Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (37)

Search Parameters:
Keywords = electric power system adequacy

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
25 pages, 668 KiB  
Article
Bridging the Energy Divide: An Analysis of the Socioeconomic and Technical Factors Influencing Electricity Theft in Kinshasa, DR Congo
by Patrick Kankonde and Pitshou Bokoro
Energies 2025, 18(13), 3566; https://doi.org/10.3390/en18133566 - 7 Jul 2025
Viewed by 387
Abstract
Electricity theft remains a persistent challenge, particularly in developing economies where infrastructure limitations and socioeconomic disparities contribute to illegal connections. This study analyzes the determinants influencing electricity theft in Kinshasa, the Democratic Republic of Congo, using a logistic regression model applied to 385 [...] Read more.
Electricity theft remains a persistent challenge, particularly in developing economies where infrastructure limitations and socioeconomic disparities contribute to illegal connections. This study analyzes the determinants influencing electricity theft in Kinshasa, the Democratic Republic of Congo, using a logistic regression model applied to 385 observations, which includes random bootstrapping sampling for enhanced stability and power analysis validation to confirm the adequacy of the sample size. The model achieved an AUC of 0.86, demonstrating strong discriminatory power, while the Hosmer–Lemeshow test (p = 0.471) confirmed its robust fit. Our findings indicate that electricity supply quality, financial stress, tampering awareness, and billing transparency are key predictors of theft likelihood. Households experiencing unreliable service and economic hardship showed higher theft probability, while those receiving regular invoices and alternative legal energy solutions exhibited lower risk. Lasso regression was implemented to refine predictor selection, ensuring model efficiency. Based on these insights, a multifaceted policy approach—including grid modernization, prepaid billing systems, awareness campaigns, and regulatory enforcement—is recommended to mitigate electricity theft and promote sustainable energy access in urban environments. Full article
(This article belongs to the Section F4: Critical Energy Infrastructure)
Show Figures

Figure 1

18 pages, 6987 KiB  
Article
Modeling of Measuring Transducers for Relay Protection Systems of Electrical Installations
by Iliya Iliev, Andrey Kryukov, Konstantin Suslov, Nikolay Kodolov, Aleksandr Kryukov, Ivan Beloev and Yulia Valeeva
Sensors 2025, 25(2), 344; https://doi.org/10.3390/s25020344 - 9 Jan 2025
Cited by 1 | Viewed by 719
Abstract
The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead [...] Read more.
The process of establishing relay protection and automation (RPA) settings for electric power systems (EPSs) entails complex calculations of operating modes. Traditionally, these calculations are based on symmetrical components, which require the building of equivalent circuits of various sequences. This approach can lead to errors both when identifying the operating modes and when modeling the RPA devices. Proper modeling of measuring transformers (MTs), symmetrical component filters (SCFs), and circuits connected to them effectively solves this problem, enabling the configuration of relay protection and automation systems. The methods of modeling the EPS in phase coordinates are proposed to simultaneously determine the operating modes of high-voltage networks and secondary circuits connected to the current and voltage transformers. The MT and SCF models are developed to concurrently identify the operating modes of secondary wiring circuits and calculate the power flow in the controlled EPS segments. This method is effective in addressing practical problems related to the configuration of the relay protection and automation systems. It can also be used when establishing cyber–physical power systems. For a comprehensive check of the adequacy of the MT models, 140 modes of the electric power system were determined which corresponded to time-varying traction loads. Based on the results of calculating the complexes of currents and voltages at the MT terminals, parametric identification of the power transmission line was performed. Based on this, the model of this transmission line was adjusted; repeated modeling was carried out, and errors were calculated. The modeling results showed a high accuracy when calculating the modules and phases of voltages using the identified model. The average error value for current modules was 0.6%, and for angles, it was 0.26°. Full article
(This article belongs to the Special Issue Mechanical Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

25 pages, 2624 KiB  
Article
New Electric Power System Stability Evaluation Based on Game Theory Combination Weighting and Improved Cloud Model
by Mingrun Tang, Ruoyang Li, Xinyin Dai, Xuefeng Yu, Xiaoyu Cheng and Shuxia Yang
Sustainability 2024, 16(14), 6189; https://doi.org/10.3390/su16146189 - 19 Jul 2024
Cited by 7 | Viewed by 1107
Abstract
The development of new electric power system is a requirement for China to realize its “carbon peaking and carbon neutrality goals”, so it is of great importance that we assess the stability of a new electric power system under certain conditions. Firstly, according [...] Read more.
The development of new electric power system is a requirement for China to realize its “carbon peaking and carbon neutrality goals”, so it is of great importance that we assess the stability of a new electric power system under certain conditions. Firstly, according to the factors affecting the stability of the new power system, the characteristics of the new electric power system are analyzed in depth, so as to establish a stability evaluation index system including four first-level indices of safety, adequacy, flexibility, and adaptability. Secondly, a stability evaluation model is proposed. Based on the game theory, the entropy weight method, criteria importance though intercrieria correlation (CRITIC) method, and coefficient of variation method are combined and assigned, and the cloud model is improved through the combination of weights, which is used for evaluating the stability of the new electric power system. Finally, the applicability of the proposed evaluation model is verified by an arithmetic example analysis, which can identify the vulnerability of the new electric power system and provide suggestions for improving its stability. The model can provide a theoretical basis for promoting energy transition and sustainable development. Full article
Show Figures

Figure 1

20 pages, 5791 KiB  
Article
The Design and the Control Principle of a Direct Low-Speed PMSM Servo-Drive Operating under a Sign-Changing Load on the Shaft
by Oleksandr Makarchuk and Dariusz Całus
Energies 2024, 17(13), 3134; https://doi.org/10.3390/en17133134 - 26 Jun 2024
Cited by 1 | Viewed by 1812
Abstract
The paper relates to the development of an algorithm applicable for maintaining the rotational speed of low-speed drives using PMSM motors and operating under a sign-changing load. The moment of inertia of rotating parts does not play the role of a mechanical stabilizer [...] Read more.
The paper relates to the development of an algorithm applicable for maintaining the rotational speed of low-speed drives using PMSM motors and operating under a sign-changing load. The moment of inertia of rotating parts does not play the role of a mechanical stabilizer for the speeds discussed in the article. Simulation studies are presented with the aim of developing a rotational speed control algorithm that utilizes only positional feedback and the previously assumed sign-changing load on the shaft. For the purposes of this research, a mathematical model was developed to calculate transient processes in a PMSM machine operating in the conditions of a sign-changing load on the shaft. This model assumes a deterministic control principle adapted to the known nature of the load change. In this model, the mutual influence occurring between the phase fluxes, the electromagnetic torque, the electric currents and the rotor position angle are established on the basis of FEM analysis of a two-dimensional magnetic field using a quasi-stationary approximation. Principles applicable for controlling a direct low-speed servo drive based on a PMSM machine operating with a known variable shaft load using only positional feedback and a predetermined shaft load change law are defined. The proposed regulation method is verified in an experimental manner. For this purpose, an experimental setup was built, which includes a PMSM with a load imitator on a variable sign shaft, an inverter providing sine-shaped power supply to the machine and a digital dual-processor control system. The discussed rotational speed stabilization algorithm was implemented in the form of a program for a microcontroller, which forms a part of the control system. The results of experimental tests confirm the adequacy of mathematical modeling and the effectiveness of the proposed rotational speed stabilization algorithm. Full article
(This article belongs to the Section F1: Electrical Power System)
Show Figures

Figure 1

22 pages, 5631 KiB  
Article
Innovative Method for Reliability Assessment of Power Systems: From Components Modeling to Key Indicators Evaluation
by Giovanna Adinolfi, Roberto Ciavarella, Giorgio Graditi, Antonio Ricca and Maria Valenti
Electronics 2024, 13(2), 275; https://doi.org/10.3390/electronics13020275 - 8 Jan 2024
Cited by 5 | Viewed by 2911
Abstract
Power systems comprise different electrical, electronic, electromechanical and electrochemical components. Adequacy, security, resilience and reliability represent essential requirements for grids functioning mode. The evaluation of such aspects can constitute a delicate task in the presence of heterogeneous components. Focusing on reliability assessment, several [...] Read more.
Power systems comprise different electrical, electronic, electromechanical and electrochemical components. Adequacy, security, resilience and reliability represent essential requirements for grids functioning mode. The evaluation of such aspects can constitute a delicate task in the presence of heterogeneous components. Focusing on reliability assessment, several Reliability Prediction Models are available. They are suitably applied according to the type of component under evaluation. The lack of homogeneity of these models forbids the comparison of performance and identification of unreliable systems and grid section. This paper aims to face the mentioned issue proposing a unique reliability assessment methodology able to characterize different equipment connected to radial/meshed/ring grids and subjected to different stressing and ageing factors. It is customized for electrical lines, transformers, circuit breakers, converters and renewables plants. Component and systemic key indices are calculated. Furthermore, a novel “load feeding reliability“ indicator is evaluated for providing information about the supply reliability of a specific load. This index is meaningful for the identification of unreliable grids, microgrids and systems. Such an approach can contribute to improve power systems design, planning and control. The proposed method is integrated in a software application implemented for grid reliability assessment. The obtained results are reported for an urban grid including an underground transportation area. Full article
(This article belongs to the Special Issue Advanced Power Generation and Conversion Systems)
Show Figures

Figure 1

26 pages, 6313 KiB  
Article
A Pragmatic Approach to the Economic Assessment of Green Synthetic Methane Power in the Baltics
by Antans Sauhats, Roman Petrichenko and Marija Zima-Bockarjova
Energies 2023, 16(22), 7479; https://doi.org/10.3390/en16227479 - 7 Nov 2023
Cited by 6 | Viewed by 1453
Abstract
The synthesis of methane from hydrogen and carbon dioxide creates an energy resource that is suitable for long-term storage. Once this process is powered by renewable electricity, it produces a clean fuel for producing electricity and heat and supports large-scale renewable energy deployment, [...] Read more.
The synthesis of methane from hydrogen and carbon dioxide creates an energy resource that is suitable for long-term storage. Once this process is powered by renewable electricity, it produces a clean fuel for producing electricity and heat and supports large-scale renewable energy deployment, energy transition and climate change mitigation. This paper proposes a pragmatic approach to assessing the economic potential of synthetic methane-based power. Today, natural gas plays an important role in the Baltic region due to the existing infrastructure, which includes a transmission and distribution pipeline network, gas power plants and a large underground storage reservoir. Replacing natural gas with synthetic methane would fulfil carbon emission reduction ambitions. In this paper, we simulate electricity producers’ actions at market conditions and consider the generation portfolio in the Baltics and the interconnections with Scandinavia and Poland operating in the NORDPOOL electricity market. As a result of these calculations, we obtain the volume of the synthetic gas, the production costs, the volume of gas storage, the installed capacity of the gas power plant, and the investments required to ensure energy transition and system adequacy. These results are essential for the informed decisions made by policymakers, investors and system operators. Full article
Show Figures

Figure 1

23 pages, 3160 KiB  
Article
Decarbonization Analysis for Thermal Generation and Regionally Integrated Large-Scale Renewables Based on Minutely Optimal Dispatch with a Kentucky Case Study
by Donovin D. Lewis, Aron Patrick, Evan S. Jones, Rosemary E. Alden, Abdullah Al Hadi, Malcolm D. McCulloch and Dan M. Ionel
Energies 2023, 16(4), 1999; https://doi.org/10.3390/en16041999 - 17 Feb 2023
Cited by 8 | Viewed by 3910
Abstract
Decarbonization of existing electricity generation portfolios with large-scale renewable resources, such as wind and solar photo-voltaic (PV) facilities, is important for a transition to a sustainable energy future. This paper proposes an ultra-fast optimization method for economic dispatch of firm thermal generation using [...] Read more.
Decarbonization of existing electricity generation portfolios with large-scale renewable resources, such as wind and solar photo-voltaic (PV) facilities, is important for a transition to a sustainable energy future. This paper proposes an ultra-fast optimization method for economic dispatch of firm thermal generation using high granularity, one minute resolution load, wind, and solar PV data to more accurately capture the effects of variable renewable energy (VRE). Load-generation imbalance and operational cost are minimized in a multi-objective clustered economic dispatch problem with various generation portfolios, realistic generator flexibility, and increasing levels of VRE integration. The economic feasibility of thermal dispatch scenarios is evaluated through a proposed method of levelized cost of energy (LCOE) for clustered generation portfolios. Effective renewable economics is applied to assess resource adequacy, annual carbon emissions, renewable capacity factor, over generation, and cost to build between thermal dispatch scenarios with incremental increases in VRE penetration. Solar PV and wind generation temporally complement one another in the region studied, and the combination of the two is beneficial to renewable energy integration. Furthermore, replacing older coal units with cleaner and agile natural gas units increases renewable hosting capacity and provides further pathways to decarbonization. Minute-based chronological simulations enable the assessment of renewable effectiveness related to weather-related variability and of complementary technologies, including energy storage for which a sizing procedure is proposed. The generally applicable methods are regionally exemplified for Kentucky, USA, including eight scenarios with four major year-long simulated case studies and 176 subcases using high performance computing (HPC) systems. Full article
Show Figures

Figure 1

14 pages, 2802 KiB  
Article
A Case of Interdisciplinary Fusion under Dual Carbon Goal: Coordinated Carbon Reduction with Greenhouse Photovoltaics and Electric Vehicles
by Juai Wu, Shiyang Deng, Yuanmeng Zhu, Yun Liu, Yang Andrew Wu, Rong Fu and Sipeng Hao
Appl. Sci. 2023, 13(4), 2410; https://doi.org/10.3390/app13042410 - 13 Feb 2023
Cited by 2 | Viewed by 1894
Abstract
Building a new type of power system is an important guarantee to support China’s “dual carbon” goal. Due to the inseparable relationship between industrial and agricultural production and electric energy utilization, there must be interdisciplinary integration to achieve the goal of “dual carbon”. [...] Read more.
Building a new type of power system is an important guarantee to support China’s “dual carbon” goal. Due to the inseparable relationship between industrial and agricultural production and electric energy utilization, there must be interdisciplinary integration to achieve the goal of “dual carbon”. The disciplines of horticulture and electric power are taken as examples in this paper to analyze the feasibility of carbon emission reduction through coordinating agricultural photovoltaic (PV) greenhouse and electric vehicle (EV) energy storage. Firstly, the mechanism of carbon emission difference caused by electric energy supplementing during EV charging is analyzed. Secondly, in the context of the contradiction between the reduction of battery life caused by discharging (increasing carbon emission) and the increase in PV output consumption by orderly charging and discharging (reducing carbon emission), an optimization model for the synergistic operation of EV clusters and greenhouse PVs (with the objective of minimizing carbon emissions) is proposed. Finally, the effectiveness of the proposed model is verified through simulation cases. The energy storage characteristics of EVs is capable of realizing the transfer of PV power generation in the time dimension, and the coordinated operation of greenhouse PVs and EVs’ charging and discharging can effectively reduce carbon emission during the EV operation period. In a typical summer scenario of PV output, the carbon emission of EVs in V2G (vehicle to grid) mode was reduced by 69.13% compared to disorderly charging. It is shown that the adequacy of PV generation and the orderly dispatching of the charging and discharging of EVs are the key factors in reducing carbon emission throughout the life cycle of EVs. Full article
(This article belongs to the Special Issue Recent Developments in Electric Vehicles)
Show Figures

Figure 1

23 pages, 4270 KiB  
Article
A Statistical Assessment of Water Availability for Hydropower Generation in the Context of Adequacy Analyses
by Giuseppe Marco Tina and Claudio Francesco Nicolosi
Appl. Sci. 2023, 13(3), 1986; https://doi.org/10.3390/app13031986 - 3 Feb 2023
Cited by 3 | Viewed by 2246
Abstract
The increasing presence of non-programmable renewable energy plants increases the intermittency of the electricity supply and thus threatens the adequacy of a power system. Hydropower can solve this problem due to its flexibility. This paper applies statistical approaches to assess water availability in [...] Read more.
The increasing presence of non-programmable renewable energy plants increases the intermittency of the electricity supply and thus threatens the adequacy of a power system. Hydropower can solve this problem due to its flexibility. This paper applies statistical approaches to assess water availability in the context of hydropower generation and adequacy analysis on a seasonal basis for one site in Sicily and the other in Sardinia, where major hydroelectric plants are present. First, an empirical relationship between soil moisture content (SMC) and potential evapotranspiration (ET0) is evaluated through linear regression analysis. Then, precipitation trends over the last twenty years are analyzed to determine any effects of global warming on water availability. Finally, Monte Carlo algorithms are used for the stochastic generation of hourly precipitation, direct runoff profiles, and daily SMC profiles. Strong positive and negative correlations between ET0 and SMC (p < 0.05), and R2 ≥ 0.5 are found for both sites, except for summer, and R2 ≥ 0.5 is obtained. The cumulative pH-historical precipitation shows changes in seasonal trends, with evidence of a decrease at the annual level. The algorithms used to synthetically generate hourly precipitation and direct runoff profiles, as well as daily SMC profiles, effectively simulate the statistical variability of the historical profiles of these physical quantities. Full article
(This article belongs to the Section Energy Science and Technology)
Show Figures

Figure 1

14 pages, 871 KiB  
Article
Electric Vehicle Charging Sessions Generator Based on Clustered Driver Behaviors
by Gilles Van Kriekinge, Cedric De Cauwer, Nikolaos Sapountzoglou, Thierry Coosemans and Maarten Messagie
World Electr. Veh. J. 2023, 14(2), 37; https://doi.org/10.3390/wevj14020037 - 2 Feb 2023
Cited by 5 | Viewed by 2918
Abstract
Increasing penetration of electric vehicles brings a set of challenges for the electricity system related to its energy, power and balance adequacy. Research related to this topic often requires estimates of charging demand in various forms to feed various models and simulations. This [...] Read more.
Increasing penetration of electric vehicles brings a set of challenges for the electricity system related to its energy, power and balance adequacy. Research related to this topic often requires estimates of charging demand in various forms to feed various models and simulations. This paper proposes a methodology to simulate charging demand for different driver types in a local energy system in the form of time series of charging sessions. The driver types are extracted from historical charging session data via data mining techniques and then characterized using a kernel density estimation process. The results show that the methodology is able to capture the stochastic nature of the drivers’ charging behavior in time, frequency and energy demand for different types of drivers, while respecting aggregated charging demand. This is essential when studying the energy balance of a local energy system and allows for calculating future demand scenarios by compiling driver population based on number of drivers per driver type. The methodology is then tested on a simulator to assess the benefits of smart charging. Full article
Show Figures

Figure 1

24 pages, 11820 KiB  
Article
Shake Table Testing of Voltage and Current Transformers and Numerical Derivation of Corresponding Fragility Curves
by Francesco Cavalieri, Giuseppe Donelli, Rui Pinho, Filippo Dacarro, Nunzia Bernardo and Michele de Nigris
Infrastructures 2022, 7(12), 171; https://doi.org/10.3390/infrastructures7120171 - 14 Dec 2022
Cited by 4 | Viewed by 2943
Abstract
Damage to devices installed in electric substations, which have shown vulnerable behaviour under strong earthquakes in the last decades, may endanger power delivery in the emergency phases during and after an earthquake. Within seismic risk assessment of power networks, the definition of the [...] Read more.
Damage to devices installed in electric substations, which have shown vulnerable behaviour under strong earthquakes in the last decades, may endanger power delivery in the emergency phases during and after an earthquake. Within seismic risk assessment of power networks, the definition of the fragility functions of electric equipment is paramount. However, in the current literature the availability of such fragility models for some specific electric substation components, including instrument transformers, is relatively limited, this being the reason behind the deployment of the current experimental and numerical research endeavour. Two voltage transformers and two current transformers having different system voltage levels (respectively in the high voltage HV and extra-high voltage EHV ranges) were subjected to shake table tests, and the experimental results were used to calibrate the corresponding 3D numerical models developed in OpenSees. A number of nonlinear dynamic analyses carried out within a multiple-stripe analysis (MSA) framework allowed the derivation of 16 fragility curves for the four transformers in both stand-alone and elevated/supported configurations, considering also two different soil types. Based on the derived curves, one of the voltage transformers is expected to experience light or negligible damage due to earthquake shaking, owing to its high resonance frequencies (and hence stiffness), whilst the remaining three devices may suffer moderate damage under medium to strong shaking intensities; however, their seismic risk is in effect mitigated by the presence of the typically employed supporting column. Comparison against models available in the literature lent valuable reassurance on the adequacy of the employed methodology and the reliability of the derived fragility curves. Full article
(This article belongs to the Special Issue Seismic Reliability Assessment and Advances in Structural Modelling)
Show Figures

Figure 1

16 pages, 3194 KiB  
Article
Simplified Modeling and Analysis of Surface Temperature Distribution in Electrically Heated Catalyst for Diesel Urea-SCR Systems
by Seoksu Moon, Sunhong Park, Jihyun Son, Kwangchul Oh and Sungwook Jang
Energies 2022, 15(17), 6406; https://doi.org/10.3390/en15176406 - 1 Sep 2022
Cited by 9 | Viewed by 2195
Abstract
Impending emission regulations of diesel engines for construction machineries would regulate nitrogen oxide emissions strictly in cold operating conditions. The urea-based selective catalytic reduction (urea-SCR) system coupled with the electrically heated catalyst (EHC) has been considered as a potential measure to meet the [...] Read more.
Impending emission regulations of diesel engines for construction machineries would regulate nitrogen oxide emissions strictly in cold operating conditions. The urea-based selective catalytic reduction (urea-SCR) system coupled with the electrically heated catalyst (EHC) has been considered as a potential measure to meet the strict emission regulations by promoting evaporation and thermal decomposition of urea–water solution in cold operating conditions. Analyzing the thermal conditions in the EHC is crucial for the optimized operation and control of EHC-based urea-SCR systems under various engine operating conditions. In the current study, we introduce a simple one-dimensional analysis scheme to characterize the surface temperature distribution in the EHC based on energy conservation and the theories of forced internal convection. Since the EHC has a complicated internal structure with fine flow cells inside it, a flow cell in the EHC is extracted for the one-dimensional heat transfer analysis. EHC operation parameters such as exhaust gas flow rate and supplied electric power to the EHC are scaled to be applied for the flow cell analysis. The adequacy of the analysis scheme is then validated by surface temperature measurement results at the EHC outlet. The validation results showed over 95% prediction accuracy of the 1D analysis scheme in the operating conditions of a heavy-duty diesel engine. Based on proven reliability, the effects of geometric and operation parameters on the surface temperature distribution in the EHC were analyzed and discussed using the analysis results. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

21 pages, 6028 KiB  
Article
Reactive Voltage Control Strategy for PMSG-Based Wind Farm Considering Reactive Power Adequacy and Terminal Voltage Balance
by Jianfeng Dai, Lei Wan, Ping Chang, Lin Liu and Xia Zhou
Electronics 2022, 11(11), 1766; https://doi.org/10.3390/electronics11111766 - 2 Jun 2022
Cited by 6 | Viewed by 2576
Abstract
To improve the ability of the power system to accommodate high penetration wind power, wind turbines (WTs) need to realize the mode transformation from grid-following to grid-forming, thus actively participating in the voltage regulation of the power grid with a high proportion of [...] Read more.
To improve the ability of the power system to accommodate high penetration wind power, wind turbines (WTs) need to realize the mode transformation from grid-following to grid-forming, thus actively participating in the voltage regulation of the power grid with a high proportion of wind power. In this work, a reactive voltage control strategy for wind farms considering reactive power adequacy and terminal voltage balance is proposed. Firstly, the expression of the maximum reactive power regulation capacity of WT, namely reactive power adequacy, is derived under the complete wind condition based on the mathematical model and operating characteristics of WT, to study the influence of wake effect on reactive power adequacy of a wind farm. Then, the point of common coupling (PCC) voltage and terminal voltage are expressed analytically based on the radiative topology equivalent model of a wind farm, to analyze the influence of electrical distance on active power loss of wind farm. Finally, the calculation method of the adaptive gain coefficient of WT is put forward, which comprehensively considers the input wind speed and the electrical distance, to regulate the PCC voltage and terminal voltage simultaneously. The comprehensive effectiveness of the proposed strategy is demonstrated on a permanent magnet synchronous generator (PMSG)-based wind farm integration simulation model. While supporting the PCC voltage, the proposed strategy maintains the balance of the terminal voltage in the wind farm, thereby improving the friendliness of wind power grid connection. Full article
(This article belongs to the Special Issue Networked Control Systems: Trends and Technique)
Show Figures

Figure 1

15 pages, 2967 KiB  
Article
Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand
by Aree Wangsupphaphol and Surachai Chaitusaney
Sustainability 2022, 14(10), 6053; https://doi.org/10.3390/su14106053 - 17 May 2022
Cited by 6 | Viewed by 4240
Abstract
Government policies are crucial factors for supporting the growth of the electric vehicle (EV) industry—a growth that can be encouraged, for example, by subsidization designed to reduce the considerable anxiety stemming from the inconvenience of refueling at public charging stations. Subsidizing low priority [...] Read more.
Government policies are crucial factors for supporting the growth of the electric vehicle (EV) industry—a growth that can be encouraged, for example, by subsidization designed to reduce the considerable anxiety stemming from the inconvenience of refueling at public charging stations. Subsidizing low priority charging for residential enables cost-effective load management for example controlling of EV charging power for grid reliability at the off-peak rate for 24 h. This solution provides the convenient recharging of EVs at home and prevents an expensive grid upgradation. To advance our understanding of the EV situation, this research used a regression model to forecast the growth rate of the EV market alongside the EV expansion policies in Thailand. The agreement between a policy and forecasting urges the government to prepare power system adequacy for EV loading. The analysis showed that power demand and voltage reduction in a typical low-voltage distribution system that assumes maximum EV loading constitute voltage violations. To address this limitation, this study proposed a rule-based strategy wherein low priority smart EV charging is regulated. The numerical validation of the strategy indicated that the strategy reduced power demand by 25% and 39% compared with that achieved under uncontrolled and time of use (TOU) charging, respectively. The strategy also limited voltage reduction and prolonged battery life. The study presents implications for policymakers and electricity companies with respect to possible technical approaches to stimulating EV penetration. Full article
(This article belongs to the Section Energy Sustainability)
Show Figures

Figure 1

28 pages, 3714 KiB  
Article
Assessment of the Impacts of Climate Change on Power Systems: The Italian Case Study
by Giuseppe Marco Tina and Claudio F. Nicolosi
Appl. Sci. 2021, 11(24), 11821; https://doi.org/10.3390/app112411821 - 13 Dec 2021
Cited by 9 | Viewed by 3206
Abstract
Climate change due to the greenhouse effect will affect meteorological variables, which in turn will affect the demand for electrical energy and its generation in coming years. These impacts will become increasingly important in accordance with the increasing penetration of renewable, non-programmable energy [...] Read more.
Climate change due to the greenhouse effect will affect meteorological variables, which in turn will affect the demand for electrical energy and its generation in coming years. These impacts will become increasingly important in accordance with the increasing penetration of renewable, non-programmable energy sources (e.g., wind and solar). Specifically, the speed and amplitude of power system transformation will be different from one country to another according to many endogenous and exogenous factors. Based on a literature review, this paper focuses on the impact of climate change on the current, and future, Italian power system. The paper shows a wide range of results, due not just to the adopted climate change models used, but also to the models used to assess the impact of meteorological variables on electricity generation and demand. Analyzing and interpreting the reasons for such differences in the model results is crucial to perform more detailed numerical analyses on the adequacy and reliability of power systems. Concerning Italian future scenarios, the double impact of uncertainties in national policies and changes in power plant productivity and demand, has been considered and addressed. Full article
(This article belongs to the Special Issue 5th Anniversary of Energy Section—Recent Advances in Energy)
Show Figures

Figure 1

Back to TopTop