Optimized Multiple Regression Prediction Strategies with Applications
Abstract
1. Introduction
2. Related Works
2.1. Sparrow Search Algorithm
2.2. Long Short-Term Memory Neural Network
3. Improved Sparrow Search Algorithm Strategy
3.1. Oppositional Learning Strategy
3.2. Producer Anti-Origin Convergence Strategy
3.3. Lévy Flight Strategy
3.4. Step-Size Factor Adjustment Strategy
3.5. The Pseudo-Code of the ISSA
Algorithm 1. The pseudo-code of the ISSA. |
Input: The population size (n), the number of discoverers (PD), the number of followers (SD), the early-warning value (R2), the safety threshold (ST), and the maximum number of iterations (T). Output: The location of a sparrow and its fitness value. 1: Initialize the population using the oppositional learning strategy. 2: Calculate the fitness value of each sparrow and determine the optimal and worst individuals in the current population. 3: While(t < T) 4: for i = 1:PD 5: Update the position of the i-th sparrow according to Equation (14) (update the positions of the discoverers) 6: end for 7: for i = PD + 1:n 8: Update the position of the i-th sparrow according to Equation (4) (update the positions of the followers) 9: end for 10: for l = 1:SD 11: Update the position of the l-th sparrow according to Equations (15)–(18) (update the positions of the scouts); |
12: end for 13: Obtain the updated positions of all sparrows; 14: If the fitness value corresponding to the new updated position is higher than that of the current position, update the current position; 15: t = t + 1; 16: end while 17: Return the objective function value. |
4. Case Study
4.1. Parameter Settings
4.2. Comparative Algorithm Analysis
5. Multiple Regression Prediction Based on ISSA-LSTM
5.1. Dataset Information
5.2. ISSA-LSTM Load Forecasting Model
5.3. Model Parameter Settings and Evaluation Indicators
5.4. Experimental Results and Analysis of Multiple Regression Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bharanidharan, N.; Rajaguru, H. Improved chicken swarm optimization to classify dementia MRI images using a novel controlled randomness optimization algorithm. Int. J. Imaging Syst. Technol. 2020, 30, 605–620. [Google Scholar] [CrossRef]
- Hu, H.; Shan, W.; Chen, J.; Xing, L.; Heidari, A.A.; Chen, H.; He, X.; Wang, M. Dynamic individual selection and crossover boosted forensic-based investigation algorithm for global optimization and feature selection. J. Bionic Eng. 2023, 20, 2416–2442. [Google Scholar] [CrossRef]
- Shalamov, V.; Filchenkov, A.; Shalyto, A. Heuristic and metaheuristic solutions of pickup and delivery problem for self-driving taxi routing. Evol. Syst. 2019, 10, 3–11. [Google Scholar] [CrossRef]
- Baghdadi, N.A.; Malki, A.; Abdelaliem, S.F.; Balaha, H.M.; Badawy, M.; Elhosseini, M. An automated diagnosis and classification of COVID-19 from chest CT images using a transfer learning—Based convolutional neural network. Comput. Biol. Med. 2022, 144, 105383. [Google Scholar] [CrossRef] [PubMed]
- Daniel, E.; Anitha, J.; Kamaleshwaran, K.K.; Rani, I. Optimum spectrum mask based medical image fusion using Gray Wolf Optimization. Biomed. Signal Process. Control 2017, 34, 36–43. [Google Scholar] [CrossRef]
- Chopra, N.; Ansari, M.M. Golden jackal optimization: A novel nature-inspired optimizer for engineering applications. Expert Syst. Appl. 2022, 198, 116924. [Google Scholar] [CrossRef]
- Lorestani, A.; Gharehpetian, G.B.; Nazari, M.H. Optimal sizing and techno-economic analysis of energy-and cost-efficient standalone multi-carrier microgrid. Energy 2019, 178, 751–764. [Google Scholar] [CrossRef]
- Ma, G.; Wang, Z.; Liu, W.; Fang, J.; Zhang, Y.; Ding, H.; Yuan, Y. Estimating the state of health for lithium-ion batteries: A particle swarm optimization-assisted deep domain adaptation approach. IEEE/CAA J. Autom. Sin. 2023, 1, 1530–1543. [Google Scholar] [CrossRef]
- Mohanty, S.; Subudhi, B.; Ray, P.K. A grey wolf-assisted perturb & observe MPPT algorithm for a PV system. IEEE Trans. Energy Convers. 2017, 32, 340–347. [Google Scholar]
- Singh, G.; Singh, A. A hybrid algorithm using particle swarm optimization for solving transportation problem. Neural Comput. Appl. 2020, 32, 11699–11716. [Google Scholar] [CrossRef]
- Bredael, D.; Vanhoucke, M. A genetic algorithm with resource buffers for the resource constrained multi-project scheduling problem. Eur. J. Oper. Res. 2024, 315, 19–34. [Google Scholar] [CrossRef]
- Kennedy, J.; Eberhart, R. Particle swarm optimization. In Proceedings of the ICNN’95-International Conference on Neural Networks, Perth, WA, Australia, 27 November–1 December 1995; pp. 1942–1948. [Google Scholar]
- Dorigo, M.; Birattari, M.; Stutzle, T. Ant colony optimization. IEEE Comput. Intell. Mag. 2007, 1, 28–39. [Google Scholar] [CrossRef]
- Mirjalili, S.; Lewis, A. The whale optimization algorithm. Adv. Eng. Softw. 2016, 95, 51–67. [Google Scholar] [CrossRef]
- Mirjalili, S.; Mirjalili, S.M.; Lewis, A. Grey wolf optimizer. Adv. Eng. Softw. 2014, 69, 46–61. [Google Scholar] [CrossRef]
- Heidari, A.A.; Mirjalili, S.; Faris, H.; Aljarah, I.; Mafarja, M.; Chen, H. Harris hawks optimization: Algorithm and applications. Future Gener. Comput. Syst. 2019, 97, 849–872. [Google Scholar] [CrossRef]
- Storn, R.; Price, K. Differential evolution—A simple and efficient heuristic for global optimization over continuous spaces. J. Glob. Optim. 1997, 11, 341–359. [Google Scholar] [CrossRef]
- Yang, X.S.; He, X. Bat algorithm: Literature review and applications. Int. J. Bio-Inspired Comput. 2013, 5, 141–149. [Google Scholar] [CrossRef]
- Chu, S.C.; Wang, T.T.; Yildiz, A.R.; Pan, J.S. Ship rescue optimization: A new metaheuristic algorithm for solving engineering problems. J. Internet Technol. 2024, 25, 61–78. [Google Scholar]
- Pan, J.S.; Fu, Z.; Hu, C.C.; Tsai, P.W.; Chu, S.C. Rafflesia optimization algorithm applied in the logistics distribution centers location problem. J. Internet Technol. 2022, 23, 1541–1555. [Google Scholar]
- Hamad, R.K.; Rashid, T.A. GOOSE algorithm: A powerful optimization tool for real-world engineering challenges and beyond. Evol. Syst. 2024, 15, 1249–1274. [Google Scholar] [CrossRef]
- Xue, J.; Shen, B. A novel swarm intelligence optimization approach: Sparrow search algorithm. Syst. Sci. Control Eng. 2020, 8, 22–34. [Google Scholar] [CrossRef]
- Ouyang, C.T.; Zhu, D.L.; Qiu, Y.X. Improved sparrow search algorithm based on clustering algorithm. Comput. Simul. 2022, 39, 392–397. [Google Scholar]
- Su, Y.Y.; Wang, S.X. Adaptive hybrid strategy sparrow search algorithm. Comput. Eng. Appl. 2023, 59, 75–85. [Google Scholar]
- Yan, S.; Liu, W.; Yang, P.; Wu, F.; Yan, Z. Multi group sparrow search algorithm based on k-means clustering. J. Beijing Univ. Aeronaut. Astronaut. 2022, 50, 508–518. [Google Scholar]
- Huang, H.X.; Zhang, G.Y.; Chen, S.Y. WOA based on chaotic weight and elite guidance. Transducer Microsyst. Technol. 2020, 39, 113–116. [Google Scholar]
- Licht, M.H. Multiple regression and correlation. In Reading and Understanding Multivariate Statistics; Grimm, L.G., Yarnold, P.R., Eds.; American Psychological Association: Washington, DC, USA, 1995; pp. 19–64. [Google Scholar]
- Knofczynski, G.T.; Mundfrom, D. Sample sizes when using multiple linear regression for prediction. Educ. Psychol. Meas. 2008, 68, 431–442. [Google Scholar] [CrossRef]
- Zhang, D.; Shen, D. Alzheimer’s Disease Neuroimaging Initiative, Multi-modal multi-task learning for joint prediction of multiple regression and classification variables in Alzheimer’s disease. NeuroImage 2012, 59, 895–907. [Google Scholar] [CrossRef]
- Heim, C.; Newport, D.J.; Wagner, D.; Wilcox, M.M.; Miller, A.H.; Nemeroff, C.B. The role of early adverse experience and adulthood stress in the prediction of neuroendocrine stress reactivity in women: A multiple regression analysis. Depress. Anxiety 2002, 15, 117–125. [Google Scholar] [CrossRef]
- Chu, C.W.; Zhang, G.P. A comparative study of linear and nonlinear models for aggregate retail sales forecasting. Int. J. Prod. Econ. 2003, 86, 217–231. [Google Scholar] [CrossRef]
- Acharya, U.R.; Oh, S.L.; Hagiwara, Y.; Tian, J.H.; Adam, M.; Gertych, A.; Tan, R.S. A deep convolutional neural network model to classify heartbeats. Comput. Biol. Med. 2017, 89, 389–396. [Google Scholar] [CrossRef]
- Xue, Y.; Onzo, B.M.; Mansour, R.F.; Su, S. Deep Convolutional Neural Network Approach for COVID-19 Detection. Comput. Syst. Sci. Eng. 2022, 42, 201–211. [Google Scholar] [CrossRef]
- Kim, T.Y.; Cho, S.B. Predicting residential energy consumption using CNN-LSTM neural networks. Energy 2019, 182, 72–81. [Google Scholar] [CrossRef]
- Sun, Y.G.; Liu, K.J. Failure rate of avionics system forecasting based on PSO-LSTM network. Aeronaut. Sci. Technol. 2021, 32, 17–22. [Google Scholar]
- Peng, L.; Liu, S.; Liu, R.; Wang, L. Effective long short-term memory with differential evolution algorithm for electricity price prediction. Energy 2018, 162, 1301–1314. [Google Scholar] [CrossRef]
- Pal, R.; Sekh, A.A.; Kar, S.; Prasad, D.K. Neural network based country wise risk prediction of COVID-19. Appl. Sci. 2020, 10, 6448. [Google Scholar] [CrossRef]
- Yan, B.; Peng, H.; Fu, J.; Wang, D.; Lu, H. Learning Spatio-emporal Transformer for Visual Tracking. In Proceedings of the IEEE/CVF International Conference on Computer Vision, Montreal, QC, Canada, 11–17 October 2021; pp. 10448–10457. [Google Scholar]
- Hochreter, S.; Schmidhuber, R. Long short-term memory. Neural Comput. 1997, 9, 1735–1780. [Google Scholar] [CrossRef]
- Tizhoosh, H.R. Opposition-based learning: A new scheme for machine intelligence. In Proceedings of the International Conference on Computational Intelligence for Modelling, Control and Automation, and International Conference on Intelligent Agents, Web Technologies and Internet Commerce, Vienna, Austria, 28–30 November 2005; pp. 695–701. [Google Scholar]
- Reynolds, A. Liberating Lévy walk research from the shackles of optimal foraging. Phys. Life Rev. 2015, 14, 59–83. [Google Scholar] [CrossRef]
- Iacca, G.; Junior, V.C.D.S.; Melo, V.V.D. An improved Jaya optimization algorithm with Lévy flight. Expert Syst. Appl. 2020, 165, 113902. [Google Scholar] [CrossRef]
- Gao, L.F.; Rong, X.J. Improved YSGA algorithm combining declining strategy and Fuch chaotic mechanism. J. Front. Comput. Sci. Technol. 2021, 15, 564–576. [Google Scholar]
- Ordieres, J.; Vergara, E.; Capuz, R.; Salazar, R. Neural network prediction model for fine particulate matter (PM2. 5) on the US–Mexico border in El Paso (Texas) and Ciudad Juárez (Chihuahua). Environ. Model. Softw. 2005, 20, 547–559. [Google Scholar] [CrossRef]
- Lin, S.L.; Huang, C.F.; Liou, M.H.; Chen, C.Y. Improving Histogram-based Reversible Information Hiding by an Optimal Weight-based Prediction Scheme. J. Inf. Hiding Multimed. Signal Process. 2013, 4, 19–33. [Google Scholar]
- Pan, J.-S.; Wang, W.; Chu, S.-C.; Shao, Z.-Y.; Yang, H.-M. LSTM Neural Network with Parallel Swarm Optimization Algorithm for Multiple Regression Prediction. J. Internet Technol. 2024, 25, 1035–1049. [Google Scholar] [CrossRef]
Function | Function Name | Type | Range | Optimal Value |
---|---|---|---|---|
F1 | Sphere | Unimodal | [−100, 100] | 0 |
F2 | Schwefel 1.2 | Unimodal | [−100, 100] | 0 |
F3 | Schwefel 2.21 | Unimodal | [−100, 100] | 0 |
F4 | Generalized Rosenbrock | Multimodal | [−30, 30] | 0 |
F5 | Quartic with Noise | Multimodal | [−1.28, 1.28] | 0 |
F6 | Schwefel 2.26 | Multimodal | [−500, 500] | −12,569.5 |
F7 | Shekel’s Foxholes | Multimodal | [−65.536, 65.536] | 1 |
F8 | Shekel’s Family(A) | Composite | [0, 10] | −10 |
F9 | Shekel’s Family(B) | Composite | [0, 10] | −10 |
F10 | Shekel’s Family(C) | Composite | [0, 10] | −10 |
Function | Algorithm | Best | Mean | Std |
---|---|---|---|---|
F1 | GWO | 2.14 × 10−29 | 2.35 × 10−27 | 5.84 × 10−27 |
PSO | −4.79 × 10−0 | −3.02 × 10−1 | 2.67 × 100 | |
DE | 3.98 × 10−4 | 1.54 × 101 | 5.72 × 101 | |
GOOSE | 5.22 × 10−3 | 1.83 × 101 | 5.37 × 101 | |
GA | 1.85 × 104 | 2.61 × 104 | 3.32 × 103 | |
SSA | 0 | 1.54 × 10−67 | 8.38 × 10−67 | |
SSA1 | 0 | 1.42 × 10−70 | 7.79 × 10−70 | |
ISSA | 0 | 0 | 0 | |
F2 | GWO | 2.14 × 10−29 | 2.35 × 10−27 | 5.84 × 10−27 |
PSO | −4.79 × 100 | −3.02 × 10−1 | 2.67 × 100 | |
DE | 3.98 × 10−4 | 1.54 × 101 | 5.72 × 101 | |
GOOSE | 5.22 × 10−3 | 1.83 × 101 | 5.37 × 101 | |
GA | 1.85 × 104 | 2.61 × 104 | 3.32 × 103 | |
SSA | −1.05 × 101 | −9.45 × 100 | 2.20 × 100 | |
SSA1 | 0 | 1.42 × 10−70 | 7.79 × 10−70 | |
ISSA | 0 | 0 | 0 | |
F3 | GWO | 8.94 × 10−8 | 7.95 × 10−7 | 1.02 × 10−6 |
PSO | −2.04 × 101 | 1.55 × 101 | 1.29 × 101 | |
DE | 1.40 × 101 | 2.49 × 101 | 5.89 × 100 | |
GOOSE | 1.18 × 10−1 | 2.28 × 101 | 2.16 × 101 | |
GA | 6.22 × 101 | 7.04 × 101 | 3.91 × 100 | |
SSA | 0 | 4.85 × 10−33 | 2.66 × 10−32 | |
SSA1 | 0 | 5.93 × 10−34 | 3.24 × 10−33 | |
ISSA | 0 | 7.65 × 10−244 | 0 | |
F4 | GWO | 2.58 × 101 | 2.70 × 101 | 6.61 × 10-1 |
PSO | −1.47 × 101 | 1.47 × 100 | 9.04 × 100 | |
DE | 1.13 × 102 | 2.77 × 103 | 7.00 × 103 | |
GOOSE | 2.55 × 101 | 1.90 × 102 | 4.24 × 102 | |
GA | 8.89 × 106 | 2.13 × 107 | 5.85 × 106 | |
SSA | 4.84 × 10−9 | 4.88 × 10−5 | 8.02 × 10−5 | |
SSA1 | 1.05 × 10−8 | 2.20 × 10−4 | 4.02 × 10−4 | |
ISSA | 5.92 × 10−14 | 7.16 × 10−6 | 3.35 × 10−5 | |
F5 | GWO | 3.31 × 10−4 | 1.93 × 10−3 | 9.97 × 10−4 |
PSO | −1.48 × 10−1 | 2.90 × 10−2 | 1.13 × 10−1 | |
DE | 3.33 × 10−2 | 9.47 × 10−2 | 4.41 × 10−2 | |
GOOSE | 4.90 × 10−2 | 1.24 × 10−1 | 5.70 × 10−2 | |
GA | 3.39 × 100 | 1.05 × 101 | 3.95 × 100 | |
SSA | 3.50 × 10−5 | 4.62 × 10−4 | 4.17 × 10−4 | |
SSA1 | 2.24 × 10−5 | 3.91 × 10−4 | 2.74 × 10−4 | |
ISSA | 2.21 × 10−5 | 2.45 × 10−4 | 2.09 × 10−4 | |
F6 | GWO | −7.45 × 103 | −5.96 × 103 | 9.88 × 102 |
PSO | −5.00 × 102 | 2.04 × 101 | 2.56 × 102 | |
DE | −9.76 × 103 | −7.36 × 103 | 1.29 × 103 | |
GOOSE | −8.18 × 103 | −6.88 × 103 | 5.73 × 102 | |
GA | −1.18 × 104 | −1.14 × 104 | 2.07 × 102 | |
SSA | −9.15 × 103 | −7.90E × 103 | 7.88 × 102 | |
SSA1 | −1.00 × 104 | −8.59 × 103 | 6.82 × 102 | |
ISSA | −1.26 × 104 | −1.22 × 104 | 6.68 × 102 | |
F7 | GWO | 9.98 × 10−1 | 4.23 × 100 | 4.08 × 100 |
PSO | −3.20 × 101 | −3.20 × 101 | 6.88 × 100 | |
DE | 9.98 × 10−1 | 9.98 × 10−1 | 0 | |
GOOSE | 1.99 × 100 | 1.31 × 101 | 7.30 × 100 | |
GA | 9.98 × 10−1 | 1.00 × 100 | 5.95 × 10−3 | |
SSA | 9.98 × 10−1 | 8.20 × 100 | 5.60 × 100 | |
SSA1 | 9.98 × 10−1 | 9.82 × 100 | 4.87 × 100 | |
ISSA | 9.98 × 10−1 | 7.50 × 100 | 5.43 × 100 | |
F8 | GWO | −1.02 × 101 | −9.06 × 100 | 2.26 × 100 |
PSO | 4.00 × 100 | 5.73 × 100 | 1.39 × 100 | |
DE | −1.02 × 101 | −8.65 × 100 | 2.83 × 100 | |
GOOSE | −1.02 × 101 | −5.47 × 100 | 3.27 × 100 | |
GA | −4.18 × 100 | −2.08 × 100 | 8.50 × 10−1 | |
SSA | −1.02 × 101 | −8.28 × 100 | 2.50 × 100 | |
SSA1 | −1.02 × 101 | −9.12 × 100 | 2.07 × 100 | |
ISSA | −1.02 × 101 | −1.00 × 101 | 4.29 × 10−1 | |
F9 | GWO | −1.04 × 101 | −1.02 × 101 | 9.70 × 10−1 |
PSO | 4.00 × 100 | 4.77 × 100 | 1.25 × 100 | |
DE | −1.04 × 101 | −1.01 × 101 | 1.39 × 100 | |
GOOSE | −1.04 × 101 | −5.68 × 100 | 3.26 × 100 | |
GA | −3.94 × 100 | −1.93 × 100 | 6.00 × 10−1 | |
SSA | −1.04 × 101 | −9.52 × 100 | 2.01 × 100 | |
SSA1 | −1.04 × 101 | −9.68 × 100 | 1.83 × 100 | |
ISSA | −1.04 × 101 | −1.02 × 101 | 8.80 × 10−1 | |
F10 | GWO | −1.05 × 101 | −1.00 × 101 | 2.06 × 100 |
PSO | 2.01 × 100 | 4.57 × 100 | 1.58 × 100 | |
DE | −1.05 × 101 | −1.04 × 101 | 9.79 × 10−1 | |
GOOSE | −1.05 × 101 | −4.61 × 100 | 3.38 × 100 | |
GA | −3.79 × 100 | −2.04 × 100 | 6.19 × 10−1 | |
SSA | −1.05 × 101 | −9.45 × 100 | 2.20 × 100 | |
SSA1 | −1.05 × 101 | −9.61 × 100 | 2.04 × 100 | |
ISSA | −1.05 × 101 | −1.05 × 101 | 4.49 × 10−2 |
Parameter Name | Parameter Value |
---|---|
Pop_size | 20 |
Dim | 3 |
Max_iter | 200 |
HiddenUnits | [10, 200] |
MaxEpochs | [30, 100] |
InitialLearnRate | [0.001, 0.05] |
Models | MAE | Rmse | R2 | HiddenUnits | LearningRate | MaxEpochs |
---|---|---|---|---|---|---|
LSTM | 83.062 | 106.308 | 0.263 | 100 | 0.001 | 80 |
PSO-LSTM | 73.457 | 101.468 | 0.329 | 76 | 0.00395 | 40 |
GWO-LSTM | 81.440 | 101.973 | 0.322 | 16 | 0.00460 | 67 |
GOOSE-LSTM | 73.234 | 100.448 | 0.342 | 81 | 0.001 | 72 |
DE-LSTM | 71.079 | 96.059 | 0.399 | 41 | 0.0287 | 76 |
GA-LSTM | 72.111 | 100.146 | 0.346 | 63 | 0.0468 | 51 |
SSA-LSTM | 80.474 | 98.523 | 0.367 | 41 | 0.0495 | 87 |
SSA1-LSTM | 67.818 | 90.563 | 0.465 | 145 | 0.0225 | 60 |
ISSA-LSTM | 67.037 | 83.102 | 0.550 | 124 | 0.0385 | 90 |
Models | MAE | Rmse | R2 | HiddenUnits | LearningRate | MaxEpochs |
---|---|---|---|---|---|---|
LSTM | 18.566 | 24.805 | 0.169 | 100 | 0.001 | 100 |
PSO-LSTM | 16.748 | 22.631 | 0.41 | 85 | 0.0025 | 50 |
GWO-LSTM | 14.294 | 20.801 | 0.416 | 100 | 0.00221 | 70 |
GOOSE-LSTM | 16.035 | 24.245 | 0.206 | 47 | 0.05 | 84 |
DE-LSTM | 15.394 | 23.129 | 0.278 | 99 | 0.0272 | 59 |
GA-LSTM | 15.117 | 21.395 | 0.382 | 16 | 0.0430 | 76 |
SSA-LSTM | 15.016 | 21.088 | 0.400 | 12 | 0.0334 | 67 |
SSA1-LSTM | 14.911 | 20.765 | 0.418 | 149 | 0.0361 | 73 |
ISSA-LSTM | 12.886 | 18.822 | 0.522 | 168 | 0.042 | 97 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, Y.-M.; Chu, S.-C.; Yildiz, A.R.; Pan, J.-S. Optimized Multiple Regression Prediction Strategies with Applications. Symmetry 2025, 17, 1085. https://doi.org/10.3390/sym17071085
Zhao Y-M, Chu S-C, Yildiz AR, Pan J-S. Optimized Multiple Regression Prediction Strategies with Applications. Symmetry. 2025; 17(7):1085. https://doi.org/10.3390/sym17071085
Chicago/Turabian StyleZhao, Yi-Ming, Shu-Chuan Chu, Ali Riza Yildiz, and Jeng-Shyang Pan. 2025. "Optimized Multiple Regression Prediction Strategies with Applications" Symmetry 17, no. 7: 1085. https://doi.org/10.3390/sym17071085
APA StyleZhao, Y.-M., Chu, S.-C., Yildiz, A. R., & Pan, J.-S. (2025). Optimized Multiple Regression Prediction Strategies with Applications. Symmetry, 17(7), 1085. https://doi.org/10.3390/sym17071085