Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (507)

Search Parameters:
Keywords = electric power load forecasting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 1141 KiB  
Article
Monthly Load Forecasting in a Region Experiencing Demand Growth: A Case Study of Texas
by Jeong-Hee Hong and Geun-Cheol Lee
Energies 2025, 18(15), 4135; https://doi.org/10.3390/en18154135 (registering DOI) - 4 Aug 2025
Abstract
In this study, we consider monthly load forecasting, which is an essential decision for energy infrastructure planning and investment. This study focuses on the Texas power grid, where electricity consumption has surged due to rising industrial activity and the increased construction of data [...] Read more.
In this study, we consider monthly load forecasting, which is an essential decision for energy infrastructure planning and investment. This study focuses on the Texas power grid, where electricity consumption has surged due to rising industrial activity and the increased construction of data centers driven by growing demand for AI. Based on an extensive exploratory data analysis, we identify key characteristics of monthly electricity demand in Texas, including an accelerating upward trend, strong seasonality, and temperature sensitivity. In response, we propose a regression-based forecasting model that incorporates a carefully designed set of input features, including a nonlinear trend, lagged demand variables, a seasonality-adjusted month variable, average temperature of a representative area, and calendar-based proxies for industrial activity. We adopt a rolling forecasting approach, generating 12-month-ahead forecasts for both 2023 and 2024 using monthly data from 2013 onward. Comparative experiments against benchmarks including Holt–Winters, SARIMA, Prophet, RNN, LSTM, Transformer, Random Forest, LightGBM, and XGBoost show that the proposed model achieves superior performance with a mean absolute percentage error of approximately 2%. The results indicate that a well-designed regression approach can effectively outperform even the latest machine learning methods in monthly load forecasting. Full article
Show Figures

Figure 1

19 pages, 4009 KiB  
Article
Cost Analysis and Optimization of Modern Power System Operations
by Ahto Pärl, Praveen Prakash Singh, Ivo Palu and Sulabh Sachan
Appl. Sci. 2025, 15(15), 8481; https://doi.org/10.3390/app15158481 (registering DOI) - 30 Jul 2025
Viewed by 166
Abstract
The reliable and economical operation of modern power systems is increasingly complex due to the integration of diverse energy sources and dynamic load patterns. A critical challenge is maintaining the balance between electricity supply and demand within various operational constraints. This study addresses [...] Read more.
The reliable and economical operation of modern power systems is increasingly complex due to the integration of diverse energy sources and dynamic load patterns. A critical challenge is maintaining the balance between electricity supply and demand within various operational constraints. This study addresses the economic scheduling of generation units using a Mixed Integer Programming (MIP) optimization model. Key constraints considered include reserve requirements, ramp rate limits, and minimum up/down time. Simulations are performed across multiple scenarios, including systems with spinning reserves, responsive demand, renewable energy integration, and energy storage systems. For each scenario, the optimal mix of generation resources is determined to meet a 24 h load forecast while minimizing operating costs. The results show that incorporating demand responsiveness and renewable resources enhances the economic efficiency, reliability, and flexibility of the power system. Full article
(This article belongs to the Special Issue New Insights into Power Systems)
Show Figures

Figure 1

14 pages, 2557 KiB  
Article
Enhancing Medium-Term Load Forecasting Accuracy in Post-Pandemic Tropical Regions: A Comparative Analysis of Polynomial Regression, Split Polynomial Regression, and LSTM Networks
by Agus Setiawan
Energies 2025, 18(15), 3999; https://doi.org/10.3390/en18153999 - 27 Jul 2025
Viewed by 274
Abstract
This research focuses on medium-term load forecasting in a tropical region post-pandemic. This study presents one of the first attempts to analyze medium-term forecasting using half-hourly resolution in the Java-Bali power system post-COVID-19 period. The dataset comprises load measurements recorded every 30 min [...] Read more.
This research focuses on medium-term load forecasting in a tropical region post-pandemic. This study presents one of the first attempts to analyze medium-term forecasting using half-hourly resolution in the Java-Bali power system post-COVID-19 period. The dataset comprises load measurements recorded every 30 min (48 data points per day) from 2014 to 2022. Three distinct methods, namely polynomial regression, split polynomial regression, and Long Short-Term Memory (LSTM) networks, were employed and compared to predict the electricity load demand. The analysis found that LSTM outperformed the other methods, exhibiting the lowest error rates with Mean Absolute Percentage Error (MAPE) at 3.86% and Root Mean Squared Error (RMSE) at 1247.93. Additionally, a consistent observation emerged, showing that all methods performed better in predicting load demand during nighttime hours (6 p.m. to 6 a.m.). The hypothesis is that data stability during nighttime, with fewer significant fluctuations, contributed to the improved prediction accuracy. These findings provide valuable insights for improving load forecasting in the post-pandemic tropical region and offer opportunities for enhancing power grid efficiency and reliability. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

29 pages, 9145 KiB  
Article
Ultra-Short-Term Forecasting-Based Optimization for Proactive Home Energy Management
by Siqi Liu, Zhiyuan Xie, Zhengwei Hu, Kaisa Zhang, Weidong Gao and Xuewen Liu
Energies 2025, 18(15), 3936; https://doi.org/10.3390/en18153936 - 23 Jul 2025
Viewed by 191
Abstract
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy [...] Read more.
With the increasing integration of renewable energy and smart technologies in residential energy systems, proactive household energy management (HEM) have become critical for reducing costs, enhancing grid stability, and achieving sustainability goals. This study proposes a ultra-short-term forecasting-driven proactive energy consumption optimization strategy that integrates advanced forecasting models with multi-objective scheduling algorithms. By leveraging deep learning techniques like Graph Attention Network (GAT) architectures, the system predicts ultra-short-term household load profiles with high accuracy, addressing the volatility of residential energy use. Then, based on the predicted data, a comprehensive consideration of electricity costs, user comfort, carbon emission pricing, and grid load balance indicators is undertaken. This study proposes an enhanced mixed-integer optimization algorithm to collaboratively optimize multiple objective functions, thereby refining appliance scheduling, energy storage utilization, and grid interaction. Case studies demonstrate that integrating photovoltaic (PV) power generation forecasting and load forecasting models into a home energy management system, and adjusting the original power usage schedule based on predicted PV output and water heater demand, can effectively reduce electricity costs and carbon emissions without compromising user engagement in optimization. This approach helps promote energy-saving and low-carbon electricity consumption habits among users. Full article
Show Figures

Figure 1

28 pages, 15254 KiB  
Article
Detailed Forecast for the Development of Electric Trucks and Tractor Units and Their Power Demand in Hamburg by 2050
by Edvard Avdevičius, Amra Jahic and Detlef Schulz
Energies 2025, 18(14), 3719; https://doi.org/10.3390/en18143719 - 14 Jul 2025
Viewed by 304
Abstract
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, [...] Read more.
The global urgency to mitigate climate change by reducing transport-related emissions drives the accelerated electrification of road freight transport. This paper presents a comprehensive meta-study forecasting the development and corresponding power demand of electric trucks and tractor units in Hamburg up to 2050, emphasizing the shift from conventional to electric vehicles. Utilizing historical registration data and existing commercial and institutional reports from 2007 to 2024, the analysis estimates future distributions of electric heavy-duty vehicles across Hamburg’s 103 city quarters. Distinct approaches are evaluated to explore potential heavy-duty vehicle distribution in the city, employing Mixed-Integer Linear Programming to quantify and minimize distribution uncertainties. Power demand forecasts at this detailed geographical level enable effective infrastructure planning and strategy development. The findings serve as a foundation for Hamburg’s transition to electric heavy-duty vehicles, ensuring a sustainable, efficient, and reliable energy supply aligned with the city’s growing electrification requirements. Full article
Show Figures

Figure 1

24 pages, 26672 KiB  
Article
Short-Term Electric Load Forecasting Using Deep Learning: A Case Study in Greece with RNN, LSTM, and GRU Networks
by Vasileios Zelios, Paris Mastorocostas, George Kandilogiannakis, Anastasios Kesidis, Panagiota Tselenti and Athanasios Voulodimos
Electronics 2025, 14(14), 2820; https://doi.org/10.3390/electronics14142820 - 14 Jul 2025
Viewed by 580
Abstract
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network [...] Read more.
The increasing volatility in energy markets, particularly in Greece where electricity costs reached a peak of 236 EUR/MWh in 2022, underscores the urgent need for accurate short-term load forecasting models. In this study, the application of deep learning techniques, specifically Recurrent Neural Network (RNN), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU), to forecast hourly electricity demand is investigated. The proposed models were trained on historical load data from the Greek power system spanning the years 2013 to 2016. Various deep learning architectures were implemented and their forecasting performances using statistical metrics such as Root Mean Squared Error (RMSE) and Mean Absolute Percentage Error (MAPE) were evaluated. The experiments utilized multiple time horizons (1 h, 2 h, 24 h) and input sequence lengths (6 h to 168 h) to assess model accuracy and robustness. The best performing GRU model achieved an RMSE of 83.2 MWh and a MAPE of 1.17% for 1 h ahead forecasting, outperforming both LSTM and RNN in terms of both accuracy and computational efficiency. The predicted values were integrated into a dynamic Power BI dashboard, to enable real-time visualization and decision support. These findings demonstrate the potential of deep learning architectures, particularly GRUs, for operational load forecasting and their applicability to intelligent energy systems in a market-strained environment. Full article
Show Figures

Figure 1

18 pages, 1685 KiB  
Article
Forecasting Residential EV Charging Pile Capacity in Urban Power Systems: A Cointegration–BiLSTM Hybrid Approach
by Siqiong Dai, Liang Yuan, Jiayi Zhong, Xubin Liu and Zhangjie Liu
Sustainability 2025, 17(14), 6356; https://doi.org/10.3390/su17146356 - 11 Jul 2025
Cited by 1 | Viewed by 241
Abstract
The rapid proliferation of electric vehicles necessitates accurate forecasting of charging pile capacity for urban power system planning, yet existing methods for medium- to long-term prediction lack effective mechanisms to capture complex multi-factor relationships. To address this gap, a hybrid cointegration–BiLSTM framework is [...] Read more.
The rapid proliferation of electric vehicles necessitates accurate forecasting of charging pile capacity for urban power system planning, yet existing methods for medium- to long-term prediction lack effective mechanisms to capture complex multi-factor relationships. To address this gap, a hybrid cointegration–BiLSTM framework is proposed for medium- to long-term load forecasting. Cointegration theory is leveraged to identify long-term equilibrium relationships between EV charging capacity and socioeconomic factors, effectively mitigating spurious regression risks. The extracted cointegration features and error correction terms are integrated into a bidirectional LSTM network to capture complex temporal dependencies. Validation using data from 14 cities in Hunan Province demonstrated that cointegration analysis surpassed linear correlation methods in feature preprocessing effectiveness, while the proposed model achieved enhanced forecasting accuracy relative to conventional temporal convolutional networks, support vector machines, and gated recurrent units. Furthermore, a 49% reduction in MAE and RMSE was observed when ECT-enhanced features were adopted instead of unenhanced groups, confirming the critical role of comprehensive feature engineering. Compared with the GRU baseline, the BiLSTM model yielded a 26% decrease in MAE and a 24% decrease in RMSE. The robustness of the model was confirmed through five-fold cross-validation, with ECT-enhanced features yielding optimal results. This approach provides a scientifically grounded framework for EV charging infrastructure planning, with potential extensions to photovoltaic capacity forecasting. Full article
Show Figures

Figure 1

18 pages, 484 KiB  
Article
Short-Term Forecasting of Total Aggregate Demand in Uncontrolled Residential Charging with Electric Vehicles Using Artificial Neural Networks
by Giovanni Panegossi Formaggio, Mauro de Souza Tonelli-Neto, Danieli Biagi Vilela and Anna Diva Plasencia Lotufo
Inventions 2025, 10(4), 54; https://doi.org/10.3390/inventions10040054 - 8 Jul 2025
Viewed by 236
Abstract
Electric vehicles are gaining attention and being adopted by new users every day. Their widespread use creates a new scenario and challenge for the energy system due to the high energy storage demands they generate. Forecasting these loads using artificial neural networks has [...] Read more.
Electric vehicles are gaining attention and being adopted by new users every day. Their widespread use creates a new scenario and challenge for the energy system due to the high energy storage demands they generate. Forecasting these loads using artificial neural networks has proven to be an efficient way of solving time series problems. This study employs a multilayer perceptron network with backpropagation training and Bayesian regularisation to enhance generalisation and minimise overfitting errors. The research aggregates real consumption data from 200 households and 348 electric vehicles. The developed method was validated using MAPE, which resulted in errors below 6%. Short-term forecasts were made across the four seasons, predicting the total aggregate demand of households and vehicles for the next 24 h. The methodology produced significant and relevant results for this problem using hybrid training, a few-neuron architecture, deep learning, fast convergence, and low computational cost, with potential for real-world application. The results support the electrical power system by optimising these loads, reducing costs and energy generation, and preparing a new scenario for EV penetration rates. Full article
Show Figures

Figure 1

22 pages, 3393 KiB  
Article
Stochastic Operation of BESS and MVDC Link in Distribution Networks Under Uncertainty
by Changhee Han, Sungyoon Song and Jaehyeong Lee
Electronics 2025, 14(13), 2737; https://doi.org/10.3390/electronics14132737 - 7 Jul 2025
Viewed by 241
Abstract
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and [...] Read more.
This study introduces a stochastic optimization framework designed to effectively manage power flows in flexible medium-voltage DC (MVDC) link systems within distribution networks (DNs). The proposed approach operates in coordination with a battery energy storage system (BESS) to enhance the overall efficiency and reliability of the power distribution. Given the inherent uncertain characteristics associated with forecasting errors in photovoltaic (PV) generation and load demand, the study employs a distributionally robust chance-constrained optimization technique to mitigate the potential operational risks. To achieve a cooperative and optimized control strategy for MVDC link systems and BESS, the proposed method incorporates a stochastic relaxation of the reliability constraints on bus voltages. By strategically adjusting the conservativeness of these constraints, the proposed framework seeks to maximize the cost-effectiveness of DN operations. The numerical simulations demonstrate that relaxing the strict reliability constraints enables the distribution system operator to optimize the electricity imports more economically, thereby improving the overall financial performance while maintaining system reliability. Through case studies, we showed that the proposed method improves the operational cost by up to 44.7% while maintaining 96.83% bus voltage reliability under PV and load power output uncertainty. Full article
(This article belongs to the Special Issue Advanced Control Techniques for Power Converter and Drives)
Show Figures

Figure 1

22 pages, 3925 KiB  
Article
Optimized Multiple Regression Prediction Strategies with Applications
by Yiming Zhao, Shu-Chuan Chu, Ali Riza Yildiz and Jeng-Shyang Pan
Symmetry 2025, 17(7), 1085; https://doi.org/10.3390/sym17071085 - 7 Jul 2025
Viewed by 365
Abstract
As a classical statistical method, multiple regression is widely used for forecasting tasks in power, medicine, finance, and other fields. The rise of machine learning has led to the adoption of neural networks, particularly Long Short-Term Memory (LSTM) models, for handling complex forecasting [...] Read more.
As a classical statistical method, multiple regression is widely used for forecasting tasks in power, medicine, finance, and other fields. The rise of machine learning has led to the adoption of neural networks, particularly Long Short-Term Memory (LSTM) models, for handling complex forecasting problems, owing to their strong ability to capture temporal dependencies in sequential data. Nevertheless, the performance of LSTM models is highly sensitive to hyperparameter configuration. Traditional manual tuning methods suffer from inefficiency, excessive reliance on expert experience, and poor generalization. Aiming to address the challenges of complex hyperparameter spaces and the limitations of manual adjustment, an enhanced sparrow search algorithm (ISSA) with adaptive parameter configuration was developed for LSTM-based multivariate regression frameworks, where systematic optimization of hidden layer dimensionality, learning rate scheduling, and iterative training thresholds enhances its model generalization capability. In terms of SSA improvement, first, the population is initialized by the reverse learning strategy to increase the diversity of the population. Second, the mechanism for updating the positions of producer sparrows is improved, and different update formulas are selected based on the sizes of random numbers to avoid convergence to the origin and improve search flexibility. Then, the step factor is dynamically adjusted to improve the accuracy of the solution. To improve the algorithm’s global search capability and escape local optima, the sparrow search algorithm’s position update mechanism integrates Lévy flight for detection and early warning. Experimental evaluations using benchmark functions from the CEC2005 test set demonstrated that the ISSA outperforms PSO, the SSA, and other algorithms in optimization performance. Further validation with power load and real estate datasets revealed that the ISSA-LSTM model achieves superior prediction accuracy compared to existing approaches, achieving an RMSE of 83.102 and an R2 of 0.550 during electric load forecasting and an RMSE of 18.822 and an R2 of 0.522 during real estate price prediction. Future research will explore the integration of the ISSA with alternative neural architectures such as GRUs and Transformers to assess its flexibility and effectiveness across different sequence modeling paradigms. Full article
(This article belongs to the Section Computer)
Show Figures

Figure 1

18 pages, 2763 KiB  
Article
A Multi-Timescale Operational Strategy for Active Distribution Networks with Load Forecasting Integration
by Dongli Jia, Zhaoying Ren, Keyan Liu, Kaiyuan He and Zukun Li
Energies 2025, 18(13), 3567; https://doi.org/10.3390/en18133567 - 7 Jul 2025
Viewed by 270
Abstract
To enhance the operational stability of distribution networks during peak periods, this paper proposes a multi-timescale operational method considering load forecasting impacts. Firstly, the Crested Porcupine Optimizer (CPO) is employed to optimize the hyperparameters of long short-term memory (LSTM) networks for an accurate [...] Read more.
To enhance the operational stability of distribution networks during peak periods, this paper proposes a multi-timescale operational method considering load forecasting impacts. Firstly, the Crested Porcupine Optimizer (CPO) is employed to optimize the hyperparameters of long short-term memory (LSTM) networks for an accurate prediction of the next-day load curves. Building on this foundation, a multi-timescale optimization strategy is developed: During the day-ahead operation phase, a conservation voltage reduction (CVR)-based regulation plan is formulated to coordinate the control of on-load tap changers (OLTCs) and distributed resources, alleviating peak-shaving pressure on the upstream grid. In the intraday optimization phase, real-time adjustments of OLTC tap positions are implemented to address potential voltage violations, accompanied by an electrical distance-based control strategy for flexible adjustable resources, enabling rapid voltage recovery and enhancing system stability and robustness. Finally, a modified IEEE-33 node system is adopted to verify the effectiveness of the proposed multi-timescale operational method. The method demonstrates a load forecasting accuracy of 93.22%, achieves a reduction of 1.906% in load power demand, and enables timely voltage regulation during intraday limit violations, effectively maintaining grid operational stability. Full article
Show Figures

Figure 1

16 pages, 493 KiB  
Article
Novel Methodology for Determining Necessary and Sufficient Power in Integrated Power Systems Based on the Forecasted Volumes of Electricity Production
by Artur Zaporozhets, Vitalii Babak, Mykhailo Kulyk and Viktor Denysov
Electricity 2025, 6(3), 41; https://doi.org/10.3390/electricity6030041 - 4 Jul 2025
Viewed by 283
Abstract
This study presents a novel methodology for determining zonal electricity generation and capacity requirements corresponding to forecasted annual production in an integrated power system (IPS). The proposed model combines the statistical analysis of historical daily load patterns with a calibration technique to translate [...] Read more.
This study presents a novel methodology for determining zonal electricity generation and capacity requirements corresponding to forecasted annual production in an integrated power system (IPS). The proposed model combines the statistical analysis of historical daily load patterns with a calibration technique to translate forecast total demand into zonal powers (base, semi-peak and peak). A representative reference daily electrical load graph (ELG) is selected from retrospective data using least squares criteria, and a calibration factor α = Wx/Wie scales its zonal outputs to match the forecasted annual generation Wx. The innovation lies in this combination of historical ELG identification and calibration for accurate zonal power prediction. Applying the model to Ukrainian IPS data yields high accuracy: a zonal power error below 1.02% and a generation error below 0.39%. Key contributions include explicitly stating the research questions and hypotheses, providing a schematic procedural description and discussing model limitations (e.g., treatment of renewable variability and omission of meteorological/astronomical factors). Future work is outlined to incorporate unforeseen factors (e.g., post-war demand shifts, electric vehicle adoption) into the forecasting framework. Full article
Show Figures

Figure 1

27 pages, 2290 KiB  
Article
Energy Management System for Renewable Energy and Electric Vehicle-Based Industries Using Digital Twins: A Waste Management Industry Case Study
by Andrés Bernabeu-Santisteban, Andres C. Henao-Muñoz, Gerard Borrego-Orpinell, Francisco Díaz-González, Daniel Heredero-Peris and Lluís Trilla
Appl. Sci. 2025, 15(13), 7351; https://doi.org/10.3390/app15137351 - 30 Jun 2025
Viewed by 371
Abstract
The integration of renewable energy sources, battery energy storage, and electric vehicles into industrial systems unlocks new opportunities for reducing emissions and improving sustainability. However, the coordination and management of these new technologies also pose new challenges due to complex interactions. This paper [...] Read more.
The integration of renewable energy sources, battery energy storage, and electric vehicles into industrial systems unlocks new opportunities for reducing emissions and improving sustainability. However, the coordination and management of these new technologies also pose new challenges due to complex interactions. This paper proposes a methodology for designing a holistic energy management system, based on advanced digital twins and optimization techniques, to minimize the cost of supplying industry loads and electric vehicles using local renewable energy sources, second-life battery energy storage systems, and grid power. The digital twins represent and forecast the principal energy assets, providing variables necessary for optimizers, such as photovoltaic generation, the state of charge and state of health of electric vehicles and stationary batteries, and industry power demand. Furthermore, a two-layer optimization framework based on mixed-integer linear programming is proposed. The optimization aims to minimize the cost of purchased energy from the grid, local second-life battery operation, and electric vehicle fleet charging. The paper details the mathematical fundamentals behind digital twins and optimizers. Finally, a real-world case study is used to demonstrate the operation of the proposed approach within the context of the waste collection and management industry. The study confirms the effectiveness of digital twins for forecasting and performance analysis in complex energy systems. Furthermore, the optimization strategies reduce the operational costs by 1.3%, compared to the actual industry procedure, resulting in daily savings of EUR 24.2 through the efficient scheduling of electric vehicle fleet charging. Full article
(This article belongs to the Section Applied Industrial Technologies)
Show Figures

Figure 1

34 pages, 9572 KiB  
Article
Data Siting and Capacity Optimization of Photovoltaic–Storage–Charging Stations Considering Spatiotemporal Charging Demand
by Dandan Hu, Doudou Yang and Zhi-Wei Liu
Energies 2025, 18(13), 3306; https://doi.org/10.3390/en18133306 - 24 Jun 2025
Viewed by 318
Abstract
To address the charging demand challenges brought about by the widespread adoption of electric vehicles, integrated photovoltaic–storage–charging stations (PSCSs) enhance energy utilization efficiency and economic viability by combining photovoltaic (PV) power generation with an energy storage system (ESS). This paper proposes a two-stage [...] Read more.
To address the charging demand challenges brought about by the widespread adoption of electric vehicles, integrated photovoltaic–storage–charging stations (PSCSs) enhance energy utilization efficiency and economic viability by combining photovoltaic (PV) power generation with an energy storage system (ESS). This paper proposes a two-stage data-driven holistic optimization model for the siting and capacity allocation of charging stations. In the first stage, the location and number of charging piles are determined by analyzing the spatiotemporal distribution characteristics of charging demand using ST-DBSCAN and K-means clustering methods. In the second stage, charging load results from the first stage, photovoltaic generation forecast, and electricity price are jointly considered to minimize the operator’s total cost determined by the capacity of PV and ESS, which is solved by the genetic algorithm. To validate the model, we leverage large-scale GPS trajectory data from electric taxis in Shenzhen as a data-driven source of spatiotemporal charging demand. The research results indicate that the spatiotemporal distribution characteristics of different charging demands determine whether a charging station can become a PSCS and the optimal capacity of PV and battery within the station, rather than a fixed configuration. Stations with high demand volatility can achieve a balance between economic benefits and user satisfaction by appropriately lowering the peak instantaneous satisfaction rate (set between 70 and 80%). Full article
Show Figures

Figure 1

22 pages, 2320 KiB  
Article
Two-Stage Coordinated Operation Mechanism for Virtual Power Plant Clusters Based on Energy Interaction
by Xingang Yang, Lei Qi, Di Wang and Qian Ai
Electronics 2025, 14(12), 2484; https://doi.org/10.3390/electronics14122484 - 18 Jun 2025
Viewed by 301
Abstract
As an essential platform for aggregating and coordinating distributed energy resources (DERs), the virtual power plant (VPP) has attracted widespread attention in recent years. With the increasing scale of VPPs, energy interaction and sharing among VPP clusters (VPPCs) have become key approaches to [...] Read more.
As an essential platform for aggregating and coordinating distributed energy resources (DERs), the virtual power plant (VPP) has attracted widespread attention in recent years. With the increasing scale of VPPs, energy interaction and sharing among VPP clusters (VPPCs) have become key approaches to improving energy utilization efficiency and reducing operational costs. Therefore, studying the coordinated operation mechanism of VPPCs is of great significance. This paper proposes a two-stage coordinated operation model for VPPCs based on energy interaction to enhance the overall economic performance and coordination of the cluster. In the day-ahead stage, a cooperative operation model based on Nash bargaining theory is constructed. The inherently non-convex and nonlinear problem is decomposed into a cluster-level benefit maximization subproblem and a benefit allocation subproblem. The Alternating Direction Method of Multipliers (ADMM) is employed to achieve distributed optimization, ensuring both the efficiency of coordination and the privacy and decision independence of each VPP. In the intra-day stage, to address the uncertainty in renewable generation and load demand, a real-time pricing mechanism based on the supply–demand ratio is designed. Each VPP performs short-term energy forecasting and submits real-time supply–demand information to the coordination center, which dynamically determines the price for the next trading interval according to the reported imbalance. This pricing mechanism facilitates real-time electricity sharing among VPPs. Finally, numerical case studies validate the effectiveness and practical value of the proposed model in improving both operational efficiency and fairness. Full article
Show Figures

Figure 1

Back to TopTop