Assessing and Identifying Areas with a High Need for Water Retention Improvement Using the Dematel Method
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Valorisation of SWR Development Needs—PSWR-2008 Approach
- Step 1. Determination of the purpose of the valorisation: an assessment of the spatial diversity of the need to increase water retention.
- Step 2. Determination of the research area and selection of an adequate spatial unit for the assessment: in the Mazovian Voivodeship, NC = 141 hydrographic units, sub-catchments located entirely or partially within the voivodeship were distinguished.
- Step 3. Selection of evaluation criteria and corresponding indicators related to the valuation objective: the criteria characterised natural and economic conditions related to the need (purposefulness) for SWR development. For each criterion (G), indicators (K) were defined, taking into account the possibility of their calculation based on available data. Five criteria were defined (NG = 5), described by 11 indicators (NK = 11). These were:
- G1—climatic conditions with two indicators (NGK1 = 2): K1,1 climatic precipitation deficit Dclim, and K1,2 the frequency of precipitation lower than 50% of the multi-year average precipitation sum FPD_50.
- G2—hydrological conditions with two indicators (NGK2 = 2): K2,1 the volume of specific runoff for the mean low flow from the multi-year period MLq, and K2,2 the ratio of the maximum flow with a probability of exceedance equal to 1% to the mean low flow Q1_MLQ).
- G3—hydrogeological conditions with two indicators (NGK3 = 2): K3,1 water retention of soils RetSoil and K3,2 the module of renewable groundwater resources MRGR).
- G4—economic use of the catchment area with three indicators (NGK4 = 3): K4,1 share of urbanised areas—WUrban, K4,2 share of orchards WOrcha, and K4,3 share of arable land WArable).
- G5—catchment land cover with two indicators (NGK5 = 2): K5,1 share of forests—WForest, K5,2 share of the area of lakes and artificial water reservoirs—WLake.
- Step 4. Calculation of indicator values in spatial units: numerical values of NK = 11 indicators were determined for all NC = 141 sub-catchments. As a result, a matrix of indicator values [kc,i,j] was obtained (c = 1, …, NC; i = 1, …, NG; j = 1,…, NGKi).
- Step 5. Adoption of the assessment scale and threshold values for individual indicators: a 3-point scale was used for indicators: 2—high, 1—medium, and 0—low predisposition of the spatial unit to develop water retention. For each indicator, Kij, an interdisciplinary team of experts established two threshold values separating predisposition classes (Li,j and Hi,j; i = 1, …, NG; j = 1, …, NGKi).
- Step 6. Assessment of spatial units in terms of indicators: the partial scores (sc,i,j) of the sub-catchment c in terms of the j-th indicator in the i-th criterion was calculated:By converting the values of individual indicators, kc,i,j, into scores, sz,i,j, following the assumptions of the point bonitation method, the scores of individual indicators can be treated as comparable.
- Step 7. Determination of the overall assessment: the overall assessment Vc of the analysed sub-catchment is equal to the sum of the partial scores sc,i,j, which means that each of the indicators is equally important:
- Step 8. Transformation of the overall assessment to a 3-point scale grade: the Vc scores were transformed to a 3-point scale (V3c), adopting threshold values for grades at the level of percentiles 70 and 20 as a result of experts’ discussion: grade 2—high priority (development of retention measures is very desirable), when overall assessment Vc ≥ Percentile_70 (12 points), grade 1—medium priority (development of retention is beneficial), when Vc assessment was within the range of Percentile_20 ≤ Vc < Percentile_70, and grade 0—low priority (there is no need to develop retention measures) when the Vc assessment < Percentile_20 (8 points).
- Step 9. Presentation of the results of valorisation: in tabular form, containing sub-catchments’ overall assessment (Vc) and grades on a 3-point scale (V3c) and valorisation maps of the Masovian Voivodeship area.
2.3. Valorisation of SWR Development Needs Using the DEMATEL Method
- Use of continuous standardisation of indicator values instead of a 3-point assessment. The values kc,i,j of individual indicators are standardised according to the relation:
- Change in the method of calculating the overall assessment of the sub-catchment Vc (c = 1, …, NC) by replacing the sum of the partial scores sc,i,j (c = 1, …, NC; i = 1, …, NK; j = 1, …, NGKi) of individual indicators by the weighted sum of standardised values of the (xc,i,j). In PSWR-2008, all indicators were treated as equally important. The proposed approach introduces weights for the evaluation criteria (βj; j = 1, …, NG) and weights of indicators within individual criteria (αi,j; i = 1, …, NG, j = 1, …, NGKi). The criteria weights are determined using the DEMATEL method (see Section 2.4). The weights for the indicators within each criterion can be arbitrarily determined by experts or using the DEMATEL method. Here, we used the first approach, assuming the same weights for the indicators in each criterion (αi,j = 1/NGKi).
- The overall VDc assessment for the river sub-catchment c was calculated:means the summary score of the sub-catchment c from the point of view of i-th criterion;xc,i,j for the sub-catchment c is the standardised value of the j-th indicator in the i-th criterion.
2.4. DEMATEL Method
- Step 1—defining the set of factors.
- Step 2—determining the influence matrix A.
- Step 3—determination of a standardised matrix of influences X.
- Step 4—Calculation of the total impact matrix T.
- Step 5—Calculation of weights for factors for multicriteria analyses.
3. Results of Assessment Using the DEMATEL Method
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Napiórkowski, J.; Bogdanowicz, E.; Kalinowska, M.; Karamuz, E.; Kochanek, K.; Kuptel-Markiewicz, I.; Nones, M.; Belay Senbeta, T. Human and Climate Impacts on Drought Dynamics and Vulnerability. In Proceedings of the 40th IAHR World Congress, Vienna, Austria, 21–25 August 2023; IAHR: Vienna, Austria, 2023. [Google Scholar]
- The United Nations. World Water Development Report 2023. Partnerships and Cooperation for Water. Available online: https://www.unwater.org/publications/un-world-water-development-report-2023 (accessed on 19 August 2025).
- IPPC (The Intergovernmental Panel on Climate Change). Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPPC: Geneva, Switzerland, 2015. [Google Scholar]
- WWAP (United Nations World Water Assessment Programme). Facing the Challenges: Case Studies and Indicators; UNESCO: Paris, France, 2015; Volume 4. [Google Scholar]
- Milly, P.C.D.; Betancourt, J.; Falkenmark, M.; Hirsch, R.M.; Kundzewicz, Z.W.; Lettenmaier, D.P.; Stouffer, R.J. Stationarity Is Dead: Whither Water Management? Science 2008, 319, 573–574. [Google Scholar] [CrossRef] [PubMed]
- Mitsch, W.J.; Jørgensen, S.E. Ecological Engineering: A Field Whose Time Has Come. Ecol. Eng. 2003, 20, 363–377. [Google Scholar] [CrossRef]
- Odum, H.T.; Odum, B. Concepts and Methods of Ecological Engineering. Ecol. Eng. 2003, 20, 339–361. [Google Scholar] [CrossRef]
- Gosselin, F. Redefining Ecological Engineering to Promote Its Integration with Sustainable Development and Tighten Its Links with the Whole of Ecology. Ecol. Eng. 2008, 32, 199–205. [Google Scholar] [CrossRef]
- Radczuk, L.; Markowska, J. Inżynieria Ekologiczna—Początek XXI Wieku. Infrastruct. Ecol. Rural. Areas 2008, 7, 113–120. [Google Scholar]
- Wójcik-Madej, J.; García, J.; Sowińska-Świerkosz, B. Multi-Criteria Evaluation Method for the Selection of Nature-Based Solutions for Urban Challenges. J. Environ. Manag. 2025, 373, 123387. [Google Scholar] [CrossRef]
- Sowińska-Świerkosz, B.; García, J. What Are Nature-Based Solutions (NBS)? Setting Core Ideas for Concept Clarification. Nat.-Based Solut. 2022, 2, 100009. [Google Scholar] [CrossRef]
- Donati, G.F.A.; Bolliger, J.; Psomas, A.; Maurer, M.; Bach, P.M. Reconciling Cities with Nature: Identifying Local Blue-Green Infrastructure Interventions for Regional Biodiversity Enhancement. J. Environ. Manag. 2022, 316, 115254. [Google Scholar] [CrossRef]
- Moreau, C.; Cottet, M.; Rivière-Honegger, A.; François, A.; Evette, A. Nature-Based Solutions (NbS): A Management Paradigm Shift in Practitioners’ Perspectives on Riverbank Soil Bioengineering. J. Environ. Manag. 2022, 308, 114638. [Google Scholar] [CrossRef]
- Liu, L.; Dobson, B.; Mijic, A. Optimisation of Urban-Rural Nature-Based Solutions for Integrated Catchment Water Management. J. Environ. Manag. 2023, 329, 117045. [Google Scholar] [CrossRef]
- Tal-maon, M.; Portman, M.E.; Broitman, D.; Housh, M. Identifying the Optimal Type and Locations of Natural Water Retention Measures Using Spatial Modeling and Cost-Benefit Analysis. J. Environ. Manag. 2024, 368, 122229. [Google Scholar] [CrossRef]
- Effiong, C.J. Climate Justice in Land Use Planning: Exploring the Potential and Challenges of Nature-Based Solutions Integration in Nigeria. J. Environ. Manag. 2025, 377, 124717. [Google Scholar] [CrossRef]
- Pahl-Wostl, C.; Jeffrey, P.; Isendahl, N.; Brugnach, M. Maturing the New Water Management Paradigm: Progressing from Aspiration to Practice. Water Resour. Manag. 2011, 25, 837–856. [Google Scholar] [CrossRef]
- Markowska, J.; Szalińska, W.; Dąbrowska, J.; Brząkała, M. The Concept of a Participatory Approach to Water Management on a Reservoir in Response to Wicked Problems. J. Environ. Manag. 2020, 259, 109626. [Google Scholar] [CrossRef] [PubMed]
- Kreibich, H.; Schröter, K.; Di Baldassarre, G.; Van Loon, A.F.; Mazzoleni, M.; Abeshu, G.W.; Agafonova, S.; Aghakouchak, A.; Aksoy, H.; Alvarez-Garreton, C.; et al. Panta Rhei Benchmark Dataset: Socio-Hydrological Data of Paired Events of Floods and Droughts. Earth Syst. Sci. Data 2023, 15, 2009–2023. [Google Scholar] [CrossRef]
- Kreibich, H.; Van Loon, A.F.; Schröter, K.; Ward, P.J.; Mazzoleni, M.; Sairam, N.; Abeshu, G.W.; Agafonova, S.; AghaKouchak, A.; Aksoy, H.; et al. The Challenge of Unprecedented Floods and Droughts in Risk Management. Nature 2022, 608, 80–86. [Google Scholar] [CrossRef]
- Latinopoulos, D.; Bakas, T.; Kagalou, I.; Spiliotis, M. Threat Prioritization and Causality Relations for Sustainable Water Management under the Circular Economy Principles: Case Study in Laspias River, Greece Using EDPSIR and DEMATEL. In Proceedings of the EWaS5 International Conference: Water Security and Safety Management: Emerging Threats or New Challenges? Moving from Therapy and Restoration to Prognosis and Prevention, Naples, Italy, 12–15 July 2022; MDPI: Basel, Switzerland, 2022; Volume 21, p. 59. [Google Scholar]
- Bacud, S.A.D. Henri Fayol’s Principles of Management and Its Effect to Organizational Leadership and Governance. J. Crit. Rev. 2020, 7, 162–167. [Google Scholar] [CrossRef]
- Nermend, K. Metody Analizy Wielokryterialnej i Wielowymiarowej We Wspomaganiu Decyzji; PWN: Warszawa, Poland, 2020. [Google Scholar]
- Rebolledo, B.; Gil, A.; Flotats, X.; Sánchez, J.Á. Assessment of Groundwater Vulnerability to Nitrates from Agricultural Sources Using a GIS-Compatible Logic Multicriteria Model. J. Environ. Manag. 2016, 171, 70–80. [Google Scholar] [CrossRef]
- de Castro-Pardo, M.; Martínez, P.F.; Zabaleta, A.P.; Azevedo, J.C. Dealing with Water Conflicts: A Comprehensive Review of MCDM Approaches to Manage Freshwater Ecosystem Services. Land 2021, 10, 469. [Google Scholar] [CrossRef]
- Keyvanfar, A.; Shafaghat, A.; Ismail, N.; Mohamad, S.; Ahmad, H. Multifunctional Retention Pond for Stormwater Management: A Decision-Support Model Using Analytical Network Process (ANP) and Global Sensitivity Analysis (GSA). Ecol. Indic. 2021, 124, 107317. [Google Scholar] [CrossRef]
- Tameh, S.N.; Gnecco, I.; Palla, A. Analytic Hierarchy Process in Selecting Bioretention Cells in Urban Residential Settlement: Analysing Hydrologic and Hydraulic Metrics for Sustainable Stormwater Management. J. Environ. Manag. 2024, 371, 123142. [Google Scholar] [CrossRef]
- Javidi Sabbaghian, R.; Zarghami, M.; Nejadhashemi, A.P.; Sharifi, M.B.; Herman, M.R.; Daneshvar, F. Application of Risk-Based Multiple Criteria Decision Analysis for Selection of the Best Agricultural Scenario for Effective Watershed Management. J. Environ. Manag. 2016, 168, 260–272. [Google Scholar] [CrossRef] [PubMed]
- Enríquez-Hidalgo, A.M.; Vargas-Luna, A.; Torres, A. Evaluation of Decision-Support Tools for Coastal Flood and Erosion Control: A Multicriteria Perspective. J. Environ. Manag. 2025, 373, 123924. [Google Scholar] [CrossRef] [PubMed]
- Tokarczyk, T.; Adynkiewicz-Piragas, M.; Krasowski, W.; Otop, I.; Szalińska, W. Niżówki, Susze i Ich Skutki w Hydromorfologii Rzek Polski. In Gospodarka Wodna w Polsce; Magnuszewski, A., Ed.; KGW PAN: Warszawa, Poland, 2024; pp. 101–146. [Google Scholar]
- Kundzewicz, Z.W.; Pińskwar, I. Are Pluvial and Fluvial Floods on the Rise? Water 2022, 14, 2612. [Google Scholar] [CrossRef]
- Pusłowska-Tyszewska, D.; Kardel, I.; Tyszewski, S.; Okruszko, T.; Chormański, J. Podstawy Metodyczne Programu Małej Retencji Dla Województwa Mazowieckiego. Infrastruct. Ecol. Rural. Areas 2008, 5, 71–84. [Google Scholar]
- Kot, R. The Point Bonitation Method for Evaluating Geodiversity: A Guide with Examples (Polish Lowland). Geogr. Ann. Ser. A Phys. Geogr. 2015, 97, 375–393. [Google Scholar] [CrossRef]
- Moffett, A.; Sarkar, S. Incorporating Multiple Criteria into the Design of Conservation Area Networks: A Minireview with Recommendations. Divers. Distrib. 2006, 12, 125–137. [Google Scholar] [CrossRef]
- Velasquez, M.; Hester, P.T. An Analysis of Multi-Criteria Decision Making Methods. Int. J. Oper. Res. 2013, 10, 56–66. [Google Scholar]
- Turner, M.G.; Gardner, R.H. Landscape Ecology in Theory and Practice: Pattern and Process, 2nd ed.; Springer: New York, NY, USA, 2015; ISBN 9781493927944. [Google Scholar]
- Rucińska, D.; Zagrzejewska, M. The Point Bonitation Method and Its Adaptation in Risk Studies: A Case Study in Sri Lanka’s Cities in the Coastal Zone. Int. J. Environ. Res. Public Health 2021, 18, 2060. [Google Scholar] [CrossRef]
- Kobryń, A. Dematel as a Weighting Method in Multi-Criteria Decision Analysis. Mult. Criteria Decis. Mak. 2017, 12, 153–167. [Google Scholar] [CrossRef]
- Canco, I.; Kruja, D.; Iancu, T. AHP, a Reliable Method for Quality Decision Making: A Case Study in Business. Sustainability 2021, 13, 13932. [Google Scholar] [CrossRef]
- Tseng, M.-L.; Lin, Y.H. Application of Fuzzy DEMATEL to Develop a Cause and Effect Model of Municipal Solid Waste Management in Metro Manila. Environ. Monit. Assess. 2009, 158, 519–533. [Google Scholar] [CrossRef] [PubMed]
- Natkaniec, W.; Godyń, I. Urban Flood Risk Assessment and Mapping Using GIS-DEMATEL Method: Case of the Serafa River Watershed, Poland. Water 2024, 16, 2636. [Google Scholar] [CrossRef]
- Zheng, Q.; Shen, S.-L.; Zhou, A.; Lyu, H.-M. Inundation Risk Assessment Based on G-DEMATEL-AHP and Its Application to Zhengzhou Flooding Disaster. Sustain. Cities Soc. 2022, 86, 104138. [Google Scholar] [CrossRef]
- Kowalski, J.; Lendo-Siwicka, M.; Skutnik, Z.; Mirosław-Świątek, D. Application of the DEMATEL Method for Quantitative Analysis of Risk Factors for Railway Investments in Poland. PLoS ONE 2024, 19, e0303606. [Google Scholar] [CrossRef]
- Mirosław-Świątek, D.; Popielski, P.; Śliwiński, P.; Cwalina, T.; Skutnik, Z. Analysis of Factors Influencing Levee Safety Using the DEMATEL Method. PLoS ONE 2021, 16, e0255755. [Google Scholar] [CrossRef]
- Hedayat, H.; Seyed Kaboli, H. Drought Risk Assessment: The Importance of Vulnerability Factors Interdependencies in Regional Drought Risk Management. Int. J. Disaster Risk Reduct. 2024, 100, 104152. [Google Scholar] [CrossRef]
- Mukherjee, S.; Paul, S.; Bhattacharya, S.; Islam, A.; Mahammad, S.; Alam, E. Optimizing Water Resource Management in Tropical Drought-Prone Regions through Hybrid MCDM Techniques: A Water-Stress Mapping Approach. J. Hydrol. Reg. Stud. 2025, 57, 102171. [Google Scholar] [CrossRef]
- Ma, X.; Wang, Y.; Tang, Z.; Li, S. Urban Flood Risk Assessment Based on DEMATEL-ANP Hybrid Fuzzy Evaluation and Hydrodynamic Model. Water 2025, 17, 1494. [Google Scholar] [CrossRef]
- Zheng, C.; Yang, W.; Jiang, X.; Lian, J.; Hu, D.; Yan, X.; Yan, L. A Novel Integrated Urban Flood Risk Assessment Approach Coupling GeoDetector-Dematel and Clustering Method. J. Environ. Manag. 2024, 354, 120308. [Google Scholar] [CrossRef]
- Taherizadeh, M.; Niknam, A.; Nguyen-Huy, T.; Mezősi, G.; Sarli, R. Flash Flood-Risk Areas Zoning Using Integration of Decision-Making Trial and Evaluation Laboratory, GIS-Based Analytic Network Process and Satellite-Derived Information. Nat. Hazards 2023, 118, 2309–2335. [Google Scholar] [CrossRef]
- Chukwuma, E.C.; Okonkwo, C.C.; Ojediran, J.O.; Anizoba, D.C.; Ubah, J.I.; Nwachukwu, C.P. A GIS Based Flood Vulnerability Modelling of Anambra State Using an Integrated IVFRN-DEMATEL-ANP Model. Heliyon 2021, 7, e08048. [Google Scholar] [CrossRef]
- Muller, R.; Pusłowska-Tyszewska, D.; Mirosław-Świątek, D.; Kardel, I.; O’keeffe, J.; Piniewski, M.; Cibilić, A.; Vukmanić, L.; Waters, C.; Pugelj, A.; et al. Practical Guidelines on Planning Natural and Small Water Retention Measures in River Basins; Okruszko, T., Bokal, S., Eds.; FramWat: Bratislava, Slovakia, 2020; Available online: https://programme2014-20.interreg-central.eu/Content.Node/DT353-Guidelines.pdf (accessed on 19 August 2025).
- Si, S.-L.; You, X.-Y.; Liu, H.-C.; Zhang, P. DEMATEL Technique: A Systematic Review of the State-of-the-Art Literature on Methodologies and Applications. Math. Probl. Eng. 2018, 2018, 3696457. [Google Scholar] [CrossRef]
- Lee, H.S.; Tzeng, G.H.; Yeih, W.; Wang, Y.J.; Yang, S.C. Revised DEMATEL: Resolving the Infeasibility of DEMATEL. Appl. Math. Model. 2013, 37, 6746–6757. [Google Scholar] [CrossRef]
- Tamura, H.; Akazawa, K. Stochastic DEMATEL for Structural Modeling of a Complex Problematique for Realising Safe, Secure and Reliable Society. J. Telecommun. Inf. Technol. 2005, 4, 139–146. [Google Scholar] [CrossRef]
- Tharwat, A. Classification Assessment Methods. Appl. Comput. Inform. 2021, 17, 168–192. [Google Scholar] [CrossRef]
- Wojkowski, J.; Wałęga, A.; Lepeška, T.; Młyński, D.; Radecki-Pawlik, A. Rich North, Poor South—Regionalization of European Water Retention: The Landscape Hydric Potential Concept. Sci. Total Environ. 2024, 954, 176494. [Google Scholar] [CrossRef]
- Stoilova, S. Study of a Relationship between the Criteria for Selection of the Transport Technology for the Passengers Carriage Using the DEMATEL Method. Commun. Sci. Lett. Univ. Žilina 2020, 22, 46–55. [Google Scholar] [CrossRef]
- Khazai, B.; Merz, M.; Schulz, C.; Borst, D. An Integrated Indicator Framework for Spatial Assessment of Industrial and Social Vulnerability to Indirect Disaster Losses. Nat. Hazards 2013, 67, 145–167. [Google Scholar] [CrossRef]
Factor Description (Criterion) | Factor | G1 | G2 | G3 | G4 | G5 | Total |
---|---|---|---|---|---|---|---|
Climatic conditions | G1 | 0.000 | 3.000 | 1.833 | 0.500 | 1.167 | 6.500 |
Hydrological conditions | G2 | 0.000 | 0.000 | 1.500 | 1.500 | 1.500 | 4.500 |
Hydrogeological conditions | G3 | 0.000 | 2.167 | 0.000 | 1.167 | 2.000 | 5.333 |
Economic use of the catchment area | G4 | 0.667 | 2.500 | 1.667 | 0.000 | 1.833 | 6.667 |
Catchment area cover | G5 | 1.000 | 2.333 | 1.833 | 1.500 | 0.000 | 6.667 |
Total | 1.667 | 10.000 | 6.833 | 4.667 | 6.500 |
Factor Description (Criterion) | Factor | G1 | G2 | G3 | G4 | G5 |
---|---|---|---|---|---|---|
Climatic conditions | G1 | 0.046 | 0.521 | 0.364 | 0.220 | 0.313 |
Hydrological conditions | G2 | 0.047 | 0.210 | 0.287 | 0.261 | 0.292 |
Hydrogeological conditions | G3 | 0.052 | 0.417 | 0.179 | 0.255 | 0.351 |
Economic use of the catchment area | G4 | 0.116 | 0.496 | 0.361 | 0.179 | 0.376 |
Catchment area cover | G5 | 0.142 | 0.485 | 0.374 | 0.307 | 0.220 |
Factor Description (Criterion) | Factor | R | C | R + C | R − C | wi |
---|---|---|---|---|---|---|
Climatic conditions | G1 | 1.464 | 0.403 | 1.867 | 1.060 | 0.136 |
Hydrological conditions | G2 | 1.097 | 2.120 | 3.224 | −1.031 | 0.235 |
Hydrogeological conditions | G3 | 1.255 | 1.565 | 2.820 | −0.310 | 0.205 |
Economic use of the catchment area | G4 | 1.528 | 1.222 | 2.749 | 0.306 | 0.200 |
Catchment area cover | G5 | 1.528 | 1.553 | 3.081 | −0.025 | 0.224 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pusłowska-Tyszewska, D.; Godyń, I.; Markowska, J.; Tokarczyk, T.; Indyk, W.; Tyszewski, S.; Świątek, D.M. Assessing and Identifying Areas with a High Need for Water Retention Improvement Using the Dematel Method. Water 2025, 17, 2853. https://doi.org/10.3390/w17192853
Pusłowska-Tyszewska D, Godyń I, Markowska J, Tokarczyk T, Indyk W, Tyszewski S, Świątek DM. Assessing and Identifying Areas with a High Need for Water Retention Improvement Using the Dematel Method. Water. 2025; 17(19):2853. https://doi.org/10.3390/w17192853
Chicago/Turabian StylePusłowska-Tyszewska, Dorota, Izabela Godyń, Joanna Markowska, Tamara Tokarczyk, Wojciech Indyk, Sylwester Tyszewski, and Dorota Mirosław Świątek. 2025. "Assessing and Identifying Areas with a High Need for Water Retention Improvement Using the Dematel Method" Water 17, no. 19: 2853. https://doi.org/10.3390/w17192853
APA StylePusłowska-Tyszewska, D., Godyń, I., Markowska, J., Tokarczyk, T., Indyk, W., Tyszewski, S., & Świątek, D. M. (2025). Assessing and Identifying Areas with a High Need for Water Retention Improvement Using the Dematel Method. Water, 17(19), 2853. https://doi.org/10.3390/w17192853