Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (3,220)

Search Parameters:
Keywords = ecosystem-based approaches

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
34 pages, 1866 KB  
Review
Building Climate Resilient Fisheries and Aquaculture in Bangladesh: A Review of Impacts and Adaptation Strategies
by Mohammad Mahfujul Haque, Md. Naim Mahmud, A. K. Shakur Ahammad, Md. Mehedi Alam, Alif Layla Bablee, Neaz A. Hasan, Abul Bashar and Md. Mahmudul Hasan
Climate 2025, 13(10), 209; https://doi.org/10.3390/cli13100209 (registering DOI) - 4 Oct 2025
Abstract
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total [...] Read more.
This study examines the impacts of climate change on fisheries and aquaculture in Bangladesh, one of the most climate-vulnerable countries in the world. The fisheries and aquaculture sectors contribute significantly to the national GDP and support the livelihoods of 12% of the total population. Using a Critical Literature Review (CLR) approach, peer-reviewed articles, government reports, and official datasets published between 2006 and 2025 were reviewed across databases such as Scopus, Web of Science, FAO, and the Bangladesh Department of Fisheries (DoF). The analysis identifies major climate drivers, including rising temperature, erratic rainfall, salinity intrusion, sea-level rise, floods, droughts, cyclones, and extreme events, and reviews their differentiated impacts on key components of the sector: inland capture fisheries, marine fisheries, and aquaculture systems. For inland capture fisheries, the review highlights habitat degradation, biodiversity loss, and disrupted fish migration and breeding cycles. In aquaculture, particularly in coastal systems, this study reviews the challenges posed by disease outbreaks, water quality deterioration, and disruptions in seed supply, affecting species such as carp, tilapia, pangasius, and shrimp. Coastal aquaculture is also particularly vulnerable to cyclones, tidal surges, and saline water intrusion, with documented economic losses from events such as Cyclones Yaas, Bulbul, Amphan, and Remal. The study synthesizes key findings related to climate-resilient aquaculture practices, monitoring frameworks, ecosystem-based approaches, and community-based adaptation strategies. It underscores the need for targeted interventions, especially in coastal areas facing increasing salinity levels and frequent storms. This study calls for collective action through policy interventions, research and development, and the promotion of climate-smart technologies to enhance resilience and sustain fisheries and aquaculture in the context of a rapidly changing climate. Full article
(This article belongs to the Collection Adaptation and Mitigation Practices and Frameworks)
35 pages, 2867 KB  
Review
Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches
by Thierry Garlan, Rafael Almar and Erwin W. J. Bergsma
Remote Sens. 2025, 17(19), 3360; https://doi.org/10.3390/rs17193360 (registering DOI) - 4 Oct 2025
Abstract
This review synthesizes the current knowledge of the various natural and human-caused processes that influence the evolution of sandy beaches and explores ways to improve predictions. Short-term storm-driven dynamics have been extensively studied, but long-term changes remain poorly understood due to a limited [...] Read more.
This review synthesizes the current knowledge of the various natural and human-caused processes that influence the evolution of sandy beaches and explores ways to improve predictions. Short-term storm-driven dynamics have been extensively studied, but long-term changes remain poorly understood due to a limited grasp of non-wave drivers, outdated topo-bathymetric (land–sea continuum digital elevation model) data, and an absence of systematic uncertainty assessments. In this study, we classify and analyze the various drivers of beach change, including meteorological, oceanographic, geological, biological, and human influences, and we highlight their interactions across spatial and temporal scales. We place special emphasis on the role of remote sensing, detailing the capacities and limitations of optical, radar, lidar, unmanned aerial vehicle (UAV), video systems and satellite Earth observation for monitoring shoreline change, nearshore bathymetry (or seafloor), sediment dynamics, and ecosystem drivers. A case study from the Langue de Barbarie in Senegal, West Africa, illustrates the integration of in situ measurements, satellite observations, and modeling to identify local forcing factors. Based on this synthesis, we propose a structured framework for quantifying uncertainty that encompasses data, parameter, structural, and scenario uncertainties. We also outline ways to dynamically update nearshore bathymetry to improve predictive ability. Finally, we identify key challenges and opportunities for future coastal forecasting and emphasize the need for multi-sensor integration, hybrid modeling approaches, and holistic classifications that move beyond wave-only paradigms. Full article
25 pages, 8347 KB  
Article
Integrated Assessment of Pasture Ecosystem Degradation Processes in Arid Zones: A Case Study of Atyrau Region, Kazakhstan
by Kazhmurat Akhmedenov, Nurlan Sergaliev, Murat Makhambetov, Aigul Sergeyeva, Kuat Saparov, Roza Izimova, Akhan Turgumbaev and Dinmuhamed Iskaliev
Sustainability 2025, 17(19), 8869; https://doi.org/10.3390/su17198869 (registering DOI) - 4 Oct 2025
Abstract
This article presents an integrated assessment of pasture ecosystem degradation under conditions of extreme aridity in the Atyrau Region, where high livestock density, limited grazing capacity, and institutional fragmentation of land tenure exacerbate degradation risks. The study aimed to conduct a spatio-temporal analysis [...] Read more.
This article presents an integrated assessment of pasture ecosystem degradation under conditions of extreme aridity in the Atyrau Region, where high livestock density, limited grazing capacity, and institutional fragmentation of land tenure exacerbate degradation risks. The study aimed to conduct a spatio-temporal analysis of pasture conditions and identify critical load zones to support sustainable management strategies. The methodology was based on a multi-factor Anthropogenic Load (AL) model integrating (1) calculation of pasture load (PL) using 2023 agricultural statistics with livestock numbers converted into livestock units; (2) spatial analysis of grazing concentration through Kernel Density Estimation in ArcGIS 10.8; (3) assessment of infrastructural accessibility (Accessibility Index, Ai); and (4) quantitative evaluation of institutional land use organization (Institutional Index, Ii). This integrative approach enabled the identification of stable, transitional, and critically overloaded zones and provided a cartographic basis for sustainable management. Results revealed persistent degradation hotspots within 3–5 km of water sources and settlements, while up to 40% of productive pastures remain excluded from use. The proposed AL model demonstrated high reproducibility and applicability for environmental monitoring and regional land use planning in arid regions of Central Asia. Full article
(This article belongs to the Section Sustainability in Geographic Science)
Show Figures

Figure 1

17 pages, 15384 KB  
Article
Subterranean Biodiversity on the Brink: Urgent Framework for Conserving the Densest Cave Region in South America
by Robson de Almeida Zampaulo, Marconi Souza-Silva and Rodrigo Lopes Ferreira
Animals 2025, 15(19), 2899; https://doi.org/10.3390/ani15192899 - 3 Oct 2025
Abstract
Subterranean ecosystems represent some of the most unique and fragile habitats on Earth, yet they remain poorly understood and highly vulnerable to human-induced disturbances. Despite their ecological significance, these systems are rarely integrated into conservation planning, and surface-level protected areas alone are insufficient [...] Read more.
Subterranean ecosystems represent some of the most unique and fragile habitats on Earth, yet they remain poorly understood and highly vulnerable to human-induced disturbances. Despite their ecological significance, these systems are rarely integrated into conservation planning, and surface-level protected areas alone are insufficient to safeguard their biodiversity. In southeastern Brazil, a karst landscape spanning approximately 1200 km2, recognized as the region with the highest cave density in South America (approximately 2600 caves), is under increasing pressure from urban expansion, agriculture, and mining, all of which threaten the ecological integrity of subterranean habitats. This study sought to identify caves of high conservation priority by integrating species richness of non-troglobitic invertebrates, occurrence of troglobitic species, presence of endemic troglobitic taxa, and the degree of anthropogenic impacts, using spatial algebra and polygon-based mapping approaches. Agriculture and exotic forestry plantations (54%) and mining operations (15%) were identified as the most prevalent disturbances. A total of 32 troglobitic species were recorded, occurring in 63% of the 105 surveyed caves. Notably, seven caves alone harbor 25% of the region’s known cave invertebrate diversity and encompass 50% of its cave-restricted species. The findings highlight the global significance of this spot of subterranean biodiversity and reinforce the urgent need for targeted conservation measures. Without immediate action to mitigate unsustainable land use and resource exploitation, the persistence of these highly specialized communities is at imminent risk. Full article
(This article belongs to the Section Ecology and Conservation)
24 pages, 8041 KB  
Article
Stable Water Isotopes and Machine Learning Approaches to Investigate Seawater Intrusion in the Magra River Estuary (Italy)
by Marco Sabattini, Francesco Ronchetti, Gianpiero Brozzo and Diego Arosio
Hydrology 2025, 12(10), 262; https://doi.org/10.3390/hydrology12100262 - 3 Oct 2025
Abstract
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, [...] Read more.
Seawater intrusion into coastal river systems poses increasing challenges for freshwater availability and estuarine ecosystem integrity, especially under evolving climatic and anthropogenic pressures. This study presents a multidisciplinary investigation of marine intrusion dynamics within the Magra River estuary (Northwest Italy), integrating field monitoring, isotopic tracing (δ18O; δD), and multivariate statistical modeling. Over an 18-month period, 11 fixed stations were monitored across six seasonal campaigns, yielding a comprehensive dataset of water electrical conductivity (EC) and stable isotope measurements from fresh water to salty water. EC and oxygen isotopic ratios displayed strong spatial and temporal coherence (R2 = 0.99), confirming their combined effectiveness in identifying intrusion patterns. The mass-balance model based on δ18O revealed that marine water fractions exceeded 50% in the lower estuary for up to eight months annually, reaching as far as 8.5 km inland during dry periods. Complementary δD measurements provided additional insight into water origin and fractionation processes, revealing a slight excess relative to the local meteoric water line (LMWL), indicative of evaporative enrichment during anomalously warm periods. Multivariate regression models (PLS, Ridge, LASSO, and Elastic Net) identified river discharge as the primary limiting factor of intrusion, while wind intensity emerged as a key promoting variable, particularly when aligned with the valley axis. Tidal effects were marginal under standard conditions, except during anomalous events such as tidal surges. The results demonstrate that marine intrusion is governed by complex and interacting environmental drivers. Combined isotopic and machine learning approaches can offer high-resolution insights for environmental monitoring, early-warning systems, and adaptive resource management under climate-change scenarios. Full article
30 pages, 3428 KB  
Review
Tropical Fungi and LULUCF: Synergies for Climate Mitigation Through Nature-Based Culture (NbC)
by Retno Prayudyaningsih, Maman Turjaman, Margaretta Christita, Neo Endra Lelana, Ragil Setio Budi Irianto, Sarjiya Antonius, Safinah Surya Hakim, Asri Insiana Putri, Henti Hendalastuti Rachmat, Virni Budi Arifanti, Wahyu Catur Adinugroho, Said Fahmi, Rinaldi Imanuddin, Sri Suharti, Ulfah Karmila Sari, Asep Hidayat, Sona Suhartana, Tien Wahyuni, Sisva Silsigia, Tsuyoshi Kato, Ricksy Prematuri, Ahmad Faizal, Kae Miyazawa and Mitsuru Osakiadd Show full author list remove Hide full author list
Climate 2025, 13(10), 208; https://doi.org/10.3390/cli13100208 - 2 Oct 2025
Abstract
Fungi in tropical ecosystems remain an understudied yet critical component of climate change mitigation, particularly within the Land Use, Land-Use Change, and Forestry (LULUCF) sector. This review highlights their dual role in reducing greenhouse gas (GHG) emissions by regulating carbon dioxide (CO2 [...] Read more.
Fungi in tropical ecosystems remain an understudied yet critical component of climate change mitigation, particularly within the Land Use, Land-Use Change, and Forestry (LULUCF) sector. This review highlights their dual role in reducing greenhouse gas (GHG) emissions by regulating carbon dioxide (CO2), methane (CH4), and nitrous oxides (N2O) while enhancing long-term carbon sequestration. Mycorrhizal fungi are pivotal in maintaining soil integrity, facilitating nutrient cycling, and amplifying carbon storage capacity through symbiotic mechanisms. We synthesize how fungal symbiotic systems under LULUCF shape ecosystem networks and note that, in pristine ecosystems, these networks are resilient. We introduce the concept of Nature-based Culture (NbC) to describe symbiotic self-cultures sustaining ecosystem stability, biodiversity, and carbon sequestration. Case studies demonstrate how the NbC concept is applied in reforestation strategies such as AeroHydro Culture (AHC), the Integrated Mangrove Sowing System (IMSS), and the 4N approach (No Plastic, No Burning, No Chemical Fertilizer, Native Species). These approaches leverage mycorrhizal networks to improve restoration outcomes in peatlands, mangroves, and semi-arid regions while minimizing land disturbance and chemical inputs. Therefore, by bridging fungal ecology with LULUCF policy, this review advocates for a paradigm shift in forest management that integrates fungal symbioses to strengthen carbon storage, ecosystem resilience, and human well-being. Full article
(This article belongs to the Special Issue Forest Ecosystems under Climate Change)
Show Figures

Figure 1

26 pages, 12966 KB  
Article
Dynamic Co-Optimization of Features and Hyperparameters in Object-Oriented Ensemble Methods for Wetland Mapping Using Sentinel-1/2 Data
by Yue Ma, Yongchao Ma, Qiang Zheng and Qiuyue Chen
Water 2025, 17(19), 2877; https://doi.org/10.3390/w17192877 - 2 Oct 2025
Abstract
Wetland mapping plays a crucial role in monitoring wetland ecosystems, water resource management, and habitat suitability assessment. Wetland classification remains significantly challenging due to the diverse types, intricate spatial patterns, and highly dynamic nature. This study proposed a dynamic hybrid method that integrated [...] Read more.
Wetland mapping plays a crucial role in monitoring wetland ecosystems, water resource management, and habitat suitability assessment. Wetland classification remains significantly challenging due to the diverse types, intricate spatial patterns, and highly dynamic nature. This study proposed a dynamic hybrid method that integrated feature selection and object-oriented ensemble model construction to improve wetland mapping using Sentinel-1 and Sentinel-2 data. The proposed feature selection approach integrates the ReliefF and recursive feature elimination (RFE) algorithms with a feature evaluation criterion based on Shapley additive explanations (SHAP) values, aiming to optimize the feature set composed of various variables. During the construction of ensemble models (i.e., RF, XGBoost, and LightGBM) with features selected by RFE, hyperparameter tuning is subsequently conducted using Bayesian optimization (BO), ensuring that the selected optimal features and hyperparameters significantly enhance the accuracy and performance of the classifiers. The accuracy assessment demonstrates that the BO-LightGBM model with ReliefF-RFE-SHAP-selected features achieves superior performance to the RF and XGBoost models, achieving the highest overall accuracy of 89.4% and a kappa coefficient of 0.875. The object-oriented classification maps accurately depict the spatial distribution patterns of different wetland types. Furthermore, SHAP values offer global and local interpretations of the model to better understand the contribution of various features to wetland classification. The proposed dynamic hybrid method offers an effective tool for wetland mapping and contributes to wetland environmental monitoring and management. Full article
(This article belongs to the Special Issue Remote Sensing of Spatial-Temporal Variation in Surface Water)
Show Figures

Figure 1

46 pages, 2380 KB  
Review
Microalgae in Mitigating Industrial Pollution: Bioremediation Strategies and Biomagnification Potential
by Renu Geetha Bai, Salini Chandrasekharan Nair, Liina Joller-Vahter and Timo Kikas
Biomass 2025, 5(4), 61; https://doi.org/10.3390/biomass5040061 - 2 Oct 2025
Abstract
The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental [...] Read more.
The rapid growth of the human population and industrialization has intensified anthropogenic activities, leading to the release of various toxic chemicals into the environment, triggering significant risks to human health and ecosystem stability. One sustainable solution to remove toxic chemicals from various environmental matrices, such as water, air, and soil, is bioremediation, an approach utilizing biological agents. Microalgae, as the primary producers of the aquatic environment, offer a versatile bioremediation platform, where their metabolic processes break down and convert pollutants into less harmful substances, thereby mitigating the negative ecological impact. Besides the CO2 sequestration potential, microalgae are a source of renewable energy and numerous high-value biomolecules. Additionally, microalgae can mitigate various toxic chemicals through biosorption, bioaccumulation, and biodegradation. These remediation strategies propose a sustainable and eco-friendly approach to address environmental pollution. This review evaluates the microalgal mitigation of major environmental contaminants—heavy metals, pharmaceuticals and personal care products (PPCPs), persistent organic pollutants (POPs), flue gases, microplastics, and nanoplastics—linking specific microalgae removal mechanisms to pollutant-induced cellular responses. Each section explicitly addresses the effects of these pollutants on microalgae, microalgal bioremediation potential, bioaccumulation process, the risks of trophic transfer, and biomagnification in the food web. Herein, we highlight the current status of the microalgae-based bioremediation prospects, pollutant-induced microalgal toxicity, bioaccumulation, and consequential biomagnification. The novelty of this review lies in integrating biomagnification risks with the bioremediation potential of microalgae, providing a comprehensive perspective not yet addressed in the existing literature. Finally, we identify major research gaps and outline prospective strategies to optimize microalgal bioremediation while minimizing the unintended trophic transfer risks. Full article
Show Figures

Figure 1

25 pages, 2657 KB  
Article
Hydro-Functional Strategies of Sixteen Tree Species in a Mexican Karstic Seasonally Dry Tropical Forest
by Jorge Palomo-Kumul, Mirna Valdez-Hernández, Gerald A. Islebe, Edith Osorio-de-la-Rosa, Gabriela Cruz-Piñon, Francisco López-Huerta and Raúl Juárez-Aguirre
Forests 2025, 16(10), 1535; https://doi.org/10.3390/f16101535 - 1 Oct 2025
Abstract
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under [...] Read more.
Seasonally dry tropical forests (SDTFs) are shaped by strong climatic and edaphic constraints, including pronounced rainfall seasonality, extended dry periods, and shallow karst soils with limited water retention. Understanding how tree species respond to these pressures is crucial for predicting ecosystem resilience under climate change. In the Yucatán Peninsula, we characterized sixteen tree species along a spatial and seasonal precipitation gradient, quantifying wood density, predawn and midday water potential, saturated and relative water content, and specific leaf area. Across sites, diameter classes, and seasons, we measured ≈4 individuals per species (n = 319), ensuring replication despite natural heterogeneity. Using a principal component analysis (PCA) based on individual-level data collected during the dry season, we identified five functional groups spanning a continuum from conservative hard-wood species, with high hydraulic safety and access to deep water sources, to acquisitive light-wood species that rely on stem water storage and drought avoidance. Intermediate-density species diverged into subgroups that employed contrasting strategies such as anisohydric tolerance, high leaf area efficiency, or strict stomatal regulation to maintain performance during the dry season. Functional traits were strongly associated with precipitation regimes, with wood density emerging as a key predictor of water storage capacity and specific leaf area responding plastically to spatial and seasonal variability. These findings refine functional group classifications in heterogeneous karst landscapes and highlight the value of trait-based approaches for predicting drought resilience and informing restoration strategies under climate change. Full article
18 pages, 30918 KB  
Article
Beyond Local Indicators: Integrating Aggregated Runoff into Rainwater Harvesting Potential Mapping
by Christy Mathew Damascene, Irene Pomarico, Aldo Fiori and Antonio Zarlenga
Water 2025, 17(19), 2866; https://doi.org/10.3390/w17192866 - 1 Oct 2025
Abstract
Water scarcity, driven by over-consumption, population growth, climate change, and pollution, poses severe threats to both human health and ecosystems. Rainwater harvesting (RWH) has emerged as a sustainable solution to mitigate these impacts, offering environmental, social, and economic benefits. Traditional RWH site selection [...] Read more.
Water scarcity, driven by over-consumption, population growth, climate change, and pollution, poses severe threats to both human health and ecosystems. Rainwater harvesting (RWH) has emerged as a sustainable solution to mitigate these impacts, offering environmental, social, and economic benefits. Traditional RWH site selection methods rely heavily on GIS-based Multi-Criteria Approaches, such as the Analytical Hierarchy Process, which typically assess runoff potential at the pixel scale using proxy indicators like runoff coefficients or drainage density. However, these methods often overlook horizontal water fluxes and temporal variability, leading to underestimation of the actual runoff available for harvesting. This study introduces an innovative enhancement to AHP/GIS-based methodologies for rainwater harvesting (RWH) site selection by incorporating Aggregated Runoff (AR) as a key criterion. Unlike traditional approaches, the use of AR—representing the total upstream surface water collected at each pixel—enables a more realistic and accurate assessment of RWH potential without increasing data or computational requirements. The proposed criterion is independent of the specific methodology or data layers adopted, making it broadly applicable and easily integrable into existing frameworks. The methodology is applied to the upper Tiber River catchment in Central Italy, demonstrating that AR-based assessments yield more realistic RWH potential maps compared to conventional methods. Additionally, the study proposes a quantile-based scoring system to account for inter-annual hydrological variability, enhancing the robustness of site selection under changing climate conditions. Full article
(This article belongs to the Topic Water Management in the Age of Climate Change)
Show Figures

Figure 1

20 pages, 1951 KB  
Article
Virtual Prototyping of the Human–Robot Ecosystem for Multiphysics Simulation of Upper Limb Motion Assistance
by Rocco Adduci, Francesca Alvaro, Michele Perrelli and Domenico Mundo
Machines 2025, 13(10), 895; https://doi.org/10.3390/machines13100895 - 1 Oct 2025
Abstract
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily [...] Read more.
As stroke is becoming more frequent nowadays, cutting edge rehabilitation approaches are required to recover upper limb functionalities and to support patients during daily activities. Recently, focus has moved to robotic rehabilitation; however, therapeutic devices are still highly expensive, making rehabilitation not easily affordable. Moreover, devices are not easily accepted by patients, who can refuse to use them due to not feeling comfortable. The presented work proposes the exploitation of a virtual prototype of the human–robot ecosystem for the study and analysis of patient–robot interactions, enabling their simulation-based investigation in multiple scenarios. For the accomplishment of this task, the Dynamics of Multi-physical Systems platform, previously presented by the authors, is further developed to enable the integration of biomechanical models of the human body with mechatronics models of robotic devices for motion assistance, as well as with PID-based control strategies. The work begins with (1) a description of the background; hence, the current state of the art and purpose of the study; (2) the platform is then presented and the system is formalized, first from a general side and then (3) in the application-specific scenario. (4) The use case is described, presenting a controlled gym weightlifting exercise supported by an exoskeleton and the results are analyzed in a final paragraph (5). Full article
Show Figures

Figure 1

39 pages, 1103 KB  
Article
Digitalization and Culture–Tourism Integration in China: The Moderated Mediation Effects of Employment Quality, Infrastructure, and New-Quality Productivity
by Kahaer Abula and Yusupu Aihemaiti
Sustainability 2025, 17(19), 8792; https://doi.org/10.3390/su17198792 - 30 Sep 2025
Abstract
The digital economy is significantly transforming the global economic environment and has emerged as the primary driver behind China’s high-quality development. The comprehensive melding of the cultural and tourism sectors (CTI) serves as a strategic approach to boost regional competitiveness and enhance public [...] Read more.
The digital economy is significantly transforming the global economic environment and has emerged as the primary driver behind China’s high-quality development. The comprehensive melding of the cultural and tourism sectors (CTI) serves as a strategic approach to boost regional competitiveness and enhance public welfare. This study investigates the mechanisms and boundary conditions through which the growth of the digital economy across China’s 31 provinces from 2011 to 2023 impacts CTI, aiming to address existing research gaps related to micro-level transmission mechanisms and the analysis of contextual variables. Utilizing a two-way fixed-effects moderated mediation model complemented by instrumental variable (IV-2SLS) regression for testing endogeneity, the research uncovers intricate interactions among the digital economy, CTI, and significant influencing factors. The results strongly suggest that advancements in the digital economy substantially facilitate the integration of cultural and tourism sectors. This beneficial effect is partially mediated through two primary channels: the construction of new infrastructure and enhancements in employment quality, underscoring the critical role of both material and human capital in digital empowerment. Significantly, this research uniquely identifies that new quality productive forces (NQP) have a notable negative moderating impact on the link between the digital economy and cultural–tourism integration. This indicates that in provinces exhibiting high levels of NQP, the positive influence of the digital economy on cultural–tourism integration is considerably diminished. This unexpected finding can be interpreted through mechanisms such as resource dilution, varied integration pathways or maturity effects, along with differences in developmental stages and priorities. Furthermore, it resonates well with the resource-based view, innovation ecosystem theory, and dynamic capability theory. Instrumental variable regression further substantiates the notable positive influence of the digital economy on the integration of cultural tourism. This approach effectively tackles potential endogeneity concerns and reveals the upward bias that may exist in fixed-effects models. The findings contribute significantly to theoretical frameworks by enhancing the understanding of the intricate mechanisms facilitating the digital economy and, for the first time, innovatively designating NQP as a surprising key boundary condition. This enriches theories related to industrial advancement and resource allocation in the digital age. On a practical note, the research provides nuanced and differentiated policy guidance aimed at optimizing pathways for integration across various Chinese provinces at different stages of development. Additionally, it underscores significant implications for other developing nations engaged in digital tourism growth, thereby improving its global relevance. Full article
19 pages, 1680 KB  
Article
Assessing and Identifying Areas with a High Need for Water Retention Improvement Using the Dematel Method
by Dorota Pusłowska-Tyszewska, Izabela Godyń, Joanna Markowska, Tamara Tokarczyk, Wojciech Indyk, Sylwester Tyszewski and Dorota Mirosław Świątek
Water 2025, 17(19), 2853; https://doi.org/10.3390/w17192853 - 30 Sep 2025
Abstract
In the integrated management of water resources, which includes protecting and restoring ecosystems that are directly and indirectly dependent on water, a crucial issue is assessing and identifying areas with the greatest need for improved water retention. This study presents an effective and [...] Read more.
In the integrated management of water resources, which includes protecting and restoring ecosystems that are directly and indirectly dependent on water, a crucial issue is assessing and identifying areas with the greatest need for improved water retention. This study presents an effective and easy-to-apply method based on the multicriteria decision-making approach, which analyses needs and feasibility. Until now, a point bonitation method has been used to evaluate the need to increase the retention capacity of specific areas. Modification of this method involved applying the Decision-Making Trial and Evaluation Laboratory (DEMATEL) approach to estimate the weights of the analysed criteria. The results obtained using the new method were compared with previous studies assessing retention needs in the Masovian Voivodeship (Poland), which relied on the point bonitation method. The final evaluation showed a 74% compliance rate while significantly reducing expert involvement, demonstrating the high applicability of the developed method. Moreover, the DEMATEL method enabled the development of a cause-and-effect model of the criteria and an analysis of their importance. The lowest level of importance (13.6%) was attributed to climatic conditions, while the significance of the remaining criteria (hydrological and hydrogeological conditions, economic use of the catchment area, and catchment area cover) varied within a narrow range, from 20% to 23.5%. Full article
Show Figures

Figure 1

20 pages, 1243 KB  
Article
Collaborative Funding Model to Improve Quality of Care for Metastatic Breast Cancer in Europe
by Matti S. Aapro, Jacqueline Waldrop, Oriana Ciani, Amanda Drury, Theresa Wiseman, Marianna Masiero, Joanna Matuszewska, Shani Paluch-Shimon, Gabriella Pravettoni, Franziska Henze, Rachel Wuerstlein, Marzia Zambon, Sofía Simón Robleda, Pietro Presti and Nicola Fenderico
Curr. Oncol. 2025, 32(10), 547; https://doi.org/10.3390/curroncol32100547 - 30 Sep 2025
Abstract
Breast cancer (BC) is the most frequently diagnosed malignancy in women. Currently, BC is treated with a holistic and multidisciplinary approach from diagnostic, surgical, radio-oncological, and medical perspectives, and advances including in early detection and treatment methods have led to improved outcomes for [...] Read more.
Breast cancer (BC) is the most frequently diagnosed malignancy in women. Currently, BC is treated with a holistic and multidisciplinary approach from diagnostic, surgical, radio-oncological, and medical perspectives, and advances including in early detection and treatment methods have led to improved outcomes for patients in recent years. Yet, BC remains the second most common cause of cancer-related deaths among women and there is an array of gaps to achieve optimal care. To close gaps in cancer care, here we describe a collaborative Request For Proposals (RFP) framework supporting independent initiatives for metastatic breast cancer (MBC) patients and aiming at improving their quality of care. We set up a collaborative framework between Pfizer and Sharing Progress in Cancer Care (SPCC). Our model is based on an RFP system in which Pfizer and SPCC worked together ensuring the independence of the funded projects. We developed a three-step life cycle RFP. The collaborating framework of the project was based on an RFP with a USD 1.5 million available budget for funding independent grants made available from Pfizer and managed in terms of awareness, selection, and monitoring by SPCC. Our three-step model could be applicable and scalable to quality improvement (QI) initiatives that are devoted to tackling obstacles to reaching optimal care. Through this model, seven projects from five different European countries were supported. These projects covered a range of issues related to the experience of patients with MBC: investigator communication, information, and shared decision-making (SDM) practices across Europe; development, delivery, and evaluation of a scalable online educational program for nurses; assessment of disparities among different minority patient groups; development of solutions to improve compliance or adherence to therapy; an information technology (IT) solution to improve quality of life (QoL) of patients with MBC and an initiative to increase awareness and visibility of MBC patients. Overall, an average of 171 healthcare professionals (HCPs) per project and approximately 228,675 patients per project were impacted. We set up and describe a partnership model among different stakeholders within the healthcare ecosystem―academia, non-profit organizations, oncologists, and pharmaceutical companies―aiming at supporting independent projects to close gaps in the care of patients with MBC. By removing barriers at different layers, these projects contributed to the achievement of optimal care for patients with MBC. Full article
(This article belongs to the Section Breast Cancer)
Show Figures

Figure 1

39 pages, 6394 KB  
Article
A Fair and Congestion-Aware Flight Authorization Framework for Unmanned Traffic Management
by David Carramiñana, Juan A. Besada and Ana M. Bernardos
Aerospace 2025, 12(10), 881; https://doi.org/10.3390/aerospace12100881 - 29 Sep 2025
Abstract
With the expected increase in drone operations, inter-operator fairness issues and congestion problems are expected to arise due to the strategic authorization approach mandated in European regulation. As an alternative, the proposed authorization method is based on a deferred authorization decision with multiple-priority [...] Read more.
With the expected increase in drone operations, inter-operator fairness issues and congestion problems are expected to arise due to the strategic authorization approach mandated in European regulation. As an alternative, the proposed authorization method is based on a deferred authorization decision with multiple-priority classes that are gate-kept by a series of scarce flight tokens. In it, operators can guide the aerial traffic deconfliction process by indicating the criticality of each operation (i.e., selected priority class) based on their business logic and the available flight tokens. Scarce token distribution is performed by a centralized service following a fairness- or congestion-management policy defined by authorities. Also, geographical and temporal incentives can be considered using a 4D-dependent temporal airspace cost to compute the required number of tokens per flight. Results based on several simulation scenarios demonstrate the validity of the approach and its capability in prioritizing different operators’ behaviors (fairness management) or avoiding flight hotspots (congestion management). Overall, it is concluded that the proposed method is an efficient, fair, simple and scalable novel authorization process that can be integrated into the U-space ecosystem. Full article
(This article belongs to the Special Issue Research and Applications of Low-Altitude Urban Traffic System)
Show Figures

Figure 1

Back to TopTop