EVs, charging infrastructure, traffic network, power grid, and meteorology. However, ineffective [...] Read more.
Electric vehicles (EVs) are pivotal for enhancing the flexibility of power systems, with vehicle-grid integration (VGI) constituting the fundamental mechanism for their participation in grid regulation. VGI relies on multi-source information from EVs, charging infrastructure, traffic network, power grid, and meteorology. However, ineffective data integration mechanisms have resulted in data silos, which impede the realization of synergistic value from multi-source data fusion. To address these issues, this paper develops a quadripartite evolutionary game model that incorporates data providers, data users, government, and data service platforms, overcoming the limitation of traditional tripartite models in fully capturing the complete data value chain. The model systematically examines the cost–benefit dynamics and strategy evolution among stakeholders throughout the data-sharing process. Leveraging evolutionary game theory and Lyapunov stability criteria, sensitivity analyses were conducted on key parameters, including data costs and government subsidies, on the MATLAB platform. Results indicate that multi-source data integration accelerates system convergence and facilitates a multi-party equilibrium. Government subsidies as well as reward and punishment mechanisms emerge as critical drivers of sharing, with an identified subsidy threshold of εS = 0.02 for triggering multi-source integration. These key factors can also accelerate system convergence by up to 79% through enhanced subsidies (e.g., reducing stabilization time from 0.29 to 0.06). Importantly, VGI data sharing represents a non-zero-sum game. Well-designed institutional frameworks can achieve mutually beneficial outcomes for all parties, providing quantitatively supported strategies for constructing incentive-compatible mechanisms. Full article
(This article belongs to the Section E: Electric Vehicles)
Show Figures

Figure 1

31 pages, 643 KB  
Systematic Review
The Use of Business Intelligence and Analytics in Electric Vehicle Technology: A Comprehensive Survey
by Alexandra Bousia
Electronics 2026, 15(2), 366; https://doi.org/10.3390/electronics15020366 - 14 Jan 2026
Viewed by 234
Abstract
The emerging urbanization and the extensive increase of the transportation sector are responsible for the significant increase in carbon dioxide emissions. Therefore, replacing traditional cars with Electric Vehicles (EVs) is a promising solution, offering a clearer alternative. EVs are becoming more and more [...] Read more.
The emerging urbanization and the extensive increase of the transportation sector are responsible for the significant increase in carbon dioxide emissions. Therefore, replacing traditional cars with Electric Vehicles (EVs) is a promising solution, offering a clearer alternative. EVs are becoming more and more well-known and are being quickly used worldwide. However, the exponential rise in EV sales has also raised a number of issues, which are becoming important and demanding. These challenges include the need of driving security, the battery degradation, the inadequate infrastructure for charging EVs, and the uneven energy distribution. In order for EVs to reach their full potential, intelligent systems and innovative technologies need to be introduced in the field of EVs. This is where business intelligence (BI) can be employed, along with artificial intelligence (AI), data analytics, and machine learning. In this paper, we provide a comprehensive survey on the use of BI strategies in the EV transportation sector. We first introduce the EVs and charging station technologies. Then, research works on the application of BI and data analysis techniques in EV technology are reviewed to further understand the challenges and open issues for the research and industry community. Moreover, related works on accident analysis, battery health prediction, charging station analysis, intelligent infrastructure, locating charging stations analysis, and autonomous driving are investigated. This survey systematically reviews 75 peer-reviewed studies published between 2020 and 2025. Finally, we discuss the fundamental limitations and the future open challenges in the aforementioned topics. Full article
(This article belongs to the Special Issue Electronic Architecture for Autonomous Vehicles)
Show Figures

Figure 1

Back to TopTop