Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,069)

Search Parameters:
Keywords = efficiency of electrical motor

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
17 pages, 11742 KiB  
Article
The Environmental and Grid Impact of Boda Boda Electrification in Nairobi, Kenya
by Halloran Stratford and Marthinus Johannes Booysen
World Electr. Veh. J. 2025, 16(8), 427; https://doi.org/10.3390/wevj16080427 (registering DOI) - 31 Jul 2025
Viewed by 173
Abstract
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, [...] Read more.
Boda boda motorbike taxis are a primary mode of transport in Nairobi, Kenya, and a major source of urban air pollution. This study investigates the environmental and electrical grid impacts of electrifying Nairobi’s boda boda fleet. Using real-world tracking data from 118 motorbikes, we simulated the effects of a full-scale transition from internal combustion engine (ICE) vehicles to electric motorbikes. We analysed various scenarios, including different battery charging strategies (swapping and home charging), motor efficiencies, battery capacities, charging rates, and the potential for solar power offsetting. The results indicate that electrification could reduce daily CO2 emissions by approximately 85% and eliminate tailpipe particulate matter emissions. However, transitioning the entire country’s fleet would increase the national daily energy demand by up to 6.85 GWh and could introduce peak grid loads as high as 2.40 GW, depending on the charging approach and vehicle efficiency. Battery swapping was found to distribute the grid load more evenly and better complement solar power integration compared to home charging, which concentrates demand in the evening. This research provides a scalable, data-driven framework for policymakers to assess the impacts of transport electrification in similar urban contexts, highlighting the critical trade-offs between environmental benefits and grid infrastructure requirements. Full article
Show Figures

Figure 1

32 pages, 9710 KiB  
Article
Early Detection of ITSC Faults in PMSMs Using Transformer Model and Transient Time-Frequency Features
by Ádám Zsuga and Adrienn Dineva
Energies 2025, 18(15), 4048; https://doi.org/10.3390/en18154048 - 30 Jul 2025
Viewed by 248
Abstract
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) [...] Read more.
Inter-turn short-circuit (ITSC) faults in permanent magnet synchronous machines (PMSMs) present a significant reliability challenge in electric vehicle (EV) drivetrains, particularly under non-stationary operating conditions characterized by inverter-driven transients, variable loads, and magnetic saturation. Existing diagnostic approaches, including motor current signature analysis (MCSA) and wavelet-based methods, are primarily designed for steady-state conditions and rely on manual feature selection, limiting their applicability in real-time embedded systems. Furthermore, the lack of publicly available, high-fidelity datasets capturing the transient dynamics and nonlinear flux-linkage behaviors of PMSMs under fault conditions poses an additional barrier to developing data-driven diagnostic solutions. To address these challenges, this study introduces a simulation framework that generates a comprehensive dataset using finite element method (FEM) models, incorporating magnetic saturation effects and inverter-driven transients across diverse EV operating scenarios. Time-frequency features extracted via Discrete Wavelet Transform (DWT) from stator current signals are used to train a Transformer model for automated ITSC fault detection. The Transformer model, leveraging self-attention mechanisms, captures both local transient patterns and long-range dependencies within the time-frequency feature space. This architecture operates without sequential processing, in contrast to recurrent models such as LSTM or RNN models, enabling efficient inference with a relatively low parameter count, which is advantageous for embedded applications. The proposed model achieves 97% validation accuracy on simulated data, demonstrating its potential for real-time PMSM fault detection. Additionally, the provided dataset and methodology contribute to the facilitation of reproducible research in ITSC diagnostics under realistic EV operating conditions. Full article
(This article belongs to the Special Issue Application of Artificial Intelligence in Power and Energy Systems)
Show Figures

Figure 1

20 pages, 3170 KiB  
Article
Sensorless SPMSM Control for Heavy Handling Machines Electrification: An Innovative Proposal
by Marco Bassani, Andrea Toscani and Carlo Concari
Energies 2025, 18(15), 4021; https://doi.org/10.3390/en18154021 - 28 Jul 2025
Viewed by 251
Abstract
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting [...] Read more.
The electrification of road vehicles is a relatively mature sector, while other areas of mobility, such as construction machinery, are just beginning their transition to electric solutions. This work presents the design and realization of an integrated drive system specifically developed for retrofitting fan drives in heavy machinery, like bulldozers and tractors, utilizing existing 48 VDC batteries. By replacing or complementing internal combustion and hydraulic technologies with electric solutions, significant advantages in efficiency, reduced environmental impact, and versatility can be achieved. Focusing on the fan drive system addresses the critical challenge of thermal management in high ambient temperatures and harsh environments, particularly given the high current requirements for 3kW-class applications. A sensorless architecture has been selected to enhance reliability by eliminating mechanical position sensors. The developed fan drive has been extensively tested both on a braking bench and in real-world applications, demonstrating its effectiveness and robustness. Future work will extend this prototype to electrify additional onboard hydraulic motors in these machines, further advancing the electrification of heavy-duty equipment and improving overall efficiency and environmental impact. Full article
(This article belongs to the Special Issue Electronics for Energy Conversion and Renewables)
Show Figures

Figure 1

8 pages, 1122 KiB  
Proceeding Paper
Recent Developments in Four-In-Wheel Electronic Differential Systems in Electrical Vehicles
by Anouar El Mourabit and Ibrahim Hadj Baraka
Comput. Sci. Math. Forum 2025, 10(1), 17; https://doi.org/10.3390/cmsf2025010017 - 25 Jul 2025
Viewed by 62
Abstract
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms [...] Read more.
This manuscript investigates the feasibility of Four-In-Wheel Electronic Differential Systems (4 IW-EDSs) within contemporary electric vehicles (EVs), emphasizing their benefits for stability regulation predicated on steering angles. Through an extensive literature review, we conduct a comparative analysis of various in-wheel-motor models in terms of power output, efficiency, and torque characteristics. Furthermore, we explore the distinctions between IW-EDSs and steer-by-wire systems, as well as conventional systems, while evaluating recent research findings to determine their implications for the evolution of electric mobility. Moreover, this paper addresses the necessity for fault-tolerant methodologies to boost reliability in practical applications. The findings yield valuable insights into the challenges and impacts associated with the implementation of differential steering control in four-wheel independent-drive electric vehicles. This study aims to explore the interaction between these systems, optimize torque distribution, and discover the most ideal control strategy that will improve maneuverability, stability, and energy efficiency, thereby opening up new frontiers in the development of next-generation electric vehicles with unparalleled performance and safety features. Full article
Show Figures

Figure 1

19 pages, 4344 KiB  
Article
Modeling of a C-Frame Reluctance-Enhanced Shaded-Pole Induction Motor—Study of Shaded-Coil Design
by Selma Čorović and Damijan Miljavec
Actuators 2025, 14(8), 368; https://doi.org/10.3390/act14080368 - 24 Jul 2025
Viewed by 235
Abstract
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in [...] Read more.
Shaded-pole induction motors are the most frequently used single-phase electric motors in low power applications. Their main advantages are reliability, robustness, low level of noise and vibration, relatively simple manufacturing technology and cost effectiveness. These motors are the driving units of choice in the applications where the variable speed and high starting torque are not of utmost importance, in spite of the fact that they are characterized by inferior efficiency, power factor and starting torque compared to their single-phase counterparts. They are equipped with auxiliary massive copper coils at the stator side, which makes them self-starting, and strongly influence the motor characteristics. This study deals with the numerical modeling and analysis of a shaded-pole induction motor with a C-shaped stator frame. The analysis was performed using 2D finite element-based transient magnetic numerical modeling. The primary objective was to investigate the influence of the number and size of the auxiliary shaded coils on the output torque speed characteristic. We explored the possibility of reducing the amount of material used while preserving the crucial/nominal properties of the motor. Our results have important implications in manufacturing simplification, which may be important for the eco-design of small motors and actuators, including their recycling and/or reuse process. Full article
(This article belongs to the Section High Torque/Power Density Actuators)
Show Figures

Figure 1

24 pages, 8344 KiB  
Article
Research and Implementation of Travel Aids for Blind and Visually Impaired People
by Jun Xu, Shilong Xu, Mingyu Ma, Jing Ma and Chuanlong Li
Sensors 2025, 25(14), 4518; https://doi.org/10.3390/s25144518 - 21 Jul 2025
Viewed by 317
Abstract
Blind and visually impaired (BVI) people face significant challenges in perception, navigation, and safety during travel. Existing infrastructure (e.g., blind lanes) and traditional aids (e.g., walking sticks, basic audio feedback) provide limited flexibility and interactivity for complex environments. To solve this problem, we [...] Read more.
Blind and visually impaired (BVI) people face significant challenges in perception, navigation, and safety during travel. Existing infrastructure (e.g., blind lanes) and traditional aids (e.g., walking sticks, basic audio feedback) provide limited flexibility and interactivity for complex environments. To solve this problem, we propose a real-time travel assistance system based on deep learning. The hardware comprises an NVIDIA Jetson Nano controller, an Intel D435i depth camera for environmental sensing, and SG90 servo motors for feedback. To address embedded device computational constraints, we developed a lightweight object detection and segmentation algorithm. Key innovations include a multi-scale attention feature extraction backbone, a dual-stream fusion module incorporating the Mamba architecture, and adaptive context-aware detection/segmentation heads. This design ensures high computational efficiency and real-time performance. The system workflow is as follows: (1) the D435i captures real-time environmental data; (2) the processor analyzes this data, converting obstacle distances and path deviations into electrical signals; (3) servo motors deliver vibratory feedback for guidance and alerts. Preliminary tests confirm that the system can effectively detect obstacles and correct path deviations in real time, suggesting its potential to assist BVI users. However, as this is a work in progress, comprehensive field trials with BVI participants are required to fully validate its efficacy. Full article
(This article belongs to the Section Intelligent Sensors)
Show Figures

Figure 1

15 pages, 3342 KiB  
Article
Fault-Tolerant Control of the Electro-Mechanical Compound Transmission System of Tracked Vehicles Based on the Anti-Windup PID Algorithm
by Qingkun Xing, Ziao Zhang, Xueliang Li, Datong Qin and Zengxiong Peng
Machines 2025, 13(7), 622; https://doi.org/10.3390/machines13070622 - 18 Jul 2025
Viewed by 216
Abstract
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper [...] Read more.
The electromechanical composite transmission technology for tracked vehicles demonstrates excellent performance in energy efficiency, mobility, and ride comfort. However, due to frequent operation under harsh conditions, the components of the electric drive system, such as drive motors, are prone to failures. This paper proposes three fault-tolerant control methods for three typical fault scenarios of the electromechanical composite transmission system (ECTS) to ensure the normal operation of tracked vehicles. Firstly, an ECTS and the electromechanical coupling dynamics model of the tracked vehicle are established. Moreover, a double-layer anti-windup PID control for motors and an instantaneous optimal control strategy for the engine are proposed in the fault-free case. Secondly, an anti-windup PID control law for motors and an engine control strategy considering the state of charge (SOC) and driving demands are developed in the case of single-side drive motor failure. Thirdly, a B4 clutch control strategy during starting and a steering brake control strategy are proposed in the case of electric drive system failure. Finally, in the straight-driving condition of the tracked vehicle, the throttle opening is set as 0.6, and the motor failure is triggered at 15 s during the acceleration process. Numerical simulations verify the fault-tolerant control strategies’ feasibility, using the tracked vehicle’s maximum speed and acceleration at 30 s as indicators for dynamic performance evaluation. The simulation results show that under single-motor fault, its straight-line driving power drops by 33.37%; with electric drive failure, the drop reaches 43.86%. The vehicle can still maintain normal straight-line driving and steering under fault conditions. Full article
(This article belongs to the Topic Vehicle Dynamics and Control, 2nd Edition)
Show Figures

Figure 1

26 pages, 2207 KiB  
Article
Enhancing Electric Vehicle Battery Charging Efficiency Using an Improved Parrot Optimizer and Photovoltaic Systems
by Ebrahim Sheykhi and Mutlu Yilmaz
Energies 2025, 18(14), 3808; https://doi.org/10.3390/en18143808 - 17 Jul 2025
Cited by 1 | Viewed by 224
Abstract
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. [...] Read more.
There has been a great need for replacing combustion-powered vehicles with electric vehicles (EV), and fully electric cars are meant to replace combustion engine cars. This has led to considerable research into improving the performance of EVs, especially via electric motor voltage control. A wide range of optimization algorithms have been used as traditional approaches, but the dynamic parameters of electric motors, impacted by temperature and different driving cycles, continue to be a problem. This study introduces an improved version of the Parrot Optimizer (IPO) aimed at enhancing voltage regulation in EVs. The algorithm can intelligently adjust certain motor parameters for adaptive management to maintain performance based on different situations. To ensure a stable and sustainable power supply for the powertrain of the EV, a photovoltaic (PV) system is used with energy storage batteries. Such an arrangement seeks to deliver permanent electric energy, a solution to traditional grid electricity reliance. This demonstrates the effectiveness of IPO, with the resultant motor performance remaining optimal despite parameter changes. It is also illustrated that energy production, by integrating PV systems, prevents excessive voltage line drops and thus voltage imbalances. The proposed intelligent controller is verified based on multiple simulations, demonstrating and ensuring significant improvements in EV efficiency and reliability. Full article
(This article belongs to the Section A2: Solar Energy and Photovoltaic Systems)
Show Figures

Figure 1

15 pages, 5296 KiB  
Article
Study on Multiple-Inverter-Drive Method for IPMSM to Improve the Motor Efficiency
by Koki Takeuchi and Kan Akatsu
World Electr. Veh. J. 2025, 16(7), 398; https://doi.org/10.3390/wevj16070398 - 15 Jul 2025
Viewed by 227
Abstract
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been [...] Read more.
In recent years, the rapid spread of electric vehicles (EVs) has intensified the competition to develop power units for EVs. In particular, improving the driving range of EVs has become a major topic, and in order to achieve this, many studies have been conducted on improving the efficiency of EV power units. In this study, we propose a multiple-inverter-drive permanent magnet synchronous motor based on an 8-pole, 48-slot structure, which is commonly used as an EV motor. The proposed motor is composed of two completely independent parallel inverters and windings, and intermittent operation is possible; that is, only one inverter and one parallel winding is used depending on the situation. In the proposed motor, we compare losses including stator iron loss, rotor iron loss, and magnet eddy current loss by PWM voltage inputs for some stator winding topologies, we show that the one-side winding arrangement is the most efficient during intermittent operation, and that it is more efficient than normal operation especially in the low-speed, low-torque range. Finally, through a vehicle-driving simulation considering the efficiency map including motor loss and inverter loss, we show that the intentional use of intermittent operation can improve electrical energy consumption. Full article
Show Figures

Figure 1

28 pages, 9135 KiB  
Article
Performance Analysis of a Reciprocating Refrigeration Compressor Under Variable Operating Speeds
by Willian T. F. D. da Silva, Vitor M. Braga and Cesar J. Deschamps
Machines 2025, 13(7), 609; https://doi.org/10.3390/machines13070609 - 15 Jul 2025
Viewed by 306
Abstract
Variable-speed reciprocating compressors (VSRCs) have been increasingly used in domestic refrigeration due to their ability to modulate cooling capacity and reduce energy consumption. A detailed understanding of performance-limiting factors such as volumetric and exergetic inefficiencies is essential for optimizing their operation. An experimentally [...] Read more.
Variable-speed reciprocating compressors (VSRCs) have been increasingly used in domestic refrigeration due to their ability to modulate cooling capacity and reduce energy consumption. A detailed understanding of performance-limiting factors such as volumetric and exergetic inefficiencies is essential for optimizing their operation. An experimentally validated simulation model was developed using GT-SUITE to analyze a VSRC operating with R-600a across speeds from 1800 to 6300 rpm. Volumetric inefficiencies were quantified using a stratification methodology, while an exergy-based approach was adopted to assess the main sources of thermodynamic inefficiency in the compressor. Unlike traditional energy analysis, exergy analysis reveals where and why irreversibilities occur, linking them directly to power consumption and providing a framework for optimizing design. Results reveal that neither volumetric nor exergy efficiency varies monotonically with compressor speed. At low speeds, exergetic losses are dominated by the electrical motor (up to 19% of input power) and heat transfer (up to 13.5%). Conversely, at high speeds, irreversibilities from fluid dynamics become critical, with losses from discharge valve throttling reaching 5.8% and bearing friction increasing to 6.5%. Additionally, key volumetric inefficiencies arise from piston–cylinder leakage, which causes up to a 4.5% loss at low speeds, and discharge valve backflow, causing over a 5% loss at certain resonant speeds. The results reveal complex speed-dependent interactions between dynamic and thermodynamic loss mechanisms in VSRCs. The integrated modeling approach offers a robust framework for diagnosing inefficiencies and supports the development of more energy-efficient compressor designs. Full article
(This article belongs to the Special Issue Theoretical and Experimental Study on Compressor Performance)
Show Figures

Figure 1

31 pages, 2741 KiB  
Article
Power Flow Simulation and Thermal Performance Analysis of Electric Vehicles Under Standard Driving Cycles
by Jafar Masri, Mohammad Ismail and Abdulrahman Obaid
Energies 2025, 18(14), 3737; https://doi.org/10.3390/en18143737 - 15 Jul 2025
Viewed by 360
Abstract
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and [...] Read more.
This paper presents a simulation framework for evaluating power flow, energy efficiency, thermal behavior, and energy consumption in electric vehicles (EVs) under standardized driving conditions. A detailed Simulink model is developed, integrating a lithium-ion battery, inverter, permanent magnet synchronous motor (PMSM), gearbox, and a field-oriented control strategy with PI-based speed and current regulation. The framework is applied to four standard driving cycles—UDDS, HWFET, WLTP, and NEDC—to assess system performance under varied load conditions. The UDDS cycle imposes the highest thermal loads, with temperature rises of 76.5 °C (motor) and 52.0 °C (inverter). The HWFET cycle yields the highest energy efficiency, with PMSM efficiency reaching 92% and minimal SOC depletion (15%) due to its steady-speed profile. The WLTP cycle shows wide power fluctuations (−30–19.3 kW), and a motor temperature rise of 73.6 °C. The NEDC results indicate a thermal increase of 75.1 °C. Model results show good agreement with published benchmarks, with deviations generally below 5%, validating the framework’s accuracy. These findings underscore the importance of cycle-sensitive analysis in optimizing energy use and thermal management in EV powertrain design. Full article
Show Figures

Figure 1

42 pages, 5715 KiB  
Article
Development and Fuel Economy Optimization of Series–Parallel Hybrid Powertrain for Van-Style VW Crafter Vehicle
by Ahmed Nabil Farouk Abdelbaky, Aminu Babangida, Abdullahi Bala Kunya and Péter Tamás Szemes
Energies 2025, 18(14), 3688; https://doi.org/10.3390/en18143688 - 12 Jul 2025
Viewed by 478
Abstract
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, [...] Read more.
The presence of toxic gas emissions from conventional vehicles is worrisome globally. Over the past few years, there has been a broad adoption of electric vehicles (EVs) to reduce energy usage and mitigate environmental emissions. The EVs are characterized by limited range, cost, and short range. This prompts the need for hybrid electric vehicles (HEVs). This study describes the conversion of a 2022 Volkswagen Crafter (VW) 35 TDI 340 delivery van from a conventional diesel powertrain into a hybrid electric vehicle (HEV) augmented with synchronous electrical machines (motor and generator) and a BMW i3 60 Ah battery pack. A downsized 1.5 L diesel engine and an electric motor–generator unit are integrated via a planetary power split device supported by a high-voltage lithium-ion battery. A MATLAB (R2024b) Simulink model of the hybrid system is developed, and its speed tracking PID controller is optimized using genetic algorithm (GA) and particle swarm optimization (PSO) methods. The simulation results show significant efficiency gains: for example, average fuel consumption falls from 9.952 to 7.014 L/100 km (a 29.5% saving) and CO2 emissions drop from 260.8 to 186.0 g/km (a 74.8 g reduction), while the vehicle range on a 75 L tank grows by ~40.7% (from 785.7 to 1105.5 km). The optimized series–parallel powertrain design significantly improves urban driving economy and reduces emissions without compromising performance. Full article
Show Figures

Figure 1

18 pages, 5325 KiB  
Article
Design of High-Speed, High-Efficiency Electrically Excited Synchronous Motor
by Shumei Cui, Yuqi Zhang, Beibei Song, Shuo Zhang and Hongwen Zhu
Energies 2025, 18(14), 3673; https://doi.org/10.3390/en18143673 - 11 Jul 2025
Viewed by 326
Abstract
In air-conditioning compressors operating under ultra-low temperature conditions, both the rotational speed and load torque are at high levels, demanding pump motors that offer high efficiency and high power at high speeds. Electrically excited synchronous motors (EESMs) satisfy these operational requirements by leveraging [...] Read more.
In air-conditioning compressors operating under ultra-low temperature conditions, both the rotational speed and load torque are at high levels, demanding pump motors that offer high efficiency and high power at high speeds. Electrically excited synchronous motors (EESMs) satisfy these operational requirements by leveraging their inherent wide-speed field-weakening capability and superior high-speed performance characteristics. Current research on EESM primarily targets electric vehicle applications, with a high-efficiency design focused on medium and low speeds. Excitation design under constant-power–speed extension remains insufficiently explored. To address it, this paper proposes an EESM design methodology optimized for high-speed efficiency and constant-power excitation control. Key EESM parameters are determined through a dynamic phasor diagram, and design methods for turn number, split ratio, and other parameters are proposed to extend the high-efficiency region into the high-speed range. Additionally, a power output modulation strategy in the field-weakening region is introduced, enabling dynamic high-power regulation at high speed through excitation adjustment. Compared to similarly sized PMSMs, the proposed EESM exhibits consistently superior efficiency beyond 10,000 rpm, delivering 19% and 49% higher power output at 12,000 rpm and 14,000 rpm, respectively, relative to conventional pump-drive PMSMs. Experimental validation via a prototype confirms excellent high-speed efficiency and sustained constant-power performance, in alignment with the design targets. Full article
(This article belongs to the Section F: Electrical Engineering)
Show Figures

Figure 1

29 pages, 7365 KiB  
Article
Energy Management Design of Dual-Motor System for Electric Vehicles Using Whale Optimization Algorithm
by Chien-Hsun Wu, Chieh-Lin Tsai and Jie-Ming Yang
Sensors 2025, 25(14), 4317; https://doi.org/10.3390/s25144317 - 10 Jul 2025
Viewed by 308
Abstract
Dual-motor electric vehicles enhance power performance and overall output capabilities by enabling the real-time control of the torque distribution between the front and rear wheels, thereby improving handling, stability, and safety. In addition to increased energy efficiency, a dual-motor system provides redundancy: if [...] Read more.
Dual-motor electric vehicles enhance power performance and overall output capabilities by enabling the real-time control of the torque distribution between the front and rear wheels, thereby improving handling, stability, and safety. In addition to increased energy efficiency, a dual-motor system provides redundancy: if one motor fails, the other can still supply partial power, further enhancing driving safety. This study aimed to optimize the energy management strategies of the front- and rear-axis motors, examining the application effects of rule-based control (RBC), global grid search (GGS), and the whale optimization algorithm (WOA). A simulation platform based on MATLAB/Simulink® (R2021b, MATLAB, Natick, MA, USA) was constructed and validated through hardware-in-the-loop (HIL) testing to ensure the authenticity and reliability of the simulation results. Detailed tests and analyses of the dual-motor system were conducted under FTP-75 driving cycles. Compared to the RBC strategy, GGS and WOA achieved energy efficiency improvements of 9.1% and 8.9%, respectively, in the pure simulation, and 4.2% and 3.8%, respectively, in the HIL simulation. Compared to the pure RBC strategy, the RBC and GGS strategies incorporating regenerative braking achieved energy efficiency improvements of 26.1% and 29.4%, respectively, in the HIL simulation. Overall, GGS and WOA each present distinct advantages, with WOA emerging as a highly promising alternative energy management strategy. Future research should further explore WOA applications to enhance energy savings in real-world vehicle operations. Full article
(This article belongs to the Topic Innovation, Communication and Engineering)
Show Figures

Figure 1

42 pages, 8877 KiB  
Review
Artificial-Intelligence-Based Energy Management Strategies for Hybrid Electric Vehicles: A Comprehensive Review
by Bin Huang, Wenbin Yu, Minrui Ma, Xiaoxu Wei and Guangya Wang
Energies 2025, 18(14), 3600; https://doi.org/10.3390/en18143600 - 8 Jul 2025
Viewed by 648
Abstract
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between [...] Read more.
The worldwide drive towards low-carbon transportation has made Hybrid Electric Vehicles (HEVs) a crucial component of sustainable mobility, particularly in areas with limited charging infrastructure. The core of HEV efficiency lies in the Energy Management Strategy (EMS), which regulates the energy distribution between the internal combustion engine and the electric motor. While rule-based and optimization methods have formed the foundation of EMS, their performance constraints under dynamic conditions have prompted researchers to explore artificial intelligence (AI)-based solutions. This paper systematically reviews four main AI-based EMS approaches—the knowledge-driven, data-driven, reinforcement learning, and hybrid methods—highlighting their theoretical foundations, core technologies, and key applications. The integration of AI has led to notable benefits, such as improved fuel efficiency, enhanced emission control, and greater system adaptability. However, several challenges remain, including generalization to diverse driving conditions, constraints in real-time implementation, and concerns related to data-driven interpretability. The review identifies emerging trends in hybrid methods, which combine AI and conventional optimization approaches to create more adaptive and effective HEV energy management systems. The paper concludes with a discussion of future research directions, focusing on safety, system resilience, and the role of AI in autonomous decision-making. Full article
(This article belongs to the Special Issue Optimized Energy Management Technology for Electric Vehicle)
Show Figures

Figure 1

Back to TopTop