Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (250)

Search Parameters:
Keywords = economic payback time

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
27 pages, 1948 KiB  
Article
Real-World Performance and Economic Evaluation of a Residential PV Battery Energy Storage System Under Variable Tariffs: A Polish Case Study
by Wojciech Goryl
Energies 2025, 18(15), 4090; https://doi.org/10.3390/en18154090 - 1 Aug 2025
Viewed by 295
Abstract
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal [...] Read more.
This paper presents an annual, real-world evaluation of the performance and economics of a residential photovoltaic (PV) system coupled with a battery energy storage system (BESS) in southern Poland. The system, monitored with 5 min resolution, operated under time-of-use (TOU) electricity tariffs. Seasonal variation was significant; self-sufficiency exceeded 90% in summer, while winter conditions increased grid dependency. The hybrid system reduced electricity costs by over EUR 1400 annually, with battery operation optimized for high-tariff periods. Comparative analysis of three configurations—grid-only, PV-only, and PV + BESS—demonstrated the economic advantage of the integrated solution, with the shortest payback period (9.0 years) achieved with financial support. However, grid voltage instability during high PV production led to inverter shutdowns, highlighting limitations in the infrastructure. This study emphasizes the importance of tariff strategies, environmental conditions, and voltage control when designing residential PV-BESS systems. Full article
(This article belongs to the Special Issue Design, Analysis and Operation of Renewable Energy Systems)
Show Figures

Figure 1

21 pages, 979 KiB  
Article
AI-Enhanced Coastal Flood Risk Assessment: A Real-Time Web Platform with Multi-Source Integration and Chesapeake Bay Case Study
by Paul Magoulick
Water 2025, 17(15), 2231; https://doi.org/10.3390/w17152231 - 26 Jul 2025
Viewed by 328
Abstract
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational [...] Read more.
A critical gap exists between coastal communities’ need for accessible flood risk assessment tools and the availability of sophisticated modeling, which remains limited by technical barriers and computational demands. This study introduces three key innovations through Coastal Defense Pro: (1) the first operational web-based AI ensemble for coastal flood risk assessment integrating real-time multi-agency data, (2) an automated regional calibration system that corrects systematic model biases through machine learning, and (3) browser-accessible implementation of research-grade modeling previously requiring specialized computational resources. The system combines Bayesian neural networks with optional LSTM and attention-based models, implementing automatic regional calibration and multi-source elevation consensus through a modular Python architecture. Real-time API integration achieves >99% system uptime with sub-3-second response times via intelligent caching. Validation against Hurricane Isabel (2003) demonstrates correction from 197% overprediction (6.92 m predicted vs. 2.33 m observed) to accurate prediction through automated identification of a Chesapeake Bay-specific reduction factor of 0.337. Comprehensive validation against 15 major storms (1992–2024) shows substantial improvement over standard methods (RMSE = 0.436 m vs. 2.267 m; R2 = 0.934 vs. −0.786). Economic assessment using NACCS fragility curves demonstrates 12.7-year payback periods for flood protection investments. The open-source Streamlit implementation democratizes access to research-grade risk assessment, transforming months-long specialist analyses into immediate browser-based tools without compromising scientific rigor. Full article
(This article belongs to the Special Issue Coastal Flood Hazard Risk Assessment and Mitigation Strategies)
Show Figures

Figure 1

23 pages, 5432 KiB  
Article
Efficient Heating System Management Through IoT Smart Devices
by Álvaro de la Puente-Gil, Alberto González-Martínez, Enrique Rosales-Asensio, Ana-María Diez-Suárez and Jorge-Juan Blanes Peiró
Machines 2025, 13(8), 643; https://doi.org/10.3390/machines13080643 - 23 Jul 2025
Viewed by 234
Abstract
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer [...] Read more.
A novel approach to managing domestic heating systems through IoT technologies is introduced in this paper. The system optimizes energy consumption by dynamically adapting to electricity and fuel price fluctuations while maintaining user comfort. Integrating smart devices significantly reduce energy costs and offer a favorable payback period, positioning the solution as both sustainable and economically viable. Efficient heating management is increasingly critical amid growing energy and environmental concerns. This strategy uses IoT devices to collect real-time data on prices, consumption, and user preferences. Based on this data, the system adjusts heating settings intelligently to balance comfort and cost savings. IoT connectivity manages continuous monitoring and dynamic optimization in response to changing conditions. This study includes a real-case comparison between a conventional central heating system and an IoT-managed electric radiator setup. By applying automation rules linked to energy pricing and user habits, the system enhances energy efficiency, especially in cold climates. The economic evaluation shows that using low-cost IoT devices yields meaningful savings and achieves equipment payback within approximately three years. The results demonstrate the system’s effectiveness, demonstrating that smart, adaptive heating solutions can cut energy expenses without sacrificing comfort, while offering environmental and financial benefits. Full article
Show Figures

Figure 1

22 pages, 2593 KiB  
Article
A Data-Driven Model for the Energy and Economic Assessment of Building Renovations
by Giuseppe Piras, Francesco Muzi and Zahra Ziran
Appl. Sci. 2025, 15(14), 8117; https://doi.org/10.3390/app15148117 - 21 Jul 2025
Viewed by 321
Abstract
The architectural, engineering, construction, and operation (AECO) sector is one of the main contributors to energy consumption and greenhouse gas emissions in Europe, making the renovation of the existing building stock a priority. However, defining effective and economically sustainable interventions remains a challenge, [...] Read more.
The architectural, engineering, construction, and operation (AECO) sector is one of the main contributors to energy consumption and greenhouse gas emissions in Europe, making the renovation of the existing building stock a priority. However, defining effective and economically sustainable interventions remains a challenge, partly due to the variability of building characteristics and the lack of digital tools to support data-driven decision making. This research aims to identify the main factors influencing the energy consumption of buildings by analyzing a large database of building characteristics using machine learning algorithms. Based on the parameters that the analysis shows to have the greatest impact, the average cost of energy retrofitting measures will be used to elaborate a cost–benefit analysis model and the economic payback time for each measure, individually or in combination. The expected result is the creation of a tool that will allow the operator to evaluate the choice of interventions based on the energy efficiency that can be achieved and/or the economic sustainability. The proposed methodology aims to provide a digital approach that is replicable and adaptable to different territorial realities and useful for strategic planning of energy transformation in the building sector. Full article
(This article belongs to the Special Issue Advances in Building Energy Efficiency and Design)
Show Figures

Figure 1

21 pages, 2552 KiB  
Article
Technical, Economic, and Environmental Optimization of the Renewable Hydrogen Production Chain for Use in Ammonia Production: A Case Study
by Halima Khalid, Victor Fernandes Garcia, Jorge Eduardo Infante Cuan, Elias Horácio Zavala, Tainara Mendes Ribeiro, Dimas José Rua Orozco and Adriano Viana Ensinas
Processes 2025, 13(7), 2211; https://doi.org/10.3390/pr13072211 - 10 Jul 2025
Viewed by 304
Abstract
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in [...] Read more.
Conventional ammonia production uses fossil-based hydrogen, resulting in high greenhouse gas emissions. Given the growing demand for sustainable solutions, it is essential to replace fossil hydrogen with renewable alternatives. This study assessed the technical, economic, and environmental viability of renewable ammonia production in Minas Gerais. To this end, an optimization model based on mixed integer linear programming (MILP) was developed and implemented in LINGO 20® software. The model incorporated investment costs; raw materials; transportation; emissions; and indicators such as NPV, payback, and minimum sale price. Hydrogen production routes integrated into the Haber–Bosch process were analyzed: biomass gasification (GS_WGS), anaerobic digestion of vinasse (Vinasse_BD_SMR), ethanol reforming (Ethanol_ESR), and electrolysis (PEM_electrolysis). Vinasse_BD_SMR showed the lowest costs and the greatest economic viability, with a payback of just 2 years, due to the use of vinasse waste as a raw material. In contrast, the electrolysis-based route had the longest payback time (8 years), mainly due to the high cost of the electrolyzers. The substitution of conventional hydrogen made it possible to avoid 580,000 t CO2 eq/year for a plant capacity of 200,000 t NH3/year, which represents 13% of the Brazilian emissions from the nitrogenated fertilizer sector. It can be concluded that the viability of renewable ammonia depends on the choice of hydrogen source and logistical optimization and is essential for reducing emissions at large scale. Full article
(This article belongs to the Section Chemical Processes and Systems)
Show Figures

Figure 1

19 pages, 273 KiB  
Article
The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries
by Federico Filippo Orsini, Daniele Bellavia, Fabrizio Schettini and Emanuela Foglia
Healthcare 2025, 13(13), 1604; https://doi.org/10.3390/healthcare13131604 - 4 Jul 2025
Viewed by 455
Abstract
Background/Objectives: European healthcare systems are increasingly adopting automation technologies to improve efficiency. This study evaluates the economic viability of hospital automation and medication management digitalization. Methods: An economic evaluation was based on a standardized hospital model comprising 561 beds, representative of an average [...] Read more.
Background/Objectives: European healthcare systems are increasingly adopting automation technologies to improve efficiency. This study evaluates the economic viability of hospital automation and medication management digitalization. Methods: An economic evaluation was based on a standardized hospital model comprising 561 beds, representative of an average acute care hospital across EU27 + UK. For each technology, several cost items were estimated using country-specific parameters such as labor costs, medication error rates, healthcare expenditure, and money discount rate. The financial metrics (Return On Investment—ROI, Net Present Value—NPV, Payback Time—PBT) were first calculated at the hospital level. These results were then extrapolated to the national level by scaling the per-hospital estimates according to the total number of hospital beds reported in each country. Finally, national results were aggregated to derive the overall European impact. Results: The analysis estimated a total European investment of EUR 3.55 billion, with an average PBT of 4.46 years and annual savings of 1,96 billion. ROI averaged 167%, and the total NPV was 8.21 billion. A major saving driver was the reduction in Medication Administration Errors that has an impact of 37.2% on the total savings. Payback times ranged from 3 years in high-GDP countries, to 7 years in lower-GDP nations. Conclusions: These findings demonstrate how providing structured data on hospital automation benefits could support decision-making processes, highlighting the organizational and economic feasibility of the investment across different European national contexts. Full article
33 pages, 6114 KiB  
Article
Effect of Drying Conditions on Kinetics, Modeling, and Thermodynamic Behavior of Marjoram Leaves in an IoT-Controlled Vacuum Dryer
by Nabil Eldesokey Mansour, Edwin Villagran, Jader Rodriguez, Mohammad Akrami, Jorge Flores-Velazquez, Khaled A. Metwally, M. Alhumedi, Atef Fathy Ahmed and Abdallah Elshawadfy Elwakeel
Sustainability 2025, 17(13), 5980; https://doi.org/10.3390/su17135980 - 29 Jun 2025
Viewed by 936
Abstract
The current study aimed to investigate mathematical modeling, drying kinetics, and thermodynamic properties for cost-effectively drying marjoram leaves under different operating pressures (OPs) and drying temperatures (DTs). Three DTs of 40, 50, and 60 °C and three OPs of (atm) atmospheric, −5 kPa, [...] Read more.
The current study aimed to investigate mathematical modeling, drying kinetics, and thermodynamic properties for cost-effectively drying marjoram leaves under different operating pressures (OPs) and drying temperatures (DTs). Three DTs of 40, 50, and 60 °C and three OPs of (atm) atmospheric, −5 kPa, and −10 kPa were used in this study. All drying processes were conducted using the developed vacuum dryer (DVD) and a constant layer thickness of 1 cm and initial moisture content of 817.43 on a dry basis (d.b.). The results obtained showed that increasing the DT from 40 to 60 °C at OPs of atm, −5 kPa, and −10 kPa led to a decrease in the drying time by about 55.6%, 36.4%, and 42.9%, respectively. On the other hand, decreasing the OP from atm to −10 kPa resulted in a decrease in drying time of about 58.8%, 45.5%, and 50% at DTs of 40, 50, and 60 °C, respectively. The moisture diffusivity (Deff) ranged between 1.13 and 5.51 × 10−9 m2/s, with the highest value of Deff observed at an OP of −10 kPa and a DT of 60 °C. Under these conditions, the activation energy (AE) was minimal, at approximately 2.68 kJ/mol. Mathematical modeling revealed that the Modified Midilli (I) model was the most suitable for describing the drying kinetics of marjoram leaves under experimental conditions. Among the thermodynamic parameters of marjoram leaves, it was observed that enthalpy values decrease with increasing DT and decreasing OP. Additionally, all tests showed negative entropy, suggesting that the chemical adsorption and/or structural modifications of the adsorbent are responsible for these results. The economic analysis revealed that drying marjoram leaves at an OP of 10 kPa and a DT of 60 °C resulted in yearly cost savings of up to USD 2054.19 and reduced the investment payback period to approximately 0.139 years (about 2 months). Full article
Show Figures

Figure 1

18 pages, 1109 KiB  
Article
Economic Feasibility and Operational Performance of Rotor Sails in Maritime Transport
by Kristine Carjova, Olli-Pekka Hilmola and Ulla Tapaninen
Sustainability 2025, 17(13), 5909; https://doi.org/10.3390/su17135909 - 26 Jun 2025
Viewed by 509
Abstract
The maritime sector is under pressure to increase ship energy efficiency and reduce greenhouse gas (GHG) emissions as a part of global decarbonization goals. Various innovative technologies are being adopted in recent years, raising concerns not only about technological feasibility but also about [...] Read more.
The maritime sector is under pressure to increase ship energy efficiency and reduce greenhouse gas (GHG) emissions as a part of global decarbonization goals. Various innovative technologies are being adopted in recent years, raising concerns not only about technological feasibility but also about the economic viability of such technologies in the context of sustainable maritime practices. This study evaluates the operational performance, potential to increase energy efficiency, and economic feasibility of wind-assisted propulsion technologies such as rotor sails across different vessel types and operational profiles. As a contribution to cleaner and more efficient shipping, energy savings produced by rotor thrust were analyzed in relation to vessel dimensions and rotor configuration. The results derived from publicly available industry data including shipowner reports, manufacturer case studies, and classification society publications on 25 confirmed rotor sail installations between 2010 and 2025 indicate that savings typically range between 4% and 15%, with isolated cases reporting up to 25%. A simulation model was developed to assess payback time based on varying fuel consumption, investment cost, CO2 pricing, and operational parameters. Monte Carlo analysis confirmed that under typical assumptions rotor sail investments can reach payback in three to six years (as the ship is also liable for CO2 payments). These findings offer practical guidance for shipowners and operators evaluating wind-assisted propulsion under current and emerging environmental regulations and contribute to advancing sustainability in maritime transport. The research contributes to bridging the gap between simulation-based and real-world performance evaluations of rotor sail technologies. Full article
Show Figures

Figure 1

22 pages, 1887 KiB  
Article
Technical and Economic Assessment of the Implementation of 60 MW Hybrid Power Plant Projects (Wind, Solar Photovoltaic) in Iraq
by Luay F. Al-Mamory, Mehmet E. Akay and Hasanain A. Abdul Wahhab
Sustainability 2025, 17(13), 5853; https://doi.org/10.3390/su17135853 - 25 Jun 2025
Viewed by 511
Abstract
The growing global demand for sustainable energy solutions has spurred interest in hybrid renewable energy systems, particularly those combining photovoltaic (PV) solar and wind power. This study records the technical and financial feasibility of establishing hybrid solar photovoltaic and wind power stations in [...] Read more.
The growing global demand for sustainable energy solutions has spurred interest in hybrid renewable energy systems, particularly those combining photovoltaic (PV) solar and wind power. This study records the technical and financial feasibility of establishing hybrid solar photovoltaic and wind power stations in Iraq, Al-Rutbah and Al-Nasiriya, with a total power of 60 MW for each, focusing on optimizing energy output and cost-efficiency. The analysis evaluates key technical factors, such as resource availability, system design, and integration challenges, alongside financial considerations, including capital costs, operational expenses, and return on investment (ROI). Using the RETScreen program, the research explores potential locations and configurations for maximizing energy production and minimizing costs, and the evaluation is performed through the calculation Internal Rate of Return (IRR) on equity (%), the Simple Payback (year), the Net Present Value (NPV), and the Annual Life Cycle Savings (ALCSs). The results show that both PV and wind technologies demonstrate significant energy export potential, with PV plants exporting slightly more electricity than their wind counterparts. Al Nasiriya Wind had the highest output, indicating favorable wind conditions or better system performance at that site. The results show that the analysis of the proposed hybrid system has a standardizing effect on emissions, reducing variability and environmental impact regardless of location. The results demonstrate that solar PV is significantly more financially favorable in terms of capital recovery time at both sites, and that financial incentives, especially grants, are essential to improve project attractiveness, particularly for wind power. The analysis underscores the superior financial viability of solar PV projects in both regions. It highlights the critical role of financial support, particularly capital grants, in turning renewable energy investments into economically attractive opportunities. Full article
Show Figures

Figure 1

20 pages, 1484 KiB  
Article
The Power of Sun—A Comparative Cost–Benefit Analysis of Residential PV Systems in Poland
by Agnieszka Bus, Michał Hasny, Edyta Hewelke and Anna Szelągowska
Sustainability 2025, 17(12), 5446; https://doi.org/10.3390/su17125446 - 13 Jun 2025
Viewed by 858
Abstract
This study evaluates the cost-effectiveness and environmental benefits of two residential photovoltaic (PV) on-grid systems in Poland: a 4.35 kWp system (V1) and a 5.70 kWp system (V2). With growing interest in prosumer energy and climate goals, assessing small-scale PV systems is critical [...] Read more.
This study evaluates the cost-effectiveness and environmental benefits of two residential photovoltaic (PV) on-grid systems in Poland: a 4.35 kWp system (V1) and a 5.70 kWp system (V2). With growing interest in prosumer energy and climate goals, assessing small-scale PV systems is critical for sustainable energy planning. Economic performance was analyzed using net present value (NPV), internal rate of return (IRR), and discounted payback period (DPP). Sensitivity analyses identified key factors affecting investment outcomes. V2 demonstrated superior performance, with an NPV five times higher than that of V1 and annual savings of EUR 1392 compared to EUR 270. V2 also achieved a 15.66% IRR and 7.7-year DPP, outperforming V1′s 5.85% IRR and 17.3-year DPP. CO2 emission reductions were 2.6 and 3.6 Mg/year for V1 and V2, respectively. The findings emphasize the importance of tailored financial incentives and regulatory reforms to support prosumers and optimize grid integration in Poland. Full article
Show Figures

Figure 1

32 pages, 3011 KiB  
Article
Sensitivity Analysis of a Hybrid PV-WT Hydrogen Production System via an Electrolyzer and Fuel Cell Using TRNSYS in Coastal Regions: A Case Study in Perth, Australia
by Raed Al-Rbaihat
Energies 2025, 18(12), 3108; https://doi.org/10.3390/en18123108 - 12 Jun 2025
Cited by 1 | Viewed by 454
Abstract
This article presents a modeling and analysis approach for a hybrid photovoltaic wind turbine (PV-WT) hydrogen production system. This study uses the TRNSYS simulation platform to evaluate the system under coastal climate conditions in Perth, Australia. The system encapsulates an advanced alkaline electrolyzer [...] Read more.
This article presents a modeling and analysis approach for a hybrid photovoltaic wind turbine (PV-WT) hydrogen production system. This study uses the TRNSYS simulation platform to evaluate the system under coastal climate conditions in Perth, Australia. The system encapsulates an advanced alkaline electrolyzer (ELE) and an alkaline fuel cell (AFC). A comprehensive 4E (energy, exergy, economic, and environmental) assessment is conducted. The analysis is based on hourly dynamic simulations over a full year. Key performance metrics include hydrogen production, energy and exergy efficiencies, carbon emission reduction, levelized cost of energy (LCOE), and levelized cost of hydrogen (LCOH). The TRNSYS model is validated against the existing literature data. The results show that the system performance is highly sensitive to ambient conditions. A sensitivity analysis reveals an energy efficiency of 7.3% and an exergy efficiency of 5.2%. The system has an entropy generation of 6.22 kW/K and a sustainability index of 1.055. The hybrid PV-WT system generates 1898.426 MWh of renewable electricity annually. This quantity corresponds to 252.7 metric tons of hydrogen production per year. The validated model shows a stable LCOE of 0.102 USD/kWh, an LCOH of 4.94 USD/kg, an energy payback time (EPBT) of 5.61 years, and cut CO2 emissions of 55,777.13 tons. This research provides a thorough analysis for developing green hydrogen systems using hybrid renewables. This study also offers a robust prediction model, enabling further enhancements in hybrid renewable hydrogen production. Full article
(This article belongs to the Special Issue Research on Integration and Storage Technology of Hydrogen Energy)
Show Figures

Figure 1

27 pages, 2490 KiB  
Article
An Optimized Dynamic Benefit Evaluation Method for Pumped Storage Projects in the Context of the “Dual Carbon” Goal
by Cong Feng, Qi Guo, Qian Liu and Feihong Jian
Energies 2025, 18(11), 2815; https://doi.org/10.3390/en18112815 - 28 May 2025
Viewed by 362
Abstract
With the rapid development of a new power system under the “dual carbon” goal, pumped storage has gained increasing attention for its role in integrating renewable energy and enhancing power system flexibility and security. This study proposes a dynamic benefit evaluation method for [...] Read more.
With the rapid development of a new power system under the “dual carbon” goal, pumped storage has gained increasing attention for its role in integrating renewable energy and enhancing power system flexibility and security. This study proposes a dynamic benefit evaluation method for pumped storage projects, addressing the limitations of static analyses in capturing the evolving benefit trends. In this paper, the multi-stage dynamic benefit evaluation model was constructed by introducing time-of-use tariffs, periodic capacity pricing mechanism, and ancillary service revenue prediction based on machine learning and the multiple regression method. Sensitivity analysis was applied to explore the impact of key parameter variations on economic indicators. The results show that the benefit structure differs significantly across stages, and with electricity market development, a diversified pattern supported by electricity, capacity, and ancillary service revenues will emerge. The application of the model to an actual operating pumped storage power station yielded an internal rate of return of 8.18%, a payback period of 16.4 years, and a 26% increase in net present value compared with traditional methods. The proposed model expands the theoretical framework for pumped storage benefit evaluation and provides strong support for investment decisions, policy design, and operational strategy optimization. Full article
(This article belongs to the Section B: Energy and Environment)
Show Figures

Figure 1

22 pages, 3661 KiB  
Article
Sizing and Techno-Economic Analysis of Utility-Scale PV Systems with Energy Storage Systems in Factory Buildings: An Application Study
by Kıvanç Başaran, Mahmut Temel Özdemir and Gökay Bayrak
Appl. Sci. 2025, 15(7), 3876; https://doi.org/10.3390/app15073876 - 1 Apr 2025
Cited by 3 | Viewed by 1470
Abstract
In recent years, PV power plants have been widely used on the roofs of commercial buildings with grid connections, primarily to enhance self-consumption in distributed energy systems. In addition, installing PV plants on commercial buildings’ roofs is becoming increasingly important, especially in crowded [...] Read more.
In recent years, PV power plants have been widely used on the roofs of commercial buildings with grid connections, primarily to enhance self-consumption in distributed energy systems. In addition, installing PV plants on commercial buildings’ roofs is becoming increasingly important, especially in crowded cities where land is limited. Since the Sun is an intermittent energy source, PV power plants cause frequency and voltage fluctuations in the grid. The way to avoid this problem is to install PV plants together with battery storage systems. Battery storage systems prevent frequency and voltage fluctuations in the grid and provide economic benefits. This article presents the sizing and techno-economic analysis of a factory building’s rooftop PV system with a battery. The amount of energy produced by the PV plant, PV temperature, and irradiation were recorded in a data logger obtained by various sensors. These real-time measurements were continuously collected and analyzed to evaluate system performance and assess seasonal variations.Load demand data were collected through an automatic meter reading system. The installed capacity of the PV power plant is 645 kW. The optimum battery capacity determined for this factory is 130 kW for 5 h. Techno-economic analysis was carried out using metrics such as the payback period, net present value, and levelized cost of energy. As a result of the analysis using various input variables, LCOE, NPV, and PBP were determined as 0.1467 $/kWh, 4918.3 $, and 7.03 years, respectively. Full article
Show Figures

Figure 1

39 pages, 6883 KiB  
Article
Techno–Enviro–Economic Feasibility Assessment of Family-Scale Solar Still (F-SSS) Desalination Plant in Central American and Caribbean Sites for Sustainable Clean Water Supply
by Hilarydoss Sharon, Mansi Prasad, Lakkoju Gowtham, Putta Venu Gopal and S. Aswin
Energies 2025, 18(6), 1431; https://doi.org/10.3390/en18061431 - 13 Mar 2025
Viewed by 892
Abstract
The viability of the family-scale solar still (F-SSS) desalination plant in nine low- and middle-income Central American and Caribbean sites, with improper water treatment facilities and supply networks, has been analyzed and reported in detail. The sizing of the desalination plant was done [...] Read more.
The viability of the family-scale solar still (F-SSS) desalination plant in nine low- and middle-income Central American and Caribbean sites, with improper water treatment facilities and supply networks, has been analyzed and reported in detail. The sizing of the desalination plant was done based on the still’s performance, clean water requirement and solar radiation potential. The still’s performance was estimated using an experimentally validated thermodynamic model. Annual desalinated water productivity per still was about 979.0 L (highest) and 836.0 L (lowest) in Port-au-Prince and Belize City, respectively. The lowest and highest potable water production price was observed in Havana (19.75 to 20.22 USD/m3) and Port-au-Prince (59.23 to 60.62 USD/m3) due to their low and high local interest rates, respectively. The decarbonization potential of the F-SSS desalination plant with a 25-year lifetime ranged between 37 and 641 tons of CO2 emission. The specific CO2 generated was found to be the least and highest in San Salvador (4.24 to 4.34 g/L of desalinated water) and Port-au-Price (13.70 to 14.04 g/L of desalinated water), respectively. The energy, finance payback time and sustainability index of the F-SSS desalination plant ranged between 0.59 and 0.67 years, 1.2 and 18.0 months, and 1.03 and 1.04, respectively. The performance, economic and environmental aspects revealed positive signs on the applicability of the F-SSS desalination plant in Central American and Caribbean sites for reliable and sustainable clean water supply. However, this process can be ratified if the concerned governments implement a reasonable subsidy, as is the case with other renewable energy systems. Full article
(This article belongs to the Section A: Sustainable Energy)
Show Figures

Graphical abstract

30 pages, 993 KiB  
Article
Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station
by Lumbumba Taty-Etienne Nyamayoka, Lesedi Masisi, David Dorrell and Shuo Wang
Energies 2025, 18(5), 1208; https://doi.org/10.3390/en18051208 - 1 Mar 2025
Cited by 2 | Viewed by 898
Abstract
Fossil fuel depletion, environmental concerns, and energy efficiency initiatives drive the rapid growth in the use of electric vehicles. However, lengthy battery charging times significantly hinder their widespread use. One proposed solution is implementing battery swapping stations, where depleted electric vehicle batteries are [...] Read more.
Fossil fuel depletion, environmental concerns, and energy efficiency initiatives drive the rapid growth in the use of electric vehicles. However, lengthy battery charging times significantly hinder their widespread use. One proposed solution is implementing battery swapping stations, where depleted electric vehicle batteries are quickly exchanged for fully charged ones in a short time. This paper evaluates the techno-economic feasibility and optimal design of a grid-connected hybrid wind–photovoltaic power system for electric vehicle battery swapping stations. The aim is to evaluate the viability of this hybrid power supply system as an alternative energy source, focusing on its cost-effectiveness. An optimal control model is developed to minimize the total life cycle cost of the proposed system while reducing the reliance on the utility grid and maximizing system reliability, measured by loss of power supply probability. This model is solved using mixed-integer linear programming to determine key decision variables such as the power drawn from the utility grid and the number of wind turbines and solar photovoltaic panels. A case study validates the effectiveness of this approach. The simulation results indicate that the optimal configuration comprises 64 wind turbines and 402 solar panels, with a total life cycle cost of ZAR 1,963,520.12. These results lead to an estimated energy cost savings of 41.58%. A life cycle cost analysis, incorporating initial investment, maintenance, and operational expenses, estimates a payback period of 5 years and 6 months. These findings confirm that the proposed hybrid power supply system is technically and economically viable for electric vehicle battery swapping stations. Full article
(This article belongs to the Special Issue The Networked Control and Optimization of the Smart Grid)
Show Figures

Figure 1

Back to TopTop