Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches
Highlights
- A comprehensive review identifies 39 multidisciplinary drivers of beach evolu-tion, spanning meteorological, oceanographic, geological, biological, and anthro-pogenic factors.
- A case study of the Langue de Barbarie sandspit in Senegal (West Africa) demonstrates how integrating in situ measurements with satellite-derived information can reveal key processes that are often overlooked in coastal studies.
- Improved prediction of shoreline evolution requires the combination of remote sensing observations, numerical models and local monitoring in order to capture the multiscale and multidisciplinary drivers of change.
- Using high-resolution, long-term satellite data alongside in situ surveys provides a pathway toward more reliable, reproducible, and globally transferable approaches to coastal risk assessment and management.
Abstract
1. Introduction
2. Scope and Literature Selection
3. Review of the Diverse Factors Impacting Beach Dynamics
3.1. Oceanographic and Climatic Forcing
3.2. Biological Effects on Beach Morphodynamic
3.3. Geological Effects on Beach Morphodynamic
3.4. Geological Settings and Sediment Availability
3.5. Nearshore Sediment Thickness
3.6. Sediment Characteristics
3.7. Bedforms
3.8. Tectonic and Sediment Retention
3.9. Anthropogenic Effects on Beach Morphodynamics
4. Review of Remote Sensing Sensors and Methods for Beach Monitoring and Prediction
5. Discussion
5.1. The Case of the Langue de Barbarie Sandspit (Saint Louis, Senegal, West Africa): An Illustration of the Integration of Multi-Driver Processes and Remote Sensing Gaps
5.2. The Need for a Holistic Complex Approaches in Observing and Predicting Beach States: From Simplification to Complexification
5.3. Perspective of Satellite Earth Observation for Dynamic Coastal Digital Twins
5.4. Modeling Hybdrid Framework and Uncertainty in Beach Evolution Prediction
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Correction Statement
References
- Garlan, T.; Bergsma, E.W.J.; Gregoire, G.; Taveneau, A.; Sadio, M.; Sy, B.A.; Murat, A.; Krieche, R.; Almar, R. Characteristics of the Origin Dynamics of Sediments of a Sand-Spit with an Exceptional Dynamic: Langue de Barbarie (Saint-Louis Senegal). In Proceedings of the Coastal Sediments 2023, New-Orleans, LA, USA, 11–15 April 2023; pp. 978–995. [Google Scholar] [CrossRef]
- Marchesiello, P.; Chauchat, J.; Shafiei, H.; Almar, R.; Benshila, R.; Dumas, F.; Debreu, L. 3D wave-resolving simulation of sandbar migration. Ocean. Model. 2022, 180, 102127. [Google Scholar] [CrossRef]
- Roelvink, D.; Ad Reniers Ad van Dongeren, A.; van Thiel de Vries, J.; McCall, R.; Lescinski, J. Modelling storm impacts on beaches, dunes and barrier islands. Coast. Eng. 2009, 56, 1133–1152. [Google Scholar] [CrossRef]
- Komar, P.D. Beach Processes and Sedimentation, 2nd ed.; Prentice-Hall, Inc.: Saddle River, NJ, USA, 1998. [Google Scholar]
- Woodroffe. Coasts: Form, Process and Evolution; Cambridge University Press: Cambridge, UK, 2002. [Google Scholar]
- Masselink, G.; Hughes, M.; Knight, J. Introduction to Coastal Processes & Geomorphology; Hodder Education: London, UK, 2003. [Google Scholar]
- Davis, R.A., Jr.; Duncan, M.F. Beaches and Coasts; Blackwell Publishing: Oxford, OH, USA, 2004. [Google Scholar]
- Davidson-Arnott, R. Introduction to Coastal Processes and Geomorphology; Cambridge University Press: Cambridge, UK, 2010. [Google Scholar]
- Shroder, J.F. (Ed.) Treatise on Geomorphology; Academic Press: Cambridge, MA, USA, 2022. [Google Scholar]
- Stive Marcel, J. How important is global warming for coastal erosion? Clim. Change 2004, 64, 27. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Almar, R.; Senechal, N.; Castelle, B.; Addo, K.A.; Marieu, V.; Ranasinghe, R. Shoreline resilience to individual storms and storm clusters on a meso-macrotidal barred beach. Geomorphology 2017, 290, 265–276. [Google Scholar] [CrossRef]
- Luijendijk, A.; Hagenaars, G.; Ranasinghe, R.; Baart, F.; Donchyts, G.; Aarninkhof, S. The State of the World’s Beaches. Sci. Rep. 2018, 8, 664. [Google Scholar] [CrossRef] [PubMed]
- Hequette, A.; Aernouts, D. The influence of nearshores and bank dynamics on shoreline evolution in a macrotidal coastal environment, Calais, northern France. Cont. Shelf Res. 2010, 30, 1349–1361. [Google Scholar] [CrossRef]
- Syvitski, J.; Vörösmarty, C.J.; Kettner, A.J.; Green, P. Impact of humans on the flux of terrestrial sediment to the global coastal ocean. Sci. Res. Artic. 2005, 308, 376–380. [Google Scholar] [CrossRef]
- Anthony, E.J.; Brunier, G.; Besset, M.; Goichot, M.; Dussouillez, P.; Nguyen, V.L. Linking rapid erosion of the Mekong River delta to human activities. Sci. Rep. 2015, 5, 14745. [Google Scholar] [CrossRef]
- Almar, R.; Boucharel, J.; Graffin, M.; Abessolo, G.O.; Thoumyre, G.; Papa, F.; Ranasinghe, R.; Montano, J.; Bergsma, E.W.; Baba, M.W.; et al. Influence of El Niño on the variability of global shoreline position. Nat. Commun. 2023, 14, 3133. [Google Scholar] [CrossRef]
- Lefebvre, J.P.; Almar, R.; Viet, N.T.; Thuan, D.H.; Binh, L.T.; Ibaceta, R.; Duc, N.V. Contribution of swash processes generated by low energy wind waves in the recovery of a beach impacted by extreme events: Nha Trang, Vietnam. J. Coast. Res. 2014, 70, 663–668. [Google Scholar] [CrossRef]
- Almar, R.; Marchesiello, P.; Almeida, L.P.; Thuan, D.H.; Tanaka, H.; Viet, N.T. Shoreline response to a sequence of typhoon and monsoon events. Water 2017, 9, 364. [Google Scholar]
- Thuan, D.H.; Almar, R.; Marchesiello, P.; Viet, N.T. Video sensing of nearshore bathymetry evolution with error estimate. J. Mar. Sci. Eng. 2019, 7, 233. [Google Scholar] [CrossRef]
- Garlan, T.; Almar, R.; Gauduin, H.; Gosselin, M.; Morio, O.; Labarthe, C. 3Dvariability of sediment granulometry in two tropical environments: Nha Trang (Vietnam) and of Saint-Louis (Senegal). J. Coast. Res. 2020, 95, 11–15. [Google Scholar] [CrossRef]
- Ndour, A.; Bâ, K.; Almar, A.; Almeida, P.; Sall, M.; Diedhiou, P.M.; Floc’h, F.; Daly, C.; Grandjean, P.; Boivin, J.P.; et al. On the Natural and Anthropogenic drivers of the Senegalese (West Africa) low Coast Evolution: Saint-Louis beach 2016 COASTVAR experiment and 3D modeling of short-term coastal protection measures. J. Coast. Res. 2020, 95, 583–587. [Google Scholar] [CrossRef]
- Taveneau, A.; Almar, R.; Bergsma, E.W.; Sy, B.A.; Ndour, A.; Sadio, M.; Garlan, T. Observing and predicting coastal erosion at the Langue de Barbarie sand spit around Saint Louis (Senegal, West Africa) through satellite-derived digital elevation model and shoreline. Remote Sens. 2021, 13, 2454. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Sadio, M.; Sakho, I.; Almar, R.; Garlan, T.; Gosselin, M.; Gauduin, H. Sand-spit evolution and inlet dynamics derived from space-borne optical imagery: Is the Senegal-river inlet closing? J. Coast. Res. 2020, 95, 372–376. [Google Scholar] [CrossRef]
- Angnuureng, D.B.; Brempong, K.E.; Jayson-Quashigah, P.N.; Dada, O.A.; Akuoko, S.G.I.; Frimpomaa, J.; Mattah, P.A.; Almar, R. Satellite, drone and video camera multi-platform monitoring of coastal erosion at an engineered pocket beach: A showcase for coastal management at Elmina Bay, Ghana (West Africa). Reg. Stud. Mar. Sci. 2022, 53, 102437. [Google Scholar] [CrossRef]
- Salameh, E.; Frappart, F.; Almar, R.; Baptista, P.; Heygster, G.; Lubac, B.; Laignel, B. Monitoring beach topography and nearshore bathymetry using spaceborne remote sensing: A review. Remote Sens. 2019, 11, 2212. [Google Scholar] [CrossRef]
- Benveniste, J.; Cazenave, A.; Vignudelli, S.; Fenoglio-Marc, L.; Shah, R.; Almar, R.; Andersen, O.; Birol, F.; Bonnefond, P.; Bouffard, J.; et al. Requirements for a coastal hazards observing system. Front. Mar. Sci. 2019, 6, 348. [Google Scholar] [CrossRef]
- Melet, A.; Teatini, P.; Le Cozannet, G.; Jamet, C.; Conversi, A.; Benveniste, J.; Almar, R. Earth observations for monitoring marine coastal hazards and their drivers. Surv. Geophys. 2020, 41, 1489–1534. [Google Scholar] [CrossRef]
- Laignel, B.; Vignudelli, S.; Almar, R.; Becker, M.; Bentamy, A.; Benveniste, J.; Birol, F.; Frappart, F.; Idier, D.; Salameh, E.; et al. Observation of the Coastal Areas, Estuaries and Deltas from Space. Surv. Geophys. 2023, 44, 1309–1356. [Google Scholar] [CrossRef]
- Shepard, F.P. Revised Classification of Marine Shorelines. J. Geol. 1937, 45, 602–624. [Google Scholar] [CrossRef]
- Reineck, H.E.; Singh, J.B. Depositional Sedimentary Environments with Reference to Terrigenous Clastics; Springer: Berlin/Heidelberg, Germany, 1975; 453p. [Google Scholar]
- Nairn, R.; Johnson, J.A.; Hardin, D.; Michel, J. A biological and physical monitoring program to evaluate long-term impacts from sand dredging operations in the United States Outer Continental Shelf. J. Coast. Res. 2004, 20, 126–137. [Google Scholar] [CrossRef]
- Wright, L.; Short, A. Morphodynamic variability of surfzone and beaches: A synthesis. Mar. Geol. 1984, 56, 93–118. [Google Scholar] [CrossRef]
- Masselink, G.; Short, A.D. The effect of tide range on beach morphodynamics and morphology: A conceptual beach model. J. Coast. Res. 1993, 9, 785–800. [Google Scholar]
- Castelle, B.; Masselink, G. Morphodynamics of wave-dominated beaches. Camb. Prism. Coast. Futures 2023, 1, e1. [Google Scholar] [CrossRef]
- Boak, E.H.; Turner, I.L. Shoreline definition and detection: A review. J. Coast. Res. 2005, 21, 688–703. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R. Coastal coverage of ESA’ Sentinel 2 mission. Adv. Space Res. 2020, 65, 2636–2644. [Google Scholar] [CrossRef]
- Reniers, A.; Roelvink, J.; Thornton, E. Morphodynamic modeling of an embayed beach under wave group forcing. J. Geophys. Res. 2004, 109, C01030. [Google Scholar] [CrossRef]
- Kämpf, J.; Chapman, P. The Functioning of Coastal Upwelling Systems. In Upwelling Systems of the World; Springer: Berlin/Heidelberg, Germany, 2016. [Google Scholar] [CrossRef]
- Kemp, A.; Piecuch, C.G.; Bittermann, K.; Ponte, R.M.; Little, C.M.; Engelhart, S.E.; Lentz, S.J. River-discharge effects on United States Atlantic and Gulf coast sea-level changes. Proc. Natl. Acad. Sci. USA 2018, 115, 7729–7734. [Google Scholar] [CrossRef]
- Abessolo Gregoire, O.; Almar Rafael Jouanno, J.; Bonou, F.; Castelle Bruno Larson, M. Beach adaptation to intraseasonal sea level changes. Environ. Res. Commun. 2020, 2, 051003. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Almar, R.; Anthony, E.J.; Garlan, T.; Kestenare, E. Wave variability along the world’s continental shelves and coasts: Monitoring opportunities from satellite Earth observation. Adv. Space Res. 2022, 69, 3236–3244. [Google Scholar] [CrossRef]
- Boucharel, J.; David, M.; Almar, R.; Melet, A. Contrasted influence of climate modes teleconnections to the interannual variability of coastal sea level components–implications for statistical forecasts. Clim. Dyn. 2023, 61, 4011–4032. [Google Scholar] [CrossRef]
- Nielsen, D.M.; Pieper, P.; Barkhordarian, A.; Overduin, P.; Ilyina, T.; Brovkin, V.; Baehr, J.; Dobrynin, M. Increase in Arctic coastal erosion and its sensitivity to warming in the twenty-first century. Nat. Clim. Change 2022, 12, 263–270. [Google Scholar] [CrossRef]
- Orlando, L.; Ortega, L.; Defeo, O. Multi-decadal variability in sandy beach area and the role of climate forcing. Estuar. Coast. Shelf Sci. 2019, 218, 197–203. [Google Scholar] [CrossRef]
- Martínez, C.; Contreras-López, M.; Winckler, P.; Hidalgo, H.; Godoy, E.; Agredano, R. Coastal erosion in central Chile: A new hazard? Ocean. Coast. Manag. 2018, 156, 141–155. [Google Scholar]
- Salomon, J.N. L’accrétion littorale sur la côte Ouest de Madagascar. Physio-Géo 2009, 3, 35–59. [Google Scholar] [CrossRef]
- Otero, M.M.; Simeone, S.; Aljinovic, B.; Salomidi, M.; Mossone, P.; Giunta Fornasin, M.E.; Gerakaris, V.; Guala, I.; Milano, P.; Heurtefeux, H.; et al. Governance and Management of Posidonia Beach-Dune System; POSBEMED Interreg Med Project; IUCN Centre for Mediterranean Cooperation: Málaga, Spain, 2018; 66p. [Google Scholar]
- Innocenti Rachel, A.; Feagin Rusty, A.; Huff Thomas, P. The role of Sargassum macroalgal wrack in reducing coastal erosion. Estuar. Coast. Shelf Sci. 2018, 214, 82–88. [Google Scholar] [CrossRef]
- Lisco, S.; Lazic, T.; Pierri, C.; Mele, D.; de Luca, A.; Moretti, M. Analysis of the Sabellaria spinulosa Bioconstruction Growth in a Laboratory. J. Mar. Sci. Eng. 2023, 11, 204. [Google Scholar] [CrossRef]
- Dörjes, J.; Gadow, S.; Reineck, H.E.; Singh, I.B. Die Rinnen der Jade (Siidliche Nordsee). Sedimente und Makrobenthos. Senckenberg. Marit. 1969, 1, 5–62. [Google Scholar]
- Cadée Gerhard, C. Birds as producers of shell fragments in the Wadden Sea, in particular the role of the Herring gull. Geobios 1995, 28, 77–85. [Google Scholar] [CrossRef]
- Wünderlich, F. KorngroBenverschiebung durch Lanice conchilega (Pallas). Senckenberg. Maritima 1970, 2, 119–125. [Google Scholar]
- Borsje Bas, W.; Bouma Tjeerd, J.; Rabaut Marijn Herman Peter, M.J.; Hulscher Suzanne, J.M.H. Formation and erosion of biogeomorphological structures: A model study on the tube-building polychaete Lanice conchilega. Limnol. Oceanogr. 2014, 59, 1297–1309. [Google Scholar] [CrossRef]
- Ysebaert, T.; Hart, M.; Herman, P.M.J. Impacts of bottom and suspended cultures of mussels Mytilus spp. on the surrounding sedimentary environment and macrobenthic biodiversity. Helgol. Mar. Res. 2009, 63, 59–74. [Google Scholar] [CrossRef]
- Mailly, D.; Ndiaye, P.; Margolis, H.A.; Pineau, M. Fixation des dunes et reboisement avec le filao (Casuarina equisetifolia) dans la zone du littoral nord du Senegal. For. Chron. 1994, 70, 282–290. [Google Scholar] [CrossRef][Green Version]
- Lemenkova, P. Integration of geospatial data for mapping variation of sediment thickness in the North Sea. Sci. Ann. Danub. Delta Inst. 2020, 25, 129–138. [Google Scholar] [CrossRef]
- Simons, M.; Hager Bradford, H. Localization of the gravity field and the signature of glacial rebound. Nature 1997, 390, 500–504. [Google Scholar] [CrossRef]
- Johansson, M.M.; Kahma, K.K.; Boman, H.; Launiainen, J. Scenarios for sea level on the Finnish coast. Boreal Environ. Res. 2004, 9, 153–166. [Google Scholar]
- Poutanen, M.; Steffen, H. Land Uplift at Kvarken Archipelago/High Coast UNESCO World Heritage area. Geophysica 2014, 50, 49–64. [Google Scholar]
- Dealbera, S.; Almar, R.; Papa, F.; Becker, M.; Wöppelmann, G. Disentangling vertical land motion and waves from coastal sea level altimetry and tide gauges. Cont. Shelf Res. 2021, 231, 104596. [Google Scholar] [CrossRef]
- Buffardi, C.; Ruberti, D. The Issue of Land Subsidence in Coastal and Alluvial Plains: A Bibliometric Review. Remote Sens. 2023, 15, 2409. [Google Scholar] [CrossRef]
- Stoddart, D.R.; Cann, J.R. Nature origin of beach rock. J. Sediment. Petrol. 1965, 35, 243–273. [Google Scholar] [CrossRef]
- Guilcher, A. Le “Beach rock” ou grès de plage. Ann. Géographie 1961, 70, 113–125. [Google Scholar] [CrossRef]
- Bar, A.; Bookman, R.; Galili, E.; Zviely, D. Beachrock Morphology along the Mediterranean Coast of Israel: Typological Classification of Erosion Features. J. Mar. Sci. Eng. 2022, 10, 1571. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Velegrakis, A.F.; Plomaritis, T.A. Beachrock occurrence, characteristics, formation mechanisms and impacts. Earth-Sci. Rev. 2007, 85, 23–46. [Google Scholar] [CrossRef]
- Hsiung, K.H.; Yu, H.S. Sediment dispersal system in the Taiwan-south China Sea collision zone along a convergent margin: A comparison with the Papua new Guinea collision zone of the western Solomon Sea. J. Asian Earth Sci. 2013, 62, 295–307. [Google Scholar] [CrossRef]
- Syvitski, J.P.; Peckham, S.D.; Hilberman, R.; Mulder, T. Predicting the terrestrial flux of sediment to the global ocean: A planetary perspective. Sediment. Geol. 2003, 162, 5–24. [Google Scholar] [CrossRef]
- Warrick, J.A.; Vos, K.; East, A.E.; Vitousek, S. Fire (plus) flood (equals) beach: Coastal response to an exceptional river sediment discharge event. Sci. Rep. 2022, 12, 3848. [Google Scholar] [CrossRef]
- Locker Stanley, D.; Miselis Jennifer, L.; Buster Noreen, A.; Hapke Cheryl, J.; Wadman Heidi, M.; McNinch Jesse, E.; Forde Arnell, S.; Stalk Chelsea, A. Nearshore Sediment Thickness Fire Island New York; US Geological Survey Open-File Report 2017–1024; US Geological Survey: Reston, VA, USA, 2017; 21p. [CrossRef]
- Auffret, J.P.; Hommeril, P.; Larsonneur, C. La Mer de la Manche, modèle de bassin sédimentaire épicontinental sous climat tempéré. In Proceedings of the IXème International Congress of Sedimentology, Nice, France, 8–13 July 1975; 9p. [Google Scholar]
- Ehrhold, A. Dynamique de Comblement d’un Bassin Sédimentaire Soumis à un Régime Mégatidal: Exemple de la Baie du Mont Saint-Michel. Ph.D. Thesis, University of Caen, Caen, France, 1999; 304p. [Google Scholar]
- Harris, M.S.; Gayes, P.T.; Kindinger, J.L.; Flocks, J.G.; Krantz, D.E.; Donovan, P. Quaternary Geomorphology and Modern Coastal Development in Response to an Inherent Geologic Framework: An Example from Charleston, South Carolina. J. Coast. Res. 2005, 21, 49–64. [Google Scholar] [CrossRef]
- Short, A.D. Coastal Processes and Beaches. Nat. Educ. Knowl. 2012, 3, 15. [Google Scholar]
- Zenkovitch, V.P. Origin of barrier beaches and lagoon coast. In Coastal Lagoons Symposium; Castanares, A.A., Phleger, F.B., Eds.; Universidad Nacional Autónoma de México: Mexico City, Mexico, 1969; pp. 27–38. [Google Scholar]
- Demoulin, X.; Garlan, T.; Guillon, L.; Guyomard, P. In-situ acoustic measurements of water saturated beach sands. Inst. Acoust. Proc. 2015, 37, 40–47. [Google Scholar]
- Folk Robert, L. A Review of Grain-Size parameters. Sedimentology 1966, 6, 73–93. [Google Scholar] [CrossRef]
- Friedman Gerald, M. Dynamic processes and statistical parameters compared for size frequency distribution of beach and river sands. J. Sediment. Res. 1967, 37, 327–354. [Google Scholar] [CrossRef]
- Gao, S.; Collins, M.B. Analysis of Grain Size Trends, for Defining Sediment Transport Pathways in Marine Environments. J. Coast. Res. 1994, 10, 70–78. [Google Scholar]
- Dong, M.D.; Poizot, E.; Cuong, D.H.; Anh, L.D.; Hung, D.Q.; Thuy Huong, T.T.; Diep, N.V.; Huong, N.B. Transport trend of recent sediment within the nearshore seabed of Hai Hau, Nam Dinh province, southwest Red River Delta. Front. Earth Sci. 2023, 11, 1099730. [Google Scholar] [CrossRef]
- Pradhan, U.K.; Sahoo, R.K.; Pradhan, S.; Mohany, P.K.; Mishra, P. Textural Analysis of Coastal Sediments along East Coast of India. J. Geol. Soc. India 2020, 95, 67–74. [Google Scholar] [CrossRef]
- Gallagher, E.; Wadman, H.; McNinch, J.; Reniers, A.; Koktas, M. A Conceptual Model for Spatial Grain Size Variability on the Surface of within Beaches. J. Mar. Sci. Eng. 2016, 4, 38. [Google Scholar] [CrossRef]
- Labarthe, C. Relations Entre Granularité des Sédiments, Pente des Plages et Déferlement des Vagues. Ph.D. Thesis, University of Bordeaux, Bordeaux, France, 2023; 175p. (In French). [Google Scholar]
- Emery, K.O. The Sea off Southern California; Wiley & Sons: New York, NY, USA, 1960; 366p. [Google Scholar]
- Boye Borkai, C.; Boateng, I.; Appeaning Addo, K.; Wiafe, G. An assessment of the contribution of fluvial sediment discharge to coastal stability: Acase study of Western Region of Ghana. Afr. J. Environ. Sci. Technol. 2019, 13, 191–200. [Google Scholar] [CrossRef]
- Flemming Burghard, W. Beach sand and its origins. In Sandy Beach Morphodynamics; Jackson, D.W.T., Short, A.D., Eds.; Elsevier: Amsterdam, The Netherlands, 2020; pp. 15–37. [Google Scholar] [CrossRef]
- Fisher Richard, V. Proposed classification of volcaniclastic sediments and rocks. Geol. Soc. Am. Bull. 1961, 72, 1409–1414. [Google Scholar] [CrossRef]
- Choo, H.; Hwang, J.; Choi, Y.; Lee, C.; Lee, W. Geotechnical Characteristics of Volcanic Beach Sands with Varying Iron Contents. Mar. Georesources Geotechnol. 2016, 34, 571–580. [Google Scholar] [CrossRef]
- Walsh, S.-J.; Brading, P.; Suggett, D.J.; Smith, D.J. Working with Nature to Identify Coral Reefs with Increased Environmental Tolerance. In Proceedings of the 12th International Coral Reef Symposium, Cairns, Australia, 9–13 July 2012; 5p. [Google Scholar]
- Bucher Daniel, J.; Harriot Vicki, J.; Roberts Lisa, G. Skeletal micro-density, porosity and bulk density of acroporid corals. J. Exp. Mar. Biol. Ecol. 1998, 228, 117–136. [Google Scholar] [CrossRef]
- Guyon, E.; Troadec, J. Du sac de billes au tas de sable. In Sciences; Jacob: New York, NY, USA, 1994; 306p. [Google Scholar]
- Riffault, A. Les Environnements Sédimentaires Actuel et Quaternaires du Plateau Continental Sénégalais (Sud de la Presqu’île du Cap Vert). Ph.D. Thesis, University of Bordeaux, Bordeaux, France, 1980; 145p. [Google Scholar]
- Stark, N.; Mewis, P.; Reeve, B.; Florence, M.; Piller, J.; Simon, J. Vertical pore pressure variations and geotechnical sediment properties at a sandy beach. Coast. Eng. 2022, 172, 104058. [Google Scholar] [CrossRef]
- Wiegel, R.L. Oceanographical Engineering; Prentice Hall: Englewood Cliffs, NJ, USA, 1964; 532p. [Google Scholar]
- Bujan, N.; Cox, R.; Masselink, G. From fine sand to boulders: Examining the relationship between beach-face slope and sediment size. Mar. Geol. 2019, 417, 106012. [Google Scholar] [CrossRef]
- Work, P.A.; Dean, R.G. Effect of varying sediment size on equilibrium beach profiles. In Proceedings of the International Conference on Coastal Sediments, ASCE, Seattle, WA, USA, 25–27 June 1991; pp. 890–904. [Google Scholar]
- McLean, R.F.; Kirk, R.M. Relationships between grain size, size-sorting, and foreshore slope on mixed sand-shingle beaches. N. Z. J. Geol. Geophys. 1969, 12, 138–155. [Google Scholar] [CrossRef]
- Calliari, L.J.; Holland, K.T.; Pereira, P.S.; Guedes, R.M.; Santo, R.E. The influence of mud on the inner shelf, shoreface, beach and surf zone morphodynamics—Cassino, Southern Brazil. In Coastal Sediments ′07; World Scientific Publishing Company: Singapore, 2007. [Google Scholar] [CrossRef]
- Mathew, J.; Baba, M.; Kurian, N.P. Mudbanks of the Southwest Coast of India. Wave Characteristics. J. Coast. Res. 1995, 11, 168–178. [Google Scholar]
- Perera, C.; Smith, J.; Wu, W.; Perkey, D.; Priestas, A. Erosion rate of sand and mud mixtures. Int. J. Sediment Res. 2020, 35, 563–575. [Google Scholar] [CrossRef]
- Reineck, H.E.; Wunderlich, F. Classification and origin of flaser and lenticular bedding. Sedimentology 1968, 11, 99–104. [Google Scholar] [CrossRef]
- Almar, R.; Coco, G.; Bryan, K.R.; Huntley, D.A.; Short, A.D.; Senechal, N. Video observations of beach cusp morphodynamics. Mar. Geol. 2008, 254, 216–223. [Google Scholar] [CrossRef]
- Lippmann, T.C.; Holman, R.A. Quantification of sand bar morphology: A video technique based on wave dissipation. J. Geophys. Res. Ocean. 1989, 94, 995–1011. [Google Scholar] [CrossRef]
- Van Enckevort, I.M.J.; Ruessink, B.G. Video observations of nearshore bar behaviour. Part 1: Alongshore uniform variability. Cont. Shelf Res. 2003, 23, 501–512. [Google Scholar] [CrossRef]
- Almar, R.; Castelle, B.; Ruessink, B.G.; Sénéchal, N.; Bonneton, P.; Marieu, V. Two-and three-dimensional double-sandbar system behaviour under intense wave forcing and a meso–macro tidal range. Cont. Shelf Res. 2010, 30, 781–792. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Conley, D.C.; Davidson, M.A.; O’Hare, T.J. Video-based nearshore bathymetry estimation in macro-tidal environments. Mar. Geol. 2016, 374, 31–41. [Google Scholar] [CrossRef]
- Bergsma, E.W.J.; Conley, D.C.; Davidson, M.A.; O’Hare, T.J.; Almar, R. Storm Event to Seasonal Evolution of Nearshore Bathymetry Derived from Shore-Based Video Imagery. Remote Sens. 2019, 11, 519. [Google Scholar] [CrossRef]
- Dean, R.G.; Walton, T.L.; Dean, R.J.; Absalonsen, L. Chapter 13—Beach erosion: Causes and Stabilization. In Coastal Hazards; CW Finkl: Boca Raton, FL, USA, 2013; pp. 319–365. [Google Scholar] [CrossRef]
- Inman, D.L.; Nordstrom, C.E. On the Tectonic and Morphologic Classification of Coasts. J. Geol. 1971, 79, 1–21. [Google Scholar] [CrossRef]
- Gallop, S.L.; Kennedy, D.M.; Loureiro, C.; Naylor, L.A.; Munoz-Perez, J.J.; Jackson, D.W.T.; Fellowes, T.E. Geologically controlled sandy beaches: Their geomorphology, morphodynamics and classification. Sci. Total Environ. 2020, 731, 139123. [Google Scholar] [CrossRef] [PubMed]
- Villagran, M.; Cienfuegos, R.; Catalán, P.; Almar, R. Morphological response of central Chile sandy beaches to the 8.8 Mw 2010 earthquake and tsunami. In Proceedings of the Coastal Dynamics 2013, Arcachon, France, 24–28 June 2013; pp. 1823–1834. [Google Scholar]
- Cienfuegos, R.; Villagran, M.; Aguilera, J.C.; Catalán, P.; Castelle, B.; Almar, R. Video monitoring and field measurements of a rapidly evolving coastal system: The river mouth and sand spit of the Mataquito River in Chile. J. Coast. Res. 2014, 66, 639–644. [Google Scholar] [CrossRef]
- Masaya, R.; Suppasri, A.; Yamashita, K.; Imamura, F.; Gouramanis, C.; Leelawat, N. Investigating beach erosion related with tsunami sediment transport at Phra Thong Island, Thailand, caused by the 2004 Indian Ocean tsunami. Nat. Hazards Earth Syst. Sci. 2020, 20, 2823–2841. [Google Scholar] [CrossRef]
- Choowong, M.; Phantuwongraj, S.; Charoentitirat, T.; Chutakositkanon, V.; Yumuang, S.; Charusiri, P. Beach recovery after 2004 Indian Ocean tsunami from Phang-nga, Thailand. Geomorphology 2009, 104, 134–142. [Google Scholar] [CrossRef]
- Buck, L.; Bristow, C.; Meilianda, E. After the Indian Ocean Tsunami (IOT): Natural beach recovery, Meulaboh, Sumatra, Indonesia. E3S Web Conf. 2022, 40, 01002. [Google Scholar] [CrossRef]
- Ramalho, R.S.; Quartau, R.; Trenhaile, A.S.; Mitchell, N.C.; Woodroffe, C.D.; Ávila, S.P. Coastal evolution on volcanic oceanic islands: A complex interplay between volcanism, erosion, sedimentation, sea-level change and biogenic production. Earth-Sci. Rev. 2013, 127, 140–170. [Google Scholar] [CrossRef]
- Ferrer, N.; Marrero-Rodríguez, N.; Sanromualdo-Collado, A.; Vegas, J.; García-Romero, L. Early morphodynamics of the sudden formation of beaches during the 2021 volcanic eruption of La Palma. Geomorphology 2023, 436, 108779. [Google Scholar] [CrossRef]
- Syvitski, J.; Restrepo-Angel, J.D.; Saito, Y.; Overeem, I.; Vörösmarty, C.J.; Wang, H.; Olago, D. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 2022, 3, 179–196. [Google Scholar] [CrossRef]
- Stive, M.J.F.; De Schipper, M.A.; Luijendijk, A.P.; Ranasinghe, R.W.M.R.J.B.; Van Thiel de Vries, J.; Aarninkhof, S.; van Gelder-Maas, C.; De Vries, S.; Henriquez, M.; Marx, S. The sand engine: A solution for vulnerable deltas in the 21st Century? In Coastal Dynamics; Bonneton, P., Garlan, T., Eds.; TU Delft OPEN Publishing: Delft, The Netherlands, 2013; pp. 1537–1545. [Google Scholar]
- Palanques, A.; Guillen, J.; Puig, P.; Duran, R. Effects of long-lasting massive dumping of dredged material on bottom sediment and water turbidity during port expansion works. Ocean Coast. Manag. 2022, 223, 106113. [Google Scholar] [CrossRef]
- Brampton, A.H.; Evans, C.D.R. Regional Seabed Sediment Studies and Assessment of Marine Aggregate Dredging; Construction Industry Research & Information Association: London, UK, 1998; 82p. [Google Scholar]
- Van Lancker, V.R.; Bonne, W.M.; Garel, E.; Degrendele, K.; Roche, M.; Van den Eynde, D.; Bellec, V.K.; Brière, C.; Collins, M.B.; Velegrakis, A.F. Recommendations for the sustainable exploitation of tidal sandbanks. J. Coast. Res. 2010, 51, 151–164. [Google Scholar]
- Abessolo, G.O.; Hoan, L.X.; Larson, M.; Almar, R. Modeling the Bight of Benin (Gulf of Guinea, West Africa) coastline response to natural and anthropogenic forcing. Reg. Stud. Mar. Sci. 2021, 48, 101995. [Google Scholar] [CrossRef]
- Addad, J.; Martins-Neto, M.A. Deforestation and Coastal Erosion: A Case from East Brazil. J. Coast. Res. 2000, 16, 423–431. [Google Scholar]
- Hakim, W.L.; Achmad, A.R.; Eom, J.; Lee, C.W. Land Subsidence Measurement of Jakarta Coastal Area Using Time Series Interferometry with Sentinel-1 SAR Data. J. Coast. Res. 2020, 102, 75–81. [Google Scholar] [CrossRef]
- Nguyen, Q.H.; Takewaka, S. Land subsidence and its effects on coastal erosion in the Nam Dinh Coast (Vietnam). Cont. Shelf Res. 2020, 207, 104227. [Google Scholar] [CrossRef]
- Olson, K.R.; Susky, C.D. Mississippi River Delta: Land Subsidence and Coastal Erosion. Open J. Soil Sci. 2021, 11, 139–163. [Google Scholar] [CrossRef]
- Vitousek, S.; Buscombe, D.; Vos, K.; Barnard, P.L.; Ritchie, A.C.; Warrick, J.A. The future of coastal monitoring through satellite remote sensing. Camb. Prism. Coast. Futures 2023, 1, e10. [Google Scholar] [CrossRef]
- Cooper, J.A.G.; Masselink, G.; Coco, G.; Short, A.D.; Castelle, B.; Rogers, K.; Anthony, E.; Green, A.N.; Kelley, J.T.; Pilkey, O.H.; et al. Sandy beaches can survive sea-level rise. Nat. Clim. Change 2020, 10, 993–995. [Google Scholar] [CrossRef]
- Warrick, J.A.; Buscombe, D.; Vos, K.; Bryan, K.R.; Castelle, B.; Cooper, J.A.G.; Young, A.P. Coastal shoreline change assessments at global scales. Nat. Commun. 2024, 15, 2316. [Google Scholar] [CrossRef]
- Almar, R.; Boucharel, J.; Abessolo, G.O.; Papa, F.; Bergsma, E.W.J. Reply to: Coastal shoreline change assessments at global scales. Nat. Commun. 2024, 15, 2317. [Google Scholar] [CrossRef] [PubMed]
- Kapoor, D.C. General bathymetric chart of the oceans (GEBCO). Mar. Geod. 1981, 5, 73–80. [Google Scholar] [CrossRef]
- Thierry, S.; Dick, S.; George, S.; Benoit, L.; Cyrille, P. EMODnet Bathymetry a compilation of bathymetric data in the European waters. In OCEANS 2019-Marseille; IEEE: New York, NY, USA, 2019; pp. 1–7. [Google Scholar]
- Wölfl, A.C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.; Jakobsson, M.; Jencks, J.; Johnston, G.; et al. Seafloor mapping–the challenge of a truly global ocean bathymetry. Front. Mar. Sci. 2019, 6, 283. [Google Scholar] [CrossRef]
- Holman, R.; Bergsma, E.W. Updates to and performance of the cbathy algorithm for estimating nearshore bathymetry from remote sensing imagery. Remote Sens. 2021, 13, 3996. [Google Scholar] [CrossRef]
- Simarro, G.; Calvete, D.; Luque, P.; Orfila, A.; Ribas, F. UBathy: A new approach for bathymetric inversion from video imagery. Remote Sens. 2019, 11, 2722. [Google Scholar] [CrossRef]
- Gawehn, M.; de Vries, S.; Aarninkhof, S. A self-adaptive method for mapping coastal bathymetry on-the-fly from wave field video. Remote Sens. 2021, 13, 4742. [Google Scholar] [CrossRef]
- Andriolo, U.; Almeida, L.P.; Almar, R. Coupling terrestrial LiDAR and video imagery to perform 3D intertidal beach topography. Coast. Eng. 2018, 140, 232–239. [Google Scholar] [CrossRef]
- Almeida, L.P.; Almar, R.; Blenkinsopp, C.; Senechal, N.; Bergsma, E.; Floc’h, F.; Caulet, C.; Biausque, M.; Marchesiello, P.; Grandjean, P.; et al. Lidar observations of the swash zone of a low-tide terraced tropical beach under variable wave conditions: The Nha Trang (Vietnam) COASTVAR experiment. J. Mar. Sci. Eng. 2020, 8, 302. [Google Scholar] [CrossRef]
- Martins, K.; Brodie, K.L.; Fiedler, J.W.; O’dea, A.M.; Spore, N.J.; Grenzeback, R.L.; Bonneton, P. Seamless nearshore topo-bathymetry reconstruction from lidar scanners: A Proof-of-Concept based on a dedicated field experiment at Duck, NC. Coast. Eng. 2025, 199, 104748. [Google Scholar] [CrossRef]
- Laporte-Fauret, Q.; Marieu, V.; Castelle, B.; Michalet, R.; Bujan, S.; Rosebery, D. Low-cost UAV for high-resolution and large-scale coastal dune change monitoring using photogrammetry. J. Mar. Sci. Eng. 2019, 7, 63. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Almar, R.; de Almeida, L.P.M.; Sall, M. On the operational use of UAVs for video-derived bathymetry. Coast. Eng. 2019, 152, 103527. [Google Scholar] [CrossRef]
- Lange, A.M.; Lange, H.; Fiedler, J.W.; Bruder, B.L. CoastalLens: A MATLAB UAV Video Stabilization & Rectification Framework. J. Open Source Softw. 2024, 9, 7111. [Google Scholar] [CrossRef]
- Klotz, A.N.; Gurruchaga, P.; Almar, R.; Lange, A.M.; Bergsma, E.W. Deriving nearshore bathymetry and waves characteristics from a single UAV video. Coast. Eng. 2025, 202, 104820. [Google Scholar] [CrossRef]
- Turner, I.L.; Harley, M.D.; Almar, R.; Bergsma, E.W. Satellite optical imagery in Coastal Engineering. Coast. Eng. 2021, 167, 103919. [Google Scholar] [CrossRef]
- Calmant, S.; Baudry, N. Modelling bathymetry by inverting satellite altimetry data: A review. Mar. Geophys. Res. 1996, 18, 123. [Google Scholar] [CrossRef]
- Sandwell, D.T.; Smith, W.H. Bathymetric estimation. In International Geophysics; Academic Press: Cambridge, MA, USA, 2001; Volume 69, pp. 441–457+xxxiii–xxxiv. [Google Scholar]
- Pereira, P.; Baptista, P.; Cunha, T.; Silva, P.A.; Romão, S.; Lafon, V. Estimation of the nearshore bathymetry from high temporal resolution Sentinel-1A C-band SAR data—A case study. Remote Sens. Environ. 2019, 223, 166–178. [Google Scholar] [CrossRef]
- Wiehle, S.; Pleskachevsky, A.; Gebhardt, C. Automatic bathymetry retrieval from SAR images. CEAS Space J. 2019, 11, 105–114. [Google Scholar] [CrossRef]
- Mudiyanselage, S.D.; Wilkinson, B.; Abd-Elrahman, A. Automated High-Resolution Bathymetry from Sentinel-1 SAR Images in Deeper Nearshore Coastal Waters in Eastern Florida. Remote Sens. 2023, 16, 1. [Google Scholar] [CrossRef]
- Ardhuin, F.; Molero, B.; Bohé, A.; Nouguier, F.; Collard, F.; Houghton, I.; Hay, A.; Legresy, B. Phase-resolved swells across ocean basins in SWOT altimetry data: Revealing centimeter-scale wave heights including coastal reflection. Geophys. Res. Lett. 2024, 51, e2024GL109658. [Google Scholar] [CrossRef]
- Parrish, C.E.; Magruder, L.A.; Neuenschwander, A.L.; Forfinski-Sarkozi, N.; Alonzo, M.; Jasinski, M. Validation of ICESat-2 ATLAS bathymetry and analysis of ATLAS’s bathymetric mapping performance. Remote Sens. 2019, 11, 1634. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Maisongrande, P.; De Almeida, L.P.M. Wave-derived coastal bathymetry from satellite video imagery: A showcase with Pleiades persistent mode. Remote Sens. Environ. 2019, 231, 111263. [Google Scholar] [CrossRef]
- Cesbron, G.; Melet, A.; Almar, R.; Lifermann, A.; Tullot, D.; Crosnier, L. Pan-European Satellite-derived coastal bathymetry—Review, user needs and future services. Front. Mar. Sci. 2021, 8, 740830. [Google Scholar] [CrossRef]
- Klotz, A.N.; Almar, R.; Quenet, Y.; Bergsma, E.W.; Youssefi, D.; Artigues, S.; Ndour, A. Nearshore satellite-derived bathymetry from a single-pass satellite video: Improvements from adaptive correlation window size and modulation transfer function. Remote Sens. Environ. 2024, 315, 114411. [Google Scholar] [CrossRef]
- Thomas, N.; Pertiwi, A.P.; Traganos, D.; Lagomasino, D.; Poursanidis, D.; Moreno, S.; Fatoyinbo, L. Space-borne cloud-native satellite-derived bathymetry (SDB) models using ICESat-2 and Sentinel-2. Geophys. Res. Lett. 2021, 48, e2020GL092170. [Google Scholar] [CrossRef]
- Al Najar, M.; Thoumyre, G.; Bergsma, E.W.; Almar, R.; Benshila, R.; Wilson, D.G. Satellite derived bathymetry using deep learning. Mach. Learn. 2023, 112, 1107–1130. [Google Scholar] [CrossRef]
- Wang, J.; Chen, J.; Shen, P.; Guan, X.; Liu, X.; Massari, C.; Yong, B. Regional-scale intelligent optimization and topography impact in restoring global precipitation data gaps. Commun. Earth Environ. 2025, 6, 671. [Google Scholar] [CrossRef]
- Evagorou, E.; Argyriou, A.; Papadopoulos, N.; Mettas, C.; Alexandrakis, G.; Hadjimitsis, D. Evaluation of satellite-derived bathymetry from high and medium-resolution sensors using empirical methods. Remote Sens. 2022, 14, 772. [Google Scholar] [CrossRef]
- Almar, R.; Bergsma, E.W.; Thoumyre, G.; Baba, M.W.; Cesbron, G.; Daly, C.; Garlan, T.; Lifermann, A. Global satellite-based coastal bathymetry from waves. Remote Sens. 2021, 13, 4628. [Google Scholar] [CrossRef]
- Wilson, G.W.; Özkan-Haller, H.T.; Holman, R.A.; Haller, M.C.; Honegger, D.A.; Chickadel, C.C. Surf zone bathymetry and circulation predictions via data assimilation of remote sensing observations. J. Geophys. Res. Ocean. 2014, 119, 1993–2016. [Google Scholar] [CrossRef]
- Bagnold, R.A. The effect of sand movement on the surface wind. In The Physics of Blown Sand and Desert Dunes; Springer: Dordrecht, The Netherlands, 1941; pp. 57–76. [Google Scholar]
- Joottun, L.; Gangapersad, D.; Ragoonaden, S.; Dunputh, K.; Ujodha, I. Status of coastline changes in Mauritius. In IOC-UNEP-WMO-SAREC-Planning Workshop on an Integrated Approach to Coastal Erosion, Sea Level Changes and their Impacts. IOC Workshop Rep. 1994, 96, 29–63. [Google Scholar]
- Fairbridge Rhodes, W. Classification of coasts. J. Coast. Res. 2009, 20, 155–165. [Google Scholar] [CrossRef]
- Scott, T.; Masselink, G.; Russell, T. Morphodynamic characteristics and classification of beaches in England and Wales. Mar. Geol. 2011, 286, 1–20. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Coco, G.; Plant, N.G. A review of machine learning applications to coastal sediment transport and morphodynamics. Earth-Sci. Rev. 2019, 194, 97–108. [Google Scholar] [CrossRef]
- d’Anna, M.; Idier, D.; Castelle, B.; Le Cozannet, G.; Rohmer, J.; Robinet, A. Impact of model free parameters and sea-level rise uncertainties on 20-years shoreline hindcast: The case of Truc Vert beach (SW France). Earth Surf. Process. Landf. 2020, 45, 1895–1907. [Google Scholar] [CrossRef]
- Ibaceta, R.; Splinter, K.D.; Harley, M.D.; Turner, I.L. Improving multi-decadal coastal shoreline change predictions by including model parameter non-stationarity. Front. Mar. Sci. 2022, 9, 1012041. [Google Scholar] [CrossRef]
- Boucharel, J.; Almar, R.; Dewitte, B. Seasonal forecasts of the world’s coastal waterline: What to expect from the coming El Niño? npj Clim. Atmos. Sci. 2024, 7, 37. [Google Scholar] [CrossRef]
- Vos, K.; Deng, W.; Harley, M.D.; Turner, I.L.; Splinter, K.D.M. Beach-face slope dataset for Australia. Earth Syst. Sci. Data 2022, 14, 1345–1357. [Google Scholar] [CrossRef]
- Bishop-Taylor, R.; Nanson, R.; Sagar, S.; Lymburner, L. Mapping Australia’s dynamic coastline at mean sea level using three decades of Landsat imagery. Remote Sens. Environ. 2021, 267, 112734. [Google Scholar] [CrossRef]
- Graffin, M.; Almar, R.; Bergsma, E.W.; Boucharel, J.; Vitousek, S.; Taherkhani, M.; Ruggiero, P. Waterline responses to climate forcing along the North American West Coast. Commun. Earth Environ. 2025, 6, 444. [Google Scholar] [CrossRef]
- Lyzenga, D.R.; Malinas, N.P.; Tanis, F.J. Multispectral bathymetry using a simple physically based algorithm. IEEE Trans. Geosci. Remote Sens. 2006, 44, 2251–2259. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Holderied, K.; Sinclair, M. Determination of water depth with high-resolution satellite imagery over variable bottom types. Limnol. Oceanogr. 2003, 48 Pt 2, 547–556. [Google Scholar] [CrossRef]
- Caballero, I.; Stumpf, R.P. Towards routine mapping of shallow bathymetry in environments with variable turbidity: Contribution of Sentinel-2A/B satellites mission. Remote Sens. 2020, 12, 451. [Google Scholar] [CrossRef]
- Frugier, S.; Almar, R.; Bergsma, E.; Granjou, A. SBI: A sandbar extraction spectral index for multi-spectral satellite optical imagery. Coast. Eng. 2025, 200, 104752. [Google Scholar] [CrossRef]
- Frugier, S.; Almar, R.; Bergsma, E.W.; Bak, S.A. Standalone color-based bathymetry over 10 years at Duck (NC, USA) from optical satellite imagery and wave breaking analysis. Coast. Eng. 2025, 203, 104855. [Google Scholar] [CrossRef]
- Vos, K.; Harley, M.D.; Splinter, K.D.; Walker, A.; Turner, I.L. Beach slopes from satellite-derived shorelines. Geophys. Res. Lett. 2020, 47, e2020GL088365. [Google Scholar] [CrossRef]
- Bergsma, E.W.; Klotz, A.N.; Artigues, S.; Graffin, M.; Prenowitz, A.; Delvit, J.M.; Almar, R. Shoreliner: A sub-pixel coastal waterline extraction pipeline for multi-spectral satellite optical imagery. Remote Sens. 2024, 16, 2795. [Google Scholar] [CrossRef]
- Zhao, S.; Jin, F.F.; Stuecker, M.F.; Thompson, P.R.; Kug, J.S.; McPhaden, M.J.; Cane, M.A.; Wittenberg, A.T.; Cai, W. Explainable El Niño predictability from climate mode interactions. Nature 2024, 630, 891–898. [Google Scholar] [CrossRef]
- Roelvink, D.; Huisman, B.; Elghandour, A.; Ghonim, M.; Reyns, J. Efficient modeling of complex sandy coastal evolution at monthly to century time scales. Front. Mar. Sci. 2020, 7, 535. [Google Scholar] [CrossRef]
- Vitousek, S.; Barnard, P.L.; Limber, P.; Erikson, L.; Cole, B. A model integrating longshore and cross-shore processes for predicting long-term shoreline response to climate change. J. Geophys. Res. Earth Surf. 2017, 122, 782–806. [Google Scholar] [CrossRef]
- Robinet, A.; Idier, D.; Castelle, B.; Marieu, V. A reduced-complexity shoreline change model combining longshore and cross-shore processes: The LX-Shore model. Environ. Model. Softw. 2018, 109, 1–16. [Google Scholar] [CrossRef]
- Arias, A.; Almar, R.; Regard, V.; Marchesiello, P.; Garinet, A. Implementing a global shoreline model. Reg. Stud. Mar. Sci. 2025. in revision. [Google Scholar]
- Saillour, T.; Voukouvalas, E.; Arias, A.; Almar, R.; Regard, V.; Salamon, P. GLOBCOASTS_JRC: A Flexible Framework for Real-Time Coastal Risk Assessment Based on Waterline Changes. In Proceedings of the EGU General Assembly 2025, Vienna, Austria, 27 April–2 May 2025. [Google Scholar] [CrossRef]
- Grayeli, A.; Sehgal, A.; Costilla Reyes, O.; Cranmer, M.; Chaudhuri, S. Symbolic regression with a learned concept library. Adv. Neural Inf. Process. Syst. 2024, 37, 44678–44709. [Google Scholar]
- Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Battaglia, P. Learning skillful medium-range global weather forecasting. Science 2023, 382, 1416–1421. [Google Scholar] [CrossRef] [PubMed]
- Disdier, E.; Almar, R.; Benshila, R.; Al Najar, M.; Chassagne, R.; Mukherjee, D.; Wilson, D.G. Predicting beach profiles with machine learning from offshore wave reflection spectra. Environ. Model. Softw. 2025, 183, 106221. [Google Scholar] [CrossRef]
- Dada, O.; Almar, R.; Morand, P.; Menard, F. Towards West African coastal social-ecosystems sustainability: Interdisciplinary approaches. Ocean Coast. Manag. 2021, 211, 105746. [Google Scholar] [CrossRef]
- Lin, I.I.; Camargo, S.J.; Patricola, C.M.; Boucharel, J.; Chand, S.; Klotzbach, P.; Jin, F.F. ENSO and tropical cyclones. In El Niño Southern Oscillation in a Changing Climate; American Geophysical Union: Washington, DC, USA, 2020; pp. 377–408. [Google Scholar]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an integrating concept in earth science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef]
- Splinter, K.D.; Coco, G. Challenges and opportunities in coastal shoreline prediction. Front. Mar. Sci. 2021, 8, 788657. [Google Scholar]
- Le Cozannet, G.; Bulteau, T.; Castelle, B.; Ranasinghe, R.; Wöppelmann, G.; Rohmer, J.; Salas-y-Mélia, D. Quantifying uncertainties of sandy shoreline change projections as sea level rises. Sci. Rep. 2019, 9, 42. [Google Scholar] [CrossRef]
- Callaghan, D.P.; Nielsen, P.; Short, A.; Ranasinghe, R. Statistical simulation of wave climate and extreme beach erosion. Coast. Eng. 2008, 55, 375–390. [Google Scholar] [CrossRef]
- Splinter, K.D.; Turner, I.L.; Davidson, M.A.; Barnard, P.; Castelle, B.; Oltman-Shay, J. A generalized equilibrium model for predicting daily to interannual shoreline response. J. Geophys. Res. Earth Surf. 2014, 119, 1936–1958. [Google Scholar] [CrossRef]
- Vousdoukas, M.I.; Mentaschi, L.; Voukouvalas, E.; Verlaan, M.; Jevrejeva, S.; Jackson, L.P.; Feyen, L. Global probabilistic projections of extreme sea levels show intensification of coastal flood hazard. Nat. Commun. 2018, 9, 2360. [Google Scholar] [CrossRef]
- Ranasinghe, R.; Callaghan, D.; Stive, M.J. Estimating coastal recession due to sea level rise: Beyond the Bruun rule. Clim. Change 2012, 110, 561–574. [Google Scholar] [CrossRef]
- Goldstein, E.B.; Coco, G. Machine learning components in deterministic models: Hybrid synergy in the age of data. Front. Environ. Sci. 2015, 3, 33. [Google Scholar] [CrossRef]
- Shepherd, T.G. Storyline approach to the construction of regional climate change information. Proc. R. Soc. A 2019, 475, 20190013. [Google Scholar] [CrossRef]
- d’Anna, M.; Idier, D.; Castelle, B.; Rohmer, J.; Cagigal, L.; Mendez, F.J. Effects of stochastic wave forcing on probabilistic equilibrium shoreline response across the 21st century including sea-level rise. Coast. Eng. 2022, 175, 104149. [Google Scholar] [CrossRef]





| Sensor/Platform | Main Drivers/Processes Captured | Spatial Scale | Temporal Scale | Uncertainties/Limitations |
|---|---|---|---|---|
| Optical satellites (Landsat, Sentinel-2, PlanetScope) | Shoreline position, beach width, sandbar migration, vegetation cover | 10–30 m (Planet: ~3 m) | Days–weeks (5–16 days) | Cloud cover, tidal aliasing, water turbidity, georeferencing errors |
| Radar satellites (Sentinel-1, TerraSAR-X, RADARSAT) | Wave fields, runup extent, inundation, moisture content, storm impact mapping | 10–100 m | Days–weeks (6–12 days typical) | Speckle noise, coastal layover/shadow, requires advanced processing |
| Altimetry (Jason, CryoSat-2, Sentinel-3, SWOT) | Regional sea level, wave height, storm surges | km-scale footprints | 10–35 days repeat cycles | Low nearshore resolution, coastal retracking errors |
| Satellite-derived bathymetry (Sentinel-2 MSI, Landsat-8/9 OLI, ICESat-2, Pleiades, WorldView) | Nearshore topo-bathymetry, sandbar dynamics | 1–30 m (sub-meter for commercial) | Days–months | Depth penetration limited (<20 m, turbidity dependent), atmospheric correction uncertainties |
| UAV photogrammetry/lidar | High-resolution topography, dune/beach profiles, vegetation, nearshore bathymetry (clear waters) | cm–dm | On-demand (minutes–days) | Weather/wind limits, processing effort, small-area coverage |
| Coastal video monitoring (e.g., ARGUS, fixed cameras) | Shoreline position, swash/runup, bar morphology, wave period | 0.5–5 m | Seconds–minutes (continuous) | Restricted to instrumented sites, calibration drift, limited coverage |
| Airborne lidar (topo- & bathymetric) | High-accuracy elevation, dune/beach morphology, shallow bathymetry | 0.5–2 m | Campaign-based (months–years) | Costly, limited repeatability, water penetration affected by turbidity |
| Code | Factor | In Situ Measurement | Remote Sensing | Modeling |
|---|---|---|---|---|
| O1 | Waves | ✅ | ✅ | ✅ |
| O2 | Waves characteristics during storm | ✅ | ✅ | ✅ |
| O3 | Infra-gravity waves | ✅ | ✅ | ✅ |
| O4 | Water level | ✅ | ✅ | ✅ |
| O5 | Water level during surges | ✅ | ✅ | ✅ |
| O6 | Sea water P°, T°, Salinity | ✅ | ✅ | ✅ |
| O7 | Existence and location of the breaking of the waves | ✅ | ✅ | ✅ |
| O8 | Up-welling currents | ✅ | ✅ | ✅ |
| H1 | Modification of currents and of salinity by river fluxes | ✅ | ✅ | ✅ |
| H2 | Level of the water table | ✅ | ✅ | |
| C1 | Weather | ✅ | ✅ | ✅ |
| C2 | Impact of melting ice and sea level rise | ✅ | ✅ | |
| C3 | Consideration of climatic phenomena (monsoon, hurricanes, melting ice) | ✅ | ✅ | |
| C4 | Aeolian transport, particularly sand storms | ✅ | ✅ | ✅ |
| C5 | Impact of ENSO | ✅ | ✅ | |
| C6 | Evolution of these elements with the climate change including the sea level rise | ✅ | ✅ | |
| B1 | Algae, Seaweed | ✅ | ✅ | |
| B2 | Biodeposition, Posidonia wrack, … | ✅ | ✅ | |
| B3 | Reefs and bioherms (corals, Sabellaria, …) | ✅ | ✅ | |
| B4 | Benthic colonies (oysters, Crepidula, cockles, mussels, Lanice conchilega, …) | ✅ | ✅ | |
| B5 | Beach aerial plants (Crambe maritima, Abronia maritima, Atriplex leucophylla, Filao …) | ✅ | ✅ | |
| G1 | Subsidence and postglacial rebound | ✅ | ✅ | |
| G2 | Beachrock | ✅ | ✅ | |
| G3 | Sediment availability (thickness and external contributions) | ✅ | ✅ | ✅ |
| G4 | Granularity of sediments | ✅ | ✅ | ✅ |
| G5 | Shape (shells/rounded grains) of sediment grains | ✅ | ✅ | ✅ |
| G6 | Porosity, gas content and fall velocity | ✅ | ✅ | ✅ |
| G7 | Clay content | ✅ | ✅ | ✅ |
| G8 | Bedforms | ✅ | ✅ | ✅ |
| G9 | Hinterland slope | ✅ | ✅ | ✅ |
| G10 | Sinuosity of the shoreline | ✅ | ✅ | ✅ |
| Factor Domain | Representative Factors | In Situ Measurements | Remote Sensing | Modeling |
|---|---|---|---|---|
| Oceanographic | Waves, tides, storm surges, infragravity waves, currents, upwelling | Buoys, ADCPs, tide gauges | SAR (waves), altimetry, optical shoreline proxies, video monitoring | Hydrodynamic & wave models (WW3, XBeach, CROCO) |
| Climatic | ENSO, monsoon, storms, sea-level rise | Weather stations, river gauges | MODIS/VIIRS (SST), Sentinel-3, GRACE (water mass changes) | Climate & Earth system models |
| Geological | Sediment supply/thickness, grain size, bedrock, tectonics, subsidence | Cores, seismic surveys, sediment sampling | UAV/satellite-derived bathymetry (grain size proxies), InSAR (subsidence), lidar | Morphodynamic models with sediment transport modules |
| Biological | Reefs, seagrass, wrack, dune vegetation, bioturbation | Ecological surveys, biomass sampling | Optical/UAV (vegetation indices, reef mapping) | Eco-morphodynamic coupled models |
| Anthropogenic | Dams, dredging, nourishment, hard defenses, urbanization | Field surveys, sediment flux monitoring | UAV/optical (land cover, shoreline change), AIS (ship traffic), nightlight data | Socio-economic & engineering impact models |
| Hydrographic | River discharge, salinity, groundwater inputs | River gauges, water sampling | MODIS/Sentinel-2 (turbidity, salinity proxies) | Watershed & sediment delivery models |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Garlan, T.; Almar, R.; Bergsma, E.W.J. Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches. Remote Sens. 2025, 17, 3360. https://doi.org/10.3390/rs17193360
Garlan T, Almar R, Bergsma EWJ. Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches. Remote Sensing. 2025; 17(19):3360. https://doi.org/10.3390/rs17193360
Chicago/Turabian StyleGarlan, Thierry, Rafael Almar, and Erwin W. J. Bergsma. 2025. "Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches" Remote Sensing 17, no. 19: 3360. https://doi.org/10.3390/rs17193360
APA StyleGarlan, T., Almar, R., & Bergsma, E. W. J. (2025). Challenges and Opportunities in Predicting Future Beach Evolution: A Review of Processes, Remote Sensing, and Modeling Approaches. Remote Sensing, 17(19), 3360. https://doi.org/10.3390/rs17193360

