Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand
Abstract
:1. Introduction
2. Literature Review
3. Materials and Methods
3.1. EV Uptake
3.2. Power Demand for EV Charging
3.3. Rule-Based Control Strategy for Smart EV Charging
PCH(t) = PSE
4. Result
5. Discussion
6. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- U.S. Energy Information Administration. Emissions of Greenhouse Gases in the United States 2009. Available online: https://www.eia.gov/environment/emissions/ghg_report/pdf/0573%282009%29.pdf (accessed on 10 May 2022).
- Walker, P.D.; Roser, H.M. Energy Consumption and Cost Analysis of Hybrid Electric Powertrain Configurations for Two Wheelers. Appl. Energy 2015, 146, 279–287. [Google Scholar] [CrossRef]
- Pan, S.; Roy, A.; Choi, Y.; Eslami, E.; Thomas, S.; Jiang, X.; Gao, H.O. Potential Impacts of Electric Vehicles on Air Quality and Health Endpoints in the Greater Houston Area in 2040. Atmos. Environ. 2019, 207, 38–51. [Google Scholar] [CrossRef]
- Shi, L.; Hao, Y.; Lv, S.; Cipcigan, L.; Liang, J. A Comprehensive Charging Network Planning Scheme for Promoting EV Charging Infrastructure Considering the Chicken-Eggs Dilemma. Res. Transp. Econ. 2020, 88, 100837. [Google Scholar] [CrossRef]
- Wangsupphaphol, A.; Chaitusaney, S. A Simple Levelized Cost of Electricity for Ev Charging with Pv and Battery Energy Storage System: Thailand Case Study. Int. J. Power Electron. Drive Syst. 2020, 11, 2223–2230. [Google Scholar] [CrossRef]
- Ling, Z.; Cherry, C.R.; Wen, Y. Determining the Factors That Influence Electric Vehicle Adoption: A Stated Preference Survey Study in Beijing, China. Sustainability 2021, 13, 11719. [Google Scholar] [CrossRef]
- Kaufmann, R.K.; Newberry, D.; Xin, C.; Gopal, S. Feedbacks among Electric Vehicle Adoption, Charging, and the Cost and Installation of Rooftop Solar Photovoltaics. Nat. Energy 2021, 6, 143–149. [Google Scholar] [CrossRef]
- Denis Gurskiy Apartment EV Charging & Ownership May Be Easier Than You Think. Available online: https://cleantechnica.com/2019/09/10/apartment-ev-charging-ownership-may-be-easier-than-you-think/ (accessed on 10 May 2022).
- Flammini, M.G.; Prettico, G.; Julea, A.; Fulli, G.; Mazza, A.; Chicco, G. Statistical Characterisation of the Real Transaction Data Gathered from Electric Vehicle Charging Stations. Electr. Power Syst. Res. 2019, 166, 136–150. [Google Scholar] [CrossRef]
- Sørensen, L.; Lindberg, K.B.; Sartori, I.; Andresen, I. Analysis of Residential EV Energy Flexibility Potential Based on Real-World Charging Reports and Smart Meter Data. Energy Build. 2021, 241, 110923. [Google Scholar] [CrossRef]
- Thananusak, T.; Punnakitikashem, P.; Tanthasith, S.; Kongarchapatara, B. The Development of Electric Vehicle Charging Stations in Thailand: Policies, Players and Key Issues (2015–2020). World Electr. Veh. J. 2021, 12, 2. [Google Scholar] [CrossRef]
- MEA Announcement for Electricity Tariff of Low Priority Charging Station. Available online: https://www.mea.or.th/upload/download/file_9ad4a07b746a6a70bb2329974bb53510.pdf (accessed on 11 May 2022). (In Thai).
- Omar, N.; Monem, M.A.; Firouz, Y.; Salminen, J.; Smekens, J.; Hegazy, O.; Gaulous, H.; Mulder, G.; Van den Bossche, P.; Coosemans, T.; et al. Lithium Iron Phosphate Based Battery—Assessment of the Aging Parameters and Development of Cycle Life Model. Appl. Energy 2014, 113, 1575–1585. [Google Scholar] [CrossRef]
- Han, X.; Lu, L.; Zheng, Y.; Feng, X.; Li, Z.; Li, J.; Ouyang, M. A Review on the Key Issues of the Lithium Ion Battery Degradation among the Whole Life Cycle. Etransportation 2019, 1, 100005. [Google Scholar] [CrossRef]
- Ashique, R.H.; Salam, Z.; Bin Abdul Aziz, M.J.; Bhatti, A.R. Integrated Photovoltaic-Grid Dc Fast Charging System for Electric Vehicle: A Review of the Architecture and Control. Renew. Sustain. Energy Rev. 2017, 69, 1243–1257. [Google Scholar] [CrossRef]
- Uddin, M.; Romlie, M.F.; Abdullah, M.F.; Abd Halim, S.; Abu Bakar, A.H.; Chia Kwang, T. A Review on Peak Load Shaving Strategies. Renew. Sustain. Energy Rev. 2018, 82, 3323–3332. [Google Scholar] [CrossRef]
- Gnann, T.; Klingler, A.L.; Kühnbach, M. The Load Shift Potential of Plug-in Electric Vehicles with Different Amounts of Charging Infrastructure. J. Power Sources 2018, 390, 20–29. [Google Scholar] [CrossRef]
- Solanke, T.U.; Khatua, P.K.; Ramachandaramurthy, V.K.; Yong, J.Y.; Tan, K.M. Control and Management of a Multilevel Electric Vehicles Infrastructure Integrated with Distributed Resources: A Comprehensive Review. Renew. Sustain. Energy Rev. 2021, 144, 111020. [Google Scholar] [CrossRef]
- Mbuwir, B.V.; Vanmunster, L.; Thoelen, K.; Deconinck, G. A Hybrid Policy Gradient and Rule-Based Control Framework for Electric Vehicle Charging. Energy AI 2021, 4, 100059. [Google Scholar] [CrossRef]
- Sadeghianpourhamami, N.; Deleu, J.; Develder, C. Definition and Evaluation of Model-Free Coordination of Electrical Vehicle Charging with Reinforcement Learning. IEEE Trans. Smart Grid 2020, 11, 203–214. [Google Scholar] [CrossRef] [Green Version]
- Yin, W.; Ming, Z.; Wen, T. Scheduling Strategy of Electric Vehicle Charging Considering Different Requirements of Grid and Users. Energy 2021, 232, 121118. [Google Scholar] [CrossRef]
- Wang, Z.; Jochem, P.; Fichtner, W. A Scenario-Based Stochastic Optimization Model for Charging Scheduling of Electric Vehicles under Uncertainties of Vehicle Availability and Charging Demand. J. Clean. Prod. 2020, 254, 119886. [Google Scholar] [CrossRef]
- Tuchnitz, F.; Ebell, N.; Schlund, J.; Pruckner, M. Development and Evaluation of a Smart Charging Strategy for an Electric Vehicle Fleet Based on Reinforcement Learning. Appl. Energy 2021, 285, 116382. [Google Scholar] [CrossRef]
- Tie, S.F.; Tan, C.W. A Review of Energy Sources and Energy Management System in Electric Vehicles. Renew. Sustain. Energy Rev. 2013, 20, 82–102. [Google Scholar] [CrossRef]
- Teng, J.H.; Liao, S.H.; Wen, C.K. Design of a Fully Decentralized Controlled Electric Vehicle Charger for Mitigating Charging Impact on Power Grids. IEEE Trans. Ind. Appl. 2017, 53, 1497–1505. [Google Scholar] [CrossRef]
- Hussain, S.; Ahmed, M.A.; Kim, Y.C. Efficient Power Management Algorithm Based on Fuzzy Logic Inference for Electric Vehicles Parking Lot. IEEE Access 2019, 7, 65467–65485. [Google Scholar] [CrossRef]
- Eajal, A.A.; Shaaban, M.F.; El-Saadany, E.F.; Ponnambalam, K. Fuzzy Logic-Based Charging Strategy for Electric Vehicles Plugged into a Smart Grid. Int. J. Process Syst. Eng. 2017, 4, 119–137. [Google Scholar] [CrossRef]
- Kermadi, M.; Salam, Z.; Berkouk, E.M. A Rule-Based Power Management Controller Using Stateflow for Grid-Connected PV-Battery Energy System Supplying Household Load. In Proceedings of the 2018 9th IEEE International Symposium on Power Electronics for Distributed Generation Systems, Charlotte, NC, USA, 25–28 June 2018. [Google Scholar] [CrossRef]
- Bhatti, A.R.; Salam, Z. A Rule-Based Energy Management Scheme for Uninterrupted Electric Vehicles Charging at Constant Price Using Photovoltaic-Grid System. Renew. Energy 2018, 125, 384–400. [Google Scholar] [CrossRef]
- Deilami, S.; Masoum, A.S.; Moses, P.S.; Masoum, M.A.S. Real-Time Coordination of Plug-in Electric Vehicle Charging in Smart Grids to Minimize Power Losses and Improve Voltage Profile. IEEE Trans. Smart Grid 2011, 2, 456–467. [Google Scholar] [CrossRef]
- Dubey, A.; Santoso, S.; Cloud, M.P.; Waclawiak, M. Determining Time-of-Use Schedules for Electric Vehicle Loads: A Practical Perspective. IEEE Power Energy Technol. Syst. J. Receiv. 2015, 2, 12–20. [Google Scholar] [CrossRef]
- Dubey, A.; Santoso, S. Electric Vehicle Charging on Residential Distribution Systems: Impacts and Mitigations. IEEE Access 2015, 3, 1871–1893. [Google Scholar] [CrossRef]
- Govt Ups E-Car Drive. Available online: https://www.thaiauto.or.th/2020/news/?news_id=4981 (accessed on 10 May 2022).
- Thailand Aims to Ban Sale of Petrol and Diesel Cars by 2035. Available online: https://www.thaiauto.or.th/2020/news/?news_id=5000 (accessed on 10 May 2022).
- International Energy Agency (IEA) Global EV Outlook 2020: Entering the Decade of Electric Drive? Glob. EV Outlook 2020, 2020, 273.
- Growing Opportunities for Electric Vehicles in Thailand. Available online: http://www.evat.or.th/attachments/view/?attach_id=234812 (accessed on 10 May 2022).
- Thailand Motor Vehicle Sales: Passenger Cars. Available online: https://www.ceicdata.com/en/indicator/thailand/motor-vehicle-sales-passenger-cars (accessed on 10 May 2022).
- Kim, J.D. Insights into Residential EV Charging Behavior Using Energy Meter Data. Energy Policy 2019, 129, 610–618. [Google Scholar] [CrossRef]
- IEEE Std 519-2014; IEEE Recommended Practice and Requirements for Harmonic Control in Electric Power Systems (Revision of IEEE Std 519-1992). IEEE: Piscatway, NJ, USA, 2014.
- Angaphiwatchawal, P.; Chaitusaney, S. Maximization of PV Size for Its Limitation in MEA Grid Code by Considering Overvoltage and Increased Active Power Loss Criteria. In Proceedings of the 2019 7th International Electrical Engineering Congress, Hua Hin, Thailand, 6–8 March 2019; pp. 7–10. [Google Scholar] [CrossRef]
- Central Region Load Profile. Available online: http://peaoc.pea.co.th/loadprofile/en/ (accessed on 10 May 2022).
- Zhang, Q.; Li, H.; Zhu, L.; Campana, P.E.; Lu, H.; Wallin, F.; Sun, Q. Factors Influencing the Economics of Public Charging Infrastructures for EV—A Review. Renew. Sustain. Energy Rev. 2018, 94, 500–509. [Google Scholar] [CrossRef]
- Gielen, D.; Boshell, F.; Saygin, D.; Bazilian, M.D.; Wagner, N.; Gorini, R. The Role of Renewable Energy in the Global Energy Transformation. Energy Strategy Rev. 2019, 24, 38–50. [Google Scholar] [CrossRef]
- Martínez-Lao, J.; Montoya, F.G.; Montoya, M.G.; Manzano-Agugliaro, F. Electric Vehicles in Spain: An Overview of Charging Systems. Renew. Sustain. Energy Rev. 2017, 77, 970–983. [Google Scholar] [CrossRef]
Unstandardized Coefficients | Standardized Coefficients | T | Sig. | ||
---|---|---|---|---|---|
B | Std. Error | Beta | |||
−1.071 | 0.418 | −1.561 | −2.558 | 0.034 | |
0.197 | 0.052 | 2.328 | 3.815 | 0.005 |
Year | Passenger Vehicle Sales | EV Sales Forecast | LCL EV Sales Forecast | UCL EV Sales Forecast | Accumulated EV Forecast | Accumulated LCL EV Forecast | Accumulated UCL EV Forecast |
---|---|---|---|---|---|---|---|
2010 | 350,000 | −874 | −5656 | 3909 | −874 | −5656 | 3909 |
2011 | 360,000 | −1354 | −6285 | 3577 | −2228 | −11,941 | 7486 |
2012 | 670,000 | −1441 | −6507 | 3626 | −3668 | −18,448 | 11,112 |
2013 | 663,746 | −1134 | −6275 | 4008 | −4802 | −24,723 | 15,120 |
2014 | 411,402 | −433 | −5578 | 4712 | −5235 | −35,537 | 19,832 |
2015 | 356,063 | 661 | −4436 | 5758 | −4574 | −34,737 | 25,589 |
2016 | 328,053 | 2149 | −2899 | 7196 | −2425 | −37,636 | 32,785 |
2017 | 665,871 | 4030 | −1054 | 9114 | 1604 | −38,690 | 41,899 |
2018 | 729,709 | 6305 | 984 | 11,625 | 7909 | −37,706 | 53,524 |
2019 | 468,638 | 8973 | 3108 | 14,838 | 16,882 | −34,598 | 68,361 |
2020 | 343,494 | 12,035 | 5251 | 18,818 | 28,916 | −29,347 | 87,180 |
2021 | - | 15,490 | 7403 | 23,577 | 44,407 | −21,944 | 110,757 |
2022 | - | 19,339 | 9586 | 29,092 | 63,746 | −12,358 | 139,849 |
2023 | - | 23,582 | 11,831 | 35,332 | 87,327 | −527 | 175,181 |
2024 | - | 28,218 | 14,163 | 42,272 | 115,545 | 13,637 | 217,453 |
2025 | - | 33,247 | 16,602 | 49,893 | 148,792 | 30,239 | 267,346 |
2026 | - | 38,671 | 19,161 | 58,180 | 187,463 | 49,400 | 325,526 |
2027 | - | 44,487 | 21,850 | 67,125 | 231,950 | 71,250 | 392,650 |
2028 | - | 50,698 | 24,675 | 76,720 | 282,648 | 95,926 | 469,370 |
2029 | - | 57,302 | 27,641 | 86,962 | 339,950 | 123,567 | 556,332 |
2030 | - | 64,299 | 30,752 | 97,846 | 404,249 | 154,319 | 654,178 |
2031 | - | 71,690 | 34,009 | 109,371 | 475,939 | 188,328 | 763,549 |
2032 | - | 79,475 | 37,415 | 121,534 | 555,413 | 225,743 | 885,084 |
2033 | - | 87,653 | 40,971 | 134,335 | 643,066 | 266,714 | 1,019,419 |
2034 | - | 96,224 | 44,677 | 147,772 | 739,291 | 311,391 | 1,167,190 |
2035 | - | 105,190 | 48,536 | 161,843 | 844,480 | 359,927 | 1,329,034 |
2036 | - | 114,549 | 52,547 | 176,550 | 959,029 | 412,474 | 1,505,583 |
2037 | - | 124,301 | 56,711 | 191,890 | 1,083,330 | 469,186 | 1,697,474 |
2038 | - | 134,447 | 61,029 | 207,865 | 1,217,777 | 530,215 | 1,905,339 |
2039 | - | 144,986 | 65,500 | 224,472 | 1,362,763 | 595,715 | 2,129,811 |
2040 | - | 155,919 | 70,126 | 241,713 | 1,518,682 | 665,841 | 2,371,524 |
Distribution Transformer (150 kVA) | Primary Voltage | Secondary Voltage | Resistance (p.u.) | Reactance (p.u.) |
---|---|---|---|---|
24 kV | 400 V | 0.0067 | 0.0394 | |
Distribution cable (aluminum, 70 sqm) | Voltage | Length | Resistance (p.u.) | Reactance (p.u.) |
400 V | 500 m | 0.5414 | 0.2738 | |
EV load (1 unit) | Capacity | Range | Charging power | Charging time |
44.5 kWh | 337 km | 7.2 kW | 6.5 h | |
Residential load (1 unit) | Voltage | Phase | Current | |
400 V | 3 P-balanced | 30 A maximum |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wangsupphaphol, A.; Chaitusaney, S. Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand. Sustainability 2022, 14, 6053. https://doi.org/10.3390/su14106053
Wangsupphaphol A, Chaitusaney S. Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand. Sustainability. 2022; 14(10):6053. https://doi.org/10.3390/su14106053
Chicago/Turabian StyleWangsupphaphol, Aree, and Surachai Chaitusaney. 2022. "Subsidizing Residential Low Priority Smart Charging: A Power Management Strategy for Electric Vehicle in Thailand" Sustainability 14, no. 10: 6053. https://doi.org/10.3390/su14106053