Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station
Abstract
:1. Introduction
2. Mathematical Model Formulation
2.1. Schematic Model Layout
2.2. Sub-Models of the Proposed System Components
2.2.1. Wind Turbine System
2.2.2. Solar Photovoltaic System
2.2.3. Inverter
2.2.4. Utility Grid Power Supply System
2.2.5. Battery Swapping Station Power Demand Mathematical Modeling
2.3. Technical and Economic Parameters of the Proposed System
2.3.1. Economic Evaluation Parameters of the Proposed System
- (a)
- LCC of the wind turbine system
- (b)
- LCC of the photovoltaic system
- (c)
- LCC of the inverters
2.3.2. Reliability Consideration of the Proposed System
2.4. Optimization Problem Formulation and Proposed Algorithm
2.4.1. Objective Function
2.4.2. System Constraints
2.4.3. Algorithm for Solving the Optimization Problem
3. General Data
3.1. EV BSS Power Demand Load Profile
3.2. Renewable Energy Power Supply
3.3. Time-of-Use Electricity Tariff
4. Simulation Results and Discussion
4.1. Optimal Hybrid Power System Sizing and Management Strategy
4.2. LCC Analysis for the Payback Period
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Skovgaard, J. EU climate policy after the crisis. Environ. Politics 2014, 23, 1–17. [Google Scholar] [CrossRef]
- McCarthy, J. A socioecological fix to capitalist crisis and climate change? The possibilities and limits of renewable energy. Environ. Plan. Econ. Space 2015, 47, 2485–2502. [Google Scholar] [CrossRef]
- Eder, L.; Provornaya, I. Analysis of energy intensity trend as a tool for long-term forecasting of energy consumption. Energy Effciency 2018, 11, 1971–1997. [Google Scholar] [CrossRef]
- Kenny, A. The rise and fall of Eskom and how to fix it now. Policy Bull. S. Afr. Inst. Race Relat. 2015, 2, 1–22. [Google Scholar]
- Giglmayr, S.; Brent, A.C.; Gauché, P.; Fechner, H. Utility-scale PV power and energy supply outlook for South Africa in 2015. Renew. Energy 2015, 83, 779–785. [Google Scholar] [CrossRef]
- Alexander, M.; Tonachel, L. Projected greenhouse gas emissions for plug-in electric vehicles. World Electr. Veh. J. 2016, 8, 987–995. [Google Scholar] [CrossRef]
- Sujitha, N.; Krithiga, S. Res based ev battery charging system: A review. Renew. Sustain. Energy Rev. 2017, 75, 978–988. [Google Scholar] [CrossRef]
- International Energy Agency. Global EV Outlook 2021. Available online: https://www.iea.org/reports/global-ev-outlook-2021 (accessed on 25 April 2023).
- Vani, B.V.; Kishan, D.; Ahmad, M.W.; Reddy, C.R.P. Enhanced electric vehicle battery management system employing bat algorithm with chaotic diversification strategies. IET Power Electron. 2024, 17, 2319–2330. [Google Scholar] [CrossRef]
- Sui, Q.; Li, F.; Wu, C.; Feng, Z.; Lin, X.; Wei, F.; Li, Z. Optimal scheduling of battery charging–swapping systems for distribution network resilience enhancement. Energy Rep. 2022, 8, 6161–6170. [Google Scholar] [CrossRef]
- Revankar, S.R.; Kalkhambkar, V.N. Grid integration of battery swapping station: A review. J. Energy Storage 2021, 41, 102937. [Google Scholar] [CrossRef]
- Macharia, V.M.; Garg, V.K.; Kumar, D. A review of electric vehicle technology: Architectures, battery technology and its management system, relevant standards, application of artificial intelligence, cyber security, and interoperability challenges. IET Electr. Syst. Transp. 2023, 13, 12083. [Google Scholar] [CrossRef]
- Nyamayoka, L.T.; Masisi, L.M.; Dorrell, D.G.; Wang, S. Optimisation Design of On-Grid Hybrid Power Supply System for Electric Vehicle Battery Swapping Station. In Proceedings of the 2023 IEEE International Future Energy Electronics Conference (IFEEC), Sydney, Australia, 20–23 November 2023; pp. 296–299. [Google Scholar]
- Alanazi, F. Electric Vehicles: Benefits, Challenges, and Potential Solutions for Widespread Adaptation. Appl. Sci. 2023, 13, 6016. [Google Scholar] [CrossRef]
- Zhan, W.; Wang, Z.; Zhang, L.; Liu, P.; Cui, D.; Dorrell, D.G. A review of siting, sizing, optimal scheduling, and cost-benefit analysis for battery swapping stations. Energy 2022, 258, 124723. [Google Scholar] [CrossRef]
- Horak, D.; Hainoun, A.; Neugebauer, G.; Stoeglehner, G. Battery electric vehicle energy demand in urban energy system modeling: A stochastic analysis of added flexibility for home charging and battery swapping stations. Sustain. Energy Grids Netw. 2024, 37, 01260. [Google Scholar] [CrossRef]
- Li, Y.; Zhu, F.; Li, L.; Ouyang, M. Electrifying heavy-duty truck through battery swapping. Joule 2024, 8, 1556–1561. [Google Scholar] [CrossRef]
- Sehar, F.; Pipattanasomporn, M.; Rahman, S. Demand management to mitigate impacts of plug-in electric vehicle fast charge in buildings with renewables. Energy 2017, 120, 642–651. [Google Scholar] [CrossRef]
- Amiri, S.S.; Jadid, S.; Saboori, H. Multi-objective optimum charging management of electric vehicles through battery swapping stations. Energy 2018, 15, 549–562. [Google Scholar] [CrossRef]
- Adu-Gyamfi, G.; Song, H.; Nketiah, E.; Obuobi, B.; Adjei, M.; Cudjoe, D. Determinants of adoption intention of battery swap technology for electric vehicles. Energy 2022, 15, 123862. [Google Scholar] [CrossRef]
- Danilovic, M.; Liu, J.L.; Müllern, T.; Nåbo, A.; Almestrand Linné, P. Exploring Battery-Swapping for Electric Vehicles in China 1.0. Sweden-China Bridge. March 2021, pp. 1–105. Available online: https://www.diva-portal.org/smash/get/diva2:1628149/FULLTEXT01.pdf (accessed on 6 November 2023).
- Chen, X.; Xing, K.; Ni, F.; Wu, Y.; Xia, Y. An electric vehicle battery-swapping system: Concept, architectures, and implementations. IEEE Intell. Transp. Syst. Mag. 2021, 14, 175–194. [Google Scholar] [CrossRef]
- Lebrouhi, B.E.; Khattari, Y.; Lamrani, B.; Maaroufi, M.; Zeraouli, Y.; Kousksou, T. Key challenges for a large-scale development of battery electric vehicles: A comprehensive review. J. Energy Storage 2021, 44, 103273. [Google Scholar] [CrossRef]
- Shalaby, A.A.; Shaaban, M.F.; Mokhtar, M.; Zeineldin, H.H.; El-Saadany, E.F. A dynamic optimal battery swapping mechanism for electric vehicles using an LSTM-based rolling horizon approach. IEEE Trans. Intell. Transp. Syst. 2022, 23, 15218–15232. [Google Scholar] [CrossRef]
- Boonraksa, T.; Boonraksa, P.; Pinthurat, W.; Marungsri, B. Optimal Battery charging schedule for a battery swapping station of an electric bus with a PV integration considering energy costs and peak-to-average ratio. IEEE Access 2024, 12, 36280–36295. [Google Scholar] [CrossRef]
- Yan, J.; Menghwar, M.; Asghar, E.; Panjwani, M.K.; Liu, Y. Real-time energy management for a smart-community microgrid with battery swapping and renewables. Appl. Energy 2019, 238, 180–194. [Google Scholar] [CrossRef]
- Mahoor, M.; Hosseini, Z.S.; Khodaei, A. Least-cost operation of a battery swapping station with random customer requests. Energy 2019, 172, 913–921. [Google Scholar] [CrossRef]
- Liu, X.; Zhao, T.; Yao, S.; Soh, C.B.; Wang, P. Distributed operation management of battery swapping-charging systems. IEEE Trans. Smart Grid 2018, 10, 5320–5333. [Google Scholar] [CrossRef]
- Bian, H.; Ren, Q.; Guo, Z.; Zhou, C. Optimal Scheduling of Integrated Energy System Considering Electric Vehicle Battery Swapping Station and Multiple Uncertainties. World Electr. Veh. J. 2024, 15, 170. [Google Scholar] [CrossRef]
- Jordehi, A.R.; Javadi, M.S.; Catalão, J.P. Optimal placement of battery swap stations in microgrids with micro pumped hydro storage systems, photovoltaic, wind and geothermal distributed generators. Int. J. Electr. Power Energy Syst. 2021, 125, 106483. [Google Scholar] [CrossRef]
- Ren, L.; Liao, W.; Chen, J. Systematic Design and Implementation Method of Battery-Energy Comprehensive Management Platform in Charging and Swapping Scenarios. Energies 2024, 17, 1237. [Google Scholar] [CrossRef]
- Wu, S.; Xu, Q.; Li, Q.; Yuan, X.; Chen, B. An optimal charging strategy for pv based battery swapping stations in a dc distribution system. Int. J. Photoenergy 2017, 2017, 1504857. [Google Scholar] [CrossRef]
- Gull, M.S.; Khalid, M.; Arshad, N. Multi-objective optimization of battery swapping station to power up mobile and stationary loads. Appl. Energy 2024, 374, 124064. [Google Scholar] [CrossRef]
- Fachrizal, R.; Shepero, M.; Åberg, M.; Munkhammar, J. Optimal PV-EV sizing at solar powered workplace charging stations with smart charging schemes considering self-consumption and self-sufficiency balance. Appl. Energy 2022, 307, 118139. [Google Scholar] [CrossRef]
- DoT. Green Transport Strategy for South Africa: (2018–2050); Department of Transport: Pretoria, South Africa, 2019.
- Ahjum, F.; Godinho, C.; Burton, J.; McCall, B.; Marquard, A. A Low-Carbon Transport Future for South Africa: Technical, Economic and Policy Considerations; Climate Transparency: Cape Town, South Africa, 2020; pp. 1–28. [Google Scholar]
- Pillay, N.S.; Nassiep, S. Employment in Automotive Parts with Electric Vehicle Market Penetration in South Africa. 2020. Available online: https://proceedings.systemdynamics.org/2020/papers/P1016.pdf (accessed on 15 September 2023).
- Moeletsi, M.E.; Tongwane, M.I. Projected direct carbon dioxide emission reductions as a result of the adoption of electric vehicles in Gauteng province of South Africa. Atmosphere 2020, 11, 591. [Google Scholar] [CrossRef]
- Lamedica, R.; Santini, E.; Ruvio, A.; Palagi, L.; Rossetta, I. A MILP methodology to optimize sizing of PV-Wind renewable energy systems. Energy 2018, 165, 385–398. [Google Scholar] [CrossRef]
- Banks, D.; Schaffler, J. The Potential Contribution of Renewable Energy in South Africa. In Sustainable Energy & Climate Change Project (SECCP); 2005; pp. 1–116. Available online: https://earthlife-ct.org.za/downloads/The_Potential_Contribution_of_Renewable_Energy_in_South_Africa.pdf (accessed on 19 January 2025).
- Diaf, S.; Belhamel, M.; Haddadi, M.; Louche, A. Technical and economic assessment of hybrid photovoltaic/wind system with battery storage in corsica island. Energy Policy 2008, 36, 743–754. [Google Scholar] [CrossRef]
- Diaf, S.; Diaf, D.; Belhamel, M.; Haddadi, M.; Louche, A. A methodology for optimal sizing of autonomous hybrid pv/wind system. Energy Policy 2007, 35, 5708–5718. [Google Scholar] [CrossRef]
- Belkaid, A.; Colak, I.; Isik, O. Photovoltaic maximum power point tracking under fast varying of solar radiation. Appl. Energy 2016, 179, 523–530. [Google Scholar] [CrossRef]
- Abbes, D.; Martinez, A.; Champenois, G. Life cycle cost, embodied energy and loss of power supply probability for the optimal design of hybrid power systems. Math. Comput. Simul. 2014, 98, 46–62. [Google Scholar] [CrossRef]
- Kazem, H.A.; Khatib, T. Techno-economical assessment of grid connected photovoltaic power systems productivity in Sohar, Oman. Sustain. Energy Technol. Assess. 2013, 3, 6–65. [Google Scholar] [CrossRef]
- Ramli, M.A.; Hiendro, A.; Twaha, S. Economic analysis of pv/diesel hybrid system with flywheel energy storage. Renew. Energy 2015, 78, 398–405. [Google Scholar] [CrossRef]
- Bokopane, L.; Kanzumba, K.; Vermaak, H. Is the south african electrical infrastructure ready for electric vehicles? In 2019 Open Innovations (OI); IEEE: Cape Town, South Africa, 2019; pp. 127–131. [Google Scholar]
- Dane, A.; Wright, D.; Montmasson-Clair, G. Exploring the Policy Impacts of a Transition to Electric Vehicles in South Africa; Trade & Industrial Policy Strategies: Pretoria, South Africa, 2019; pp. 1–20. [Google Scholar]
- Sooknanan, P.N.; Brent, A.C.; Musango, J.K.; van Geems, F. Using a system dynamics modelling process to determine the impact of ecar, ebus and etruck market penetration on carbon emissions in South Africa. Energies 2020, 13, 575. [Google Scholar] [CrossRef]
- Brenna, M.; Foiadelli, F.; Leone, C.; Longo, M. Electric vehicles charging technology review and optimal size estimation. J. Electr. Eng. Technol. 2020, 15, 2539–2552. [Google Scholar] [CrossRef]
- Hemmati, R. Chapter 3—Integration of electric vehicles and charging stations. In Energy Management in Homes and Residential Microgrids: Short-Term Scheduling and Long-Term Planning; Hemmati, R., Ed.; Elsevier: Amsterdam, The Netherlands, 2024; pp. 79–140. [Google Scholar]
- Evans, A.; Strezov, V.; Evans, T.J. Assessment of sustainability indicators for renewable energy technologies. Renew. Sustain. Energy Rev. 2009, 13, 1082–1088. [Google Scholar] [CrossRef]
- Adefarati, T.; Bansal, R.C.; Shongwe, T.; Naidoo, R.; Bettayeb, M.; Onaolapo, A.K. Optimal energy management, technical, economic, social, political and environmental benefit analysis of a grid-connected PV/WT/FC hybrid energy system. Energy Convers. Manag. 2023, 292, 117390. [Google Scholar] [CrossRef]
- Al-Sharrah, G.; Elkamel, A.; Almanssoor, A. Sustainability indicators for decision-making and optimisation in the process industry: The case of the petrochemical industry. Chem. Eng. Sci. 2010, 65, 1452–1461. [Google Scholar] [CrossRef]
- Bilal, M.; Oladigbolu, J.O.; Mujeeb, A.; Al-Turki, Y.A. Cost-effective optimization of on-grid electric vehicle charging systems with integrated renewable energy and energy storage: An economic and reliability analysis. J. Energy Storage 2024, 100, 113170. [Google Scholar] [CrossRef]
- Sediqi, M.M.; Furukakoi, M.; Lotfy, M.E.; Yona, A.; Senjyu, T. Optimal economical sizing of grid-connected hybrid renewable energy system. J. Energy Power Eng. 2017, 11, 244–253. [Google Scholar]
- Zhang, W.; Maleki, A.; Rosen, M.A.; Liu, J. Optimization with a simulated annealing algorithm of a hybrid system for renewable energy including battery and hydrogen storage. Energy 2018, 163, 191–207. [Google Scholar] [CrossRef]
- Kaabeche, A.; Belhamel, M.; Ibtiouen, R. Sizing optimization of grid-independent hybrid photovoltaic/wind power generation system. Energy 2011, 36, 1214–1222. [Google Scholar] [CrossRef]
- Kamjoo, A.; Maheri, A.; Dizqah, A.M.; Putrus, G.A. Multi-objective design under uncertainties of hybrid renewable energy system using NSGA-II and chance constrained programming. Int. J. Electr. Power Energy Syst. 2016, 74, 187–194. [Google Scholar] [CrossRef]
- Duffie, J.A.; Beckman, W.A.; Blair, N. Solar Engineering of Thermal Processes, Photovoltaics and Wind, 5th ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2020. [Google Scholar]
- Eltamaly, A.M.; Mohamed, M.A. Optimal sizing and designing of hybrid renewable energy systems in smart grid applications. In Advances in Renewable Energies and Power Technologies; Elsevier: Amsterdam, The Netherlands, 2018; pp. 231–313. [Google Scholar]
- Askarzadeh, A.; dos Santos Coelho, L. A novel framework for optimization of a grid-independent hybrid renewable energy system: A case study of Iran. Sol. Energy 2015, 112, 383–396. [Google Scholar] [CrossRef]
- Maleki, A.; Pourfayaz, F.; Rosen, M.A. A novel framework for optimal design of hybrid renewable energy-based autonomous energy systems: A case study for Naming, Iran. Energy 2016, 98, 168–180. [Google Scholar] [CrossRef]
- Anoune, K.; Ghazi, M.; Bouya, M.; Laknizi, A.; Ghazouani, M.; Abdellah, A.B.; Astito, A. Optimization and techno-economic analysis of photovoltaic-wind-battery based hybrid system. J. Energy Storage 2020, 32, 101878. [Google Scholar] [CrossRef]
- MATLAB, R2024a. Available online: https://www.mathworks.com/help/optim/ug/intlinprog.html (accessed on 15 August 2024).
- Bénichou, M.; Gauthier, J.M.; Girodet, P.; Hentges, G.; Ribière, G.; Vincent, O. Experiments in mixed-integer linear programming. Math. Program. 1971, 1, 76–94. [Google Scholar] [CrossRef]
- Penangsang, O.; Sulistijono, P. Suyanto, Optimal power flow using multi-objective genetic algorithm to minimize generation emission and operational cost in micro-grid. Int. J. Smart Grid Clean Energy 2014, 3, 410–416. [Google Scholar]
- Gunantara, N. A review of multi-objective optimization: Methods and its applications. Cogent Eng. 2018, 5, 1502242. [Google Scholar] [CrossRef]
- Weather Spark. Available online: https://weatherspark.com/y/82961/Average-Weather-in-Cape-Town-South-Africa-Year-Round#Figures-WindSpeed (accessed on 25 November 2023).
- Eskom Holdings SOC Ltd. Available online: https://www.eskom.co.za/distribution/wp-content/uploads/2023/03/Schedule-of-standard-prices-2023_24-140323.pdf (accessed on 20 August 2024).
- DMRE, South Africa. Integrated Resource Plan (IRP, 2019). 2019. Available online: https://www.dmre.gov.za/Portals/0/Energy_Website/IRP/2019/IRP-2019.pdf (accessed on 15 January 2024).
- Hoppmann, J.; Volland, J.; Schmidt, T.S.; Hottmann, V.H. The economic viability of battery storage for residential solar photovoltaic systems—A review and a simulation model. Renew. Sustain. Energy Rev. 2014, 39, 1101–1118. [Google Scholar] [CrossRef]
- Liu, G. Development of a general sustainability indicator for renewable energy systems: A review. Renew. Sustain. Energy Rev. 2014, 31, 611–621. [Google Scholar] [CrossRef]
- Sichilalu, S.; Mathaba, T.; Xia, X. Optimal control of a wind–PV-hybrid powered heat pump water heater. Appl. Energy 2017, 185, 1173–1184. [Google Scholar] [CrossRef]
- TRADING ECONOMICS: South Africa Interest Rate. Available online: https://tradingeconomics.com/south-africa/interest-rate (accessed on 20 September 2024).
- TRADING ECONOMICS: South Africa Inflation Rate. Available online: https://tradingeconomics.com/south-africa/inflation-cpi (accessed on 20 September 2024).
Parameters | Symbol | Values |
---|---|---|
Installation lifetime | 20 years | |
Sampling period | N | 24 |
Sampling time | 1 h | |
Weighting factor | 0.5 | |
Upper bound | ||
Lower bound | ||
Inflation rate | r | 4.60% |
Interest rate | i | 8.25% |
Photovoltaic systems | ||
Lifetime of the PV system | 25 years | |
Rated power of the PV panel | 0.545 kW | |
Conversion efficiency of the PV panel | 19.4% | |
Rated efficiency of the PV panel | 18.1% | |
Initial cost of the PV panel | ZAR 3199.99 | |
Annual O & M cost of PV | 1% of | |
Capital cost of the solar PV per kW | ZAR 8220.16/kW | |
Wind turbine systems | ||
Lifetime of the WT system | 25 years | |
Rated power of the WT generator | 8 kW | |
Rated WT speed | 12 m/s | |
Cut-in WT speed | 2.5 m/s | |
Cut-out WT speed | 25 m/s | |
WT gearbox efficiency | 90% | |
WT generator efficiency | 80% | |
Air density | 1.225 kg/m3 | |
WT power coefficient | 0.48 | |
Initial cost of the WT | ZAR 10,580.63 | |
Annual O & M cost of WT | 5% of | |
Capital cost of the WT per kW | ZAR 15,403/kW | |
Inverter | ||
Lifetime of the inverter | 15 Years | |
Efficiency of the inverter | 98% | |
Inverter factor | 1.25 | |
Initial cost of the inverter | ZAR 38,860.00 | |
Capital cost of inverter per kW | ZAR 3 108.80/kW |
Number of WTs | Number of PV Panels | Total Life Cycle Cost |
---|---|---|
64 | 402 | ZAR 1,963,520.12 |
Baseline | Optimal | Saving | |
---|---|---|---|
Daily cost | ZAR 7676.39 | ZAR 4483.53 | ZAR 3192.5 |
Annualized cost | ZAR 1,165,262.5 |
Components | Costs (ZAR) |
---|---|
Wind turbines | 677,160.32 |
Solar photovoltaic | 1,286,359.80 |
Inverters | 77,720 |
Installation cost | 649,975.98 |
Accessories | 3,000,000 |
Total investment capital cost | 5,691,216.10 |
Years | Annual O & M Cost (ZAR) | Annual Optimal Cost–Benefit (ZAR) | Total | Discount Factor | Discounted Cash Flows | Cumulative Cash Flows |
---|---|---|---|---|---|---|
0 | 1.00 | (5,691,216.10) | (5,691,216.10) | |||
1 | (46,721.61) | 1,165,390.25 | 1,118,668.64 | 0.96 | 1,079,275.10 | (4,611,941.01) |
2 | (47,389.73) | 1,182,055.33 | 1,134,665.60 | 0.93 | 1,056,158.93 | (3,555,782.07) |
3 | (48,067.40) | 1,198,958.72 | 1,150,891.32 | 0.90 | 1,033,537.87 | (2,522,244.20) |
4 | (48,754.77) | 1,216,103.83 | 1,167,349.07 | 0.87 | 1,011,401.32 | (1,510,842.89) |
5 | (49,451.96) | 1,233,494.12 | 1,184,042.16 | 0.84 | 989,738.89 | (521,104.00) |
6 | (50,159.12) | 1,251,133.08 | 1,200,973.96 | 0.81 | 968 540.43 | 447,436.43 |
7 | (50,876.40) | 1,269,024.29 | 1,218,147.89 | 0.78 | 947,796.00 | 1,395,232.43 |
8 | (51,603.93) | 1,287,171.33 | 1,235,567.40 | 0.75 | 927 495.88 | 2,322,728.31 |
9 | (52,341.87) | 1,305,577.88 | 1,253,236.02 | 0.72 | 907 630.56 | 3,230,358.87 |
10 | (53,090.35) | 1,324,247.65 | 1,271,157.29 | 0.70 | 788,190.71 | 4,018,549.58 |
11 | (53,849.55) | 1,343,184.39 | 1,289,334.84 | 0.67 | 869,167.24 | 4,887,716.82 |
12 | (54,619.60) | 1,362,391.92 | 1,307,772.33 | 0.65 | 850,551.21 | 5,738,268.03 |
13 | (55,400.66) | 1,381,874.13 | 1,326,473.47 | 0.63 | 832,333.90 | 6,570,601.93 |
14 | (56,192.89) | 1,401,634.93 | 1,345,442.04 | 0.61 | 814 506.78 | 7,385,108.72 |
15 | (56,996.44) | 1,421,678.31 | 1,364,681.86 | 0.58 | 797,061.48 | 8,182,170.20 |
16 | (57,811.49) | 1,442 008.31 | 1,384,196.82 | 0.56 | 779,989.84 | 8,962,160.04 |
17 | (58,638.20) | 1,462,629.03 | 1,403,990.83 | 0.54 | 763,283.83 | 9,725,443.87 |
18 | (59,476.72) | 1,483,544.62 | 1,424,067.90 | 0.52 | 746,935.64 | 10,472,379.50 |
19 | (60,327.24) | 1,504,759.31 | 1,444,432.07 | 0.51 | 730,937.60 | 11,203,317.10 |
20 | (61,189.92) | 1,526,277.37 | 1,465,087.45 | 0.49 | 715,282.20 | 11,918,599.30 |
Payback is 5 years plus 6 months (6.45636) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Nyamayoka, L.T.-E.; Masisi, L.; Dorrell, D.; Wang, S. Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station. Energies 2025, 18, 1208. https://doi.org/10.3390/en18051208
Nyamayoka LT-E, Masisi L, Dorrell D, Wang S. Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station. Energies. 2025; 18(5):1208. https://doi.org/10.3390/en18051208
Chicago/Turabian StyleNyamayoka, Lumbumba Taty-Etienne, Lesedi Masisi, David Dorrell, and Shuo Wang. 2025. "Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station" Energies 18, no. 5: 1208. https://doi.org/10.3390/en18051208
APA StyleNyamayoka, L. T.-E., Masisi, L., Dorrell, D., & Wang, S. (2025). Techno-Economic Feasibility and Optimal Design Approach of Grid-Connected Hybrid Power Generation Systems for Electric Vehicle Battery Swapping Station. Energies, 18(5), 1208. https://doi.org/10.3390/en18051208