The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries
Abstract
1. Introduction
2. Materials and Methods
- Inventory Management Robot
- Unit Dose Distribution System (UDDS)
- Automated Dispensing Cabinets (ADCs)
- Centralized Dose Error Reduction System (DERS) for Smart Infusion Pumps in the ICU
- Medication Traceability System for Oncologic Therapies
- Reduction in Human Resource Costs: Automation technologies significantly reduce healthcare personnel time by eliminating or streamlining repetitive logistical tasks, such as drug picking, transportation, restocking, and manual documentation. To quantify the economic value of these time savings, we reviewed comparative studies from the literature reporting Full-Time Equivalent (FTE) workload differences between automated and non-automated hospital settings. Using these benchmarks, we estimated the annual workload (in hours per professional category) required to manage medication-related logistics in a 561-bed hospital without automation. These baseline values are reported in Table 1. For each automation technology, we applied corresponding efficiency improvement rates—also reported in Table 1—to estimate the reduction in workload. The time savings were monetized by multiplying the avoided hours by the average annual salary of the relevant personnel categories, using publicly available national wage data. This method was applied consistently across all technologies and countries, enabling a standardized estimation of human resource savings and a clearer understanding of how automation reallocates staff time from non-value-added tasks to clinical care [4].
- Reduction in Drug Wastage: Automated systems improve drug utilization by implementing stock rotation algorithms and real-time inventory visibility, which prioritize the dispensing and use of medications nearing expiration. This reduces the number of drug packages discarded due to expiry. Baseline wastage rates in non-automated settings and corresponding reduction percentages achievable with automation were obtained from published literature. For each drug class and automation technology, we estimated the annual volume of expired drugs, valued using the average purchase price per package. The difference in costs between the automated and non-automated scenarios was calculated as the economic benefit. All parameters used for this estimation—including baseline wastage rates, reduction percentages, and unit prices—are detailed in Table 1, along with the corresponding literature sources [6].
- Optimized Inventory Management: The optimization of inventory levels is increasingly seen as a critical goal for hospital logistics systems, especially in settings under economic pressure. Manual inventory management often leads to excess stock levels, especially of infrequently used pharmaceuticals, resulting in a high volume of capital tied up in unused inventory. Several studies have proposed predictive models to support hospital purchasing and supply planning activities, including approaches based on short time-series that have proven effective even in healthcare settings where long historical datasets are not always available [7]. Automation improves stock visibility, reorder accuracy, and rotation, thereby enabling hospitals to maintain optimal inventory levels. The economic benefit was estimated by comparing the average inventory value in automated versus non-automated settings, based on literature-derived benchmarks of stock reduction (expressed as a percentage of total drug value). Inventory holding costs were calculated by applying an annual holding cost rate—reflecting the opportunity cost of capital—sourced from the European Central Bank (ECB). All input parameters for this calculation, including baseline inventory levels, efficiency improvement rates, and holding cost percentage, are presented in Table 1, along with relevant references from the literature [8].
- Reduction in Medication Administration Errors (MAEs): Although the reduction in MAEs can be considered an indirect benefit, it was included in our analysis due to its significant clinical and economic implications, well documented in the literature (see references in Table 1). To estimate the effect of automation on MAEs, we relied on observational studies comparing automated and non-automated hospital workflows. For the first three technologies (inventory robots, Unit Dose Distribution Systems, and Automated Dispensing Cabinets), these studies provided error rates that we applied to a standardized 561-bed hospital model. For the remaining two technologies (Central DERS and Oncology Medication Traceability System), which primarily enhance error detection, we assumed an improvement in the recognition and correction of medication errors based on supportive evidence from the literature. We classified MAEs by severity—no harm, low harm, and mild/severe harm—and associated each category with an average increase in hospital length of stay, using values found in previous economic evaluations. To consolidate these values into a single figure, we calculated a weighted average increase in length of stay per error, based on the relative frequency of each severity category and its corresponding excess days of hospitalization. For each country, this average excess stay was multiplied by the mean inpatient cost per day, providing a country-specific estimate of the economic burden associated with a generic MAE. Automation-related savings were then derived by applying the expected reduction (or detection) rates to these cost estimates. Table 1 presents all input parameters used in this calculation, including baseline error rates, severity distribution, average LOS extension per error category, and unit costs across countries [9].
Technology | Number of Medications Managed/Stocked in an Average European Hospital | Percentage of Expired or Wasted Drug/number. of Preparations | Percentage of Wasted Drugs’ Reduction Thanks to Automation | % Reduction in Product Stock Thanks to Automation | Number of Medications’ Errors Without Automation Technologies in a Year | Percentage of Medication Error Reduction Thanks to Automation | Professional | Number of Hours Dedicated to the Specific Activities Without Automation | Reduced Process Time Through Automation (% of hours) |
---|---|---|---|---|---|---|---|---|---|
Inventory Robots | 1,563,133 | 0.46% [10] | −100.00% [11] | −26.40% [12] | 128.96 [10] | −16% [10] | Technicians | 7769.45 [10] | −31.40% [10] |
Unit Dose System | 545,143 | 0.55% [11] | −100.00% [11] | 0.00% (Assumption) | 77.79 [13] | −53% [13] | Nurses | 20,640.59 [10] | −5.84% [14] |
Technicians | 13,881.92 [10] | −10.00% [10] | |||||||
Automated Dispensing Cabinets | 2,850,352 | 0.55% [11] | −100.00% (Assumption) | −60.58% Elaboration from [12] | 954.91 Elaboration from [15] | −53% [16] | Nurses | 499.16 [10] | −80.00% [10] |
Pharmacists | 1992.81 [10] | −50.00% [17] | |||||||
Technicians | 1996.63 [10] | 15.00% [18] | |||||||
Smart pumps with DERS | 26,690 | - | - | - | 12.82 Hypothesys: Baseline efficacy is equal to the one epressed in [19] | −100% (Assumption) | Nurses | 394.37 [20] | −69.81% [20] |
Med. Traceability System in Oncology | 19,180 | 2.5153% (Elaboration from [21]) | −100.00% (Assumption) | - | 284.82 [22] | −100% (Assumption | Pharmacists (preparation) | 2878.90 [23] | −44.38% [23] |
0.0960% [21] | −21.10% Elaboration from [21] | 139.25 [24] | −75% [25,26,27] | Nurses (administration) | 1917.99 [28] | −88.61% [28] |
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
ROI | Return On Investment |
NPV | Net Present Value |
PBT | Payback Time |
FTE | Full-Time Equivalent |
UDDS | Unit Dose Dispensing System |
ADCs | Automated Dispensing Cabinets |
DERS | Dose Error Reduction System |
Appendix A
Country | Inventory Robot Investment | Inventory Robot HR Efficiency Savings | Inventory Robot Wastage Reduction Savings | Inventory Robot Inventory Reduction Savings | Inventory Robot MAE Reduction Savings (Indirect) | Inventory Robot Total Savings | Inventory Robot ROI | Inventory Robot NPV | Inventory Robot Payback Time |
---|---|---|---|---|---|---|---|---|---|
Austria | 9,537,524 EUR | −2,677,887 EUR | −5,318,178 EUR | −1,097,485 EUR | −156,887 EUR | −9,250,437 EUR | 320% | −56,236,844 EUR | 2 |
Belgium | 17,572,407 EUR | −4,763,417 EUR | −8,788,508 EUR | −1,813,639 EUR | −259,263 EUR | −15,624,827 EUR | 276% | −87,730,558 EUR | 2 |
Bulgaria | 17,134,280 EUR | −830,112 EUR | −7,806,219 EUR | −1,610,929 EUR | −230,285 EUR | −10,477,546 EUR | 173% | −55,876,212 EUR | 3 |
Croatia | 5,762,476 EUR | −405,847 EUR | −2,415,304 EUR | −498,434 EUR | −71,252 EUR | −3,390,837 EUR | 155% | −16,434,051 EUR | 3 |
Cyprus | 1,059,581 EUR | −85,896 EUR | −506,289 EUR | −104,480 EUR | −14,936 EUR | −711,600 EUR | 199% | −3,991,610 EUR | 3 |
Czechia | 9,518,597 EUR | −3,492,428 EUR | −5,188,877 EUR | −1,070,802 EUR | −153,073 EUR | −9,905,179 EUR | 364% | −65,441,247 EUR | 2 |
Denmark | 3,551,425 EUR | −1,082,681 EUR | −1,870,432 EUR | −385,991 EUR | −55,178 EUR | −3,394,282 EUR | 322% | −21,465,708 EUR | 2 |
Estonia | 2,290,903 EUR | −213,491 EUR | −809,371 EUR | −167,026 EUR | −23,877 EUR | −1,213,765 EUR | 127% | −5,297,560 EUR | 4 |
Finland | 2,940,295 EUR | −776,859 EUR | −1,293,507 EUR | −266,934 EUR | −38,159 EUR | −2,375,458 EUR | 263% | −14,741,125 EUR | 3 |
France | 116,594,957 EUR | −23,963,002 EUR | −55,160,788 EUR | −11,383,247 EUR | −1,627,254 EUR | −92,134,292 EUR | 255% | −566,889,586 EUR | 3 |
Germany | 103,801,385 EUR | −23,641,149 EUR | −61,820,802 EUR | −12,757,640 EUR | −1,823,726 EUR | −100,043,318 EUR | 322% | −622,429,538 EUR | 2 |
Greece | 15,334,439 EUR | −1,631,499 EUR | −7,031,650 EUR | −1,451,085 EUR | −207,435 EUR | −10,321,670 EUR | 196% | −55,991,686 EUR | 3 |
Hungary | 16,463,752 EUR | −913,016 EUR | −6,792,002 EUR | −1,401,631 EUR | −200,365 EUR | −9,307,014 EUR | 129% | −37,339,855 EUR | 3 |
Ireland | 5,411,715 EUR | −1,330,238 EUR | −3,315,354 EUR | −684,172 EUR | −97,804 EUR | −5,427,568 EUR | 342% | −34,607,617 EUR | 2 |
Italy | 58,197,246 EUR | −10,936,904 EUR | −34,861,599 EUR | −7,194,208 EUR | −1,028,424 EUR | −54,021,136 EUR | 304% | −327,920,917 EUR | 2 |
Latvia | 3,760,824 EUR | −288,731 EUR | −1,339,672 EUR | −276,461 EUR | −39,521 EUR | −1,944,385 EUR | 116% | −7,881,271 EUR | 4 |
Lithuania | 5,163,697 EUR | −396,434 EUR | −1,839,400 EUR | −379,587 EUR | −54,263 EUR | −2,669,684 EUR | 124% | −11,874,390 EUR | 4 |
Luxembourg | 741,385 EUR | −167,356 EUR | −383,466 EUR | −79,134 EUR | −11,312 EUR | −641,269 EUR | 291% | −4,132,653 EUR | 2 |
Malta | 587,631 EUR | −88,685 EUR | −283,161 EUR | −58,435 EUR | −8,353 EUR | −438,634 EUR | 231% | −2,549,685 EUR | 3 |
Netherlands | 15,980,608 EUR | −4,057,855 EUR | −8,210,314 EUR | −1,694,320 EUR | −242,206 EUR | −14,204,695 EUR | 294% | −88,300,454 EUR | 2 |
Poland | 64,939,682 EUR | −4,966,744 EUR | −22,756,516 EUR | −4,696,145 EUR | −671,322 EUR | −33,090,726 EUR | 106% | −120,556,135 EUR | 4 |
Portugal | 10,920,430 EUR | −1,563,248 EUR | −5,327,766 EUR | −1,099,464 EUR | −157,170 EUR | −8,147,647 EUR | 229% | −46,720,000 EUR | 3 |
Romania | 40,134,571 EUR | −2,727,393 EUR | −17,670,319 EUR | −3,646,533 EUR | −521,278 EUR | −24,565,523 EUR | 153% | −109,694,626 EUR | 3 |
Slovakia | 10,002,195 EUR | −1,048,285 EUR | −4,218,929 EUR | −870,639 EUR | −124,459 EUR | −6,262,312 EUR | 161% | −28,773,102 EUR | 3 |
Slovenia | 3,505,086 EUR | −939,458 EUR | −1,505,260 EUR | −310,633 EUR | −44,405 EUR | −2,799,757 EUR | 245% | −15,776,756 EUR | 3 |
Spain | 31,305,709 EUR | −5,206,229 EUR | −16,336,699 EUR | −3,371,320 EUR | −481,936 EUR | −25,396,184 EUR | 249% | −143,074,795 EUR | 3 |
Sweden | 5,032,795 EUR | −1,690,249 EUR | −2,266,855 EUR | −467,799 EUR | −66,873 EUR | −4,491,776 EUR | 291% | −27,252,913 EUR | 2 |
Total EU27 | 577,245,596 EUR | −99,885,092 EUR | −285,117,237 EUR | −58,838,174 EUR | −8,411,016 EUR | −452,251,520 EUR | 250% | −2,578,980,894 EUR | 3 |
United Kingdom | 22,885,042 EUR | −5,516,497 EUR | −13,440,988 EUR | −2,773,747 EUR | −396,512 EUR | −22,127,744 EUR | 329% | −141,329,149 EUR | 2 |
Total EU27 + UK | 600,130,638 EUR | −105,401,590 EUR | −298,558,225 EUR | −61,611,921 EUR | −8,807,528 EUR | −474,379,264 EUR | 253% | −2,720,310,043 EUR | 3 |
Country | Unit Dose System Investment | Unit Dose System HR Efficiency Savings | Unit Dose System Wastage Reduction Savings | Unit Dose System Inventory Reduction Savings | Unit Dose System MAE Reduction Savings (Indirect) | Unit Dose System Total Savings | Unit Dose System ROI | Unit Dose System NPV | Unit Dose System Payback Time |
---|---|---|---|---|---|---|---|---|---|
Austria | 15,245,165 EUR | −4,751,008 EUR | −3,178,521 EUR | 0 EUR | −450,934 EUR | −8,380,463 EUR | 138% | −38,766,533 EUR | 3 |
Belgium | 2,440,612 EUR | −711,227 EUR | −456,403 EUR | 0 EUR | −64,749 EUR | −1,232,380 EUR | 113% | −5,009,576 EUR | 4 |
Bulgaria | 19,038,089 EUR | −1,133,957 EUR | −3,243,127 EUR | 0 EUR | −460,100 EUR | −4,837,184 EUR | 13% | −4,777,031 EUR | 8 |
Croatia | 6,402,752 EUR | −546,183 EUR | −1,003,449 EUR | 0 EUR | −142,358 EUR | −1,691,990 EUR | 14% | −1,694,651 EUR | 8 |
Cyprus | 828,924 EUR | −72,944 EUR | −148,096 EUR | 0 EUR | −21,010 EUR | −242,050 EUR | 30% | −472,765 EUR | 7 |
Czechia | 15,214,912 EUR | −3,928,253 EUR | −3,101,241 EUR | 0 EUR | −439,971 EUR | −7,469,465 EUR | 119% | −34,167,764 EUR | 4 |
Denmark | 3,946,027 EUR | −1,314,620 EUR | −777,079 EUR | 0 EUR | −110,244 EUR | −2,201,942 EUR | 147% | −10,845,899 EUR | 3 |
Estonia | 1,527,269 EUR | −163,943 EUR | −201,754 EUR | 0 EUR | −28,623 EUR | −394,320 EUR | 10% | −290,087 EUR | 9 |
Finland | 3,266,994 EUR | −899,022 EUR | −537,393 EUR | 0 EUR | −76,239 EUR | −1,512,654 EUR | 108% | −6,732,907 EUR | 4 |
France | 31,157,584 EUR | −7,201,779 EUR | −5,511,632 EUR | 0 EUR | −781,931 EUR | −13,495,342 EUR | 95% | −56,242,260 EUR | 4 |
Germany | 165,920,343 EUR | −42,755,678 EUR | −36,948,506 EUR | 0 EUR | −5,241,853 EUR | −84,946,037 EUR | 124% | −383,683,750 EUR | 4 |
Greece | 11,996,330 EUR | −1,736,215 EUR | −2,056,854 EUR | 0 EUR | −291,804 EUR | −4,084,873 EUR | 50% | −11,096,804 EUR | 6 |
Hungary | 18,293,058 EUR | −1,388,291 EUR | −2,821,767 EUR | 0 EUR | −400,322 EUR | −4,610,379 EUR | 2% | −681,393 EUR | 10 |
Ireland | 6,013,017 EUR | −1,550,142 EUR | −1,377,378 EUR | 0 EUR | −195,407 EUR | −3,122,927 EUR | 129% | −14,489,059 EUR | 4 |
Italy | 45,528,458 EUR | −9,601,665 EUR | −10,197,496 EUR | 0 EUR | −1,446,710 EUR | −21,245,872 EUR | 103% | −87,014,711 EUR | 4 |
Latvia | 2,507,216 EUR | −155,982 EUR | −333,943 EUR | 0 EUR | −47,376 EUR | −537,301 EUR | −10% | 463,170 EUR | Payback time is over 10 years |
Lithuania | 3,442,464 EUR | −214,805 EUR | −458,512 EUR | 0 EUR | −65,049 EUR | −738,365 EUR | −7% | 439,693 EUR | Payback time is over 10 years |
Luxembourg | 0 EUR | 0 EUR | 0 EUR | 0 EUR | 0 EUR | 0 EUR | Penetration rate 100% | Penetration rate 100% | Penetration rate 100% |
Malta | 459,711 EUR | −81,305 EUR | −82,829 EUR | 0 EUR | −11,751 EUR | −175,885 EUR | 70% | −601,161 EUR | 5 |
Netherlands | 0 EUR | 0 EUR | 0 EUR | 0 EUR | 0 EUR | 0 EUR | Penetration rate 100% | Penetration rate 100% | Penetration rate 100% |
Poland | 43,293,122 EUR | −4,045,104 EUR | −5,672,575 EUR | 0 EUR | −804,763 EUR | −10,522,442 EUR | −2% | 1,375,267 EUR | Payback time is over 10 years |
Portugal | 1,198,401 EUR | −175,075 EUR | −218,612 EUR | 0 EUR | −31,014 EUR | −424,700 EUR | 56% | −1,258,320 EUR | 5 |
Romania | 44,593,967 EUR | −3,111,871 EUR | −7,341,210 EUR | 0 EUR | −1,041,491 EUR | −11,494,572 EUR | 7% | −5,286,506 EUR | 9 |
Slovakia | 11,113,550 EUR | −1,477,387 EUR | −1,752,772 EUR | 0 EUR | −248,664 EUR | −3,478,824 EUR | 30% | −6,029,583 EUR | 7 |
Slovenia | 3,894,540 EUR | −725,357 EUR | −625,367 EUR | 0 EUR | −88,720 EUR | −1,439,444 EUR | 59% | −4,260,977 EUR | 5 |
Spain | 0 EUR | 0 EUR | 0 EUR | 0 EUR | 0 EUR | 0 EUR | Penetration rate 100% | Penetration rate 100% | Penetration rate 100% |
Sweden | 5,591,994 EUR | −1,538,227 EUR | −941,775 EUR | 0 EUR | −133,609 EUR | −2,613,610 EUR | 105% | −10,898,491 EUR | 4 |
Total EU27 | 462,914,499 EUR | −89,280,038 EUR | −88,988,291 EUR | 0 EUR | −12,624,694 EUR | −190,893,022 EUR | 84% | −682,022,097 EUR | 5 |
United Kingdom | 44,670,503 EUR | −11,452,446 EUR | −9,809,933 EUR | 0 EUR | −1,391,727 EUR | −22,654,107 EUR | 125% | −104,763,161 EUR | 4 |
Total EU27 + UK | 507,585,002 EUR | −100,732,484 EUR | −98,798,224 EUR | 0 EUR | −14,016,421 EUR | −213,547,129 EUR | 88% | −786,785,258 EUR | 4 |
Country | Automated Dispensing Cabinets Investment | Automated Dispensing Cabinets HR Efficiency Savings | Automated Dispensing Cabinets Wastage Reduction Savings | Automated Dispensing Cabinets Inventory Reduction Savings | Automated Dispensing Cabinets MAE Reduction Savings (Indirect) | Automated Dispensing Cabinets Total Savings | ADC ROI | ADC NPV | ADC Payback Time |
---|---|---|---|---|---|---|---|---|---|
Austria | 42,477,016 EUR | −3,330,725 EUR | −4,771,350 EUR | −1,889,720 EUR | −6,232,230 EUR | −16,224,025 EUR | 34% | −33,206,716 EUR | 6 |
Belgium | 32,090,235 EUR | −2,396,951 EUR | −3,233,084 EUR | −1,280,481 EUR | −4,222,980 EUR | −11,133,496 EUR | 20% | −14,057,340 EUR | 7 |
Bulgaria | 39,108,994 EUR | −1,084,398 EUR | −3,589,316 EUR | −1,421,569 EUR | −4,688,283 EUR | −10,783,566 EUR | 0% | 437,818 EUR | Payback time is over 10 years |
Croatia | 13,152,852 EUR | −341,090 EUR | −1,110,562 EUR | −439,844 EUR | −1,450,591 EUR | −3,342,087 EUR | −11% | 3,138,680 EUR | Payback time is over 10 years |
Cyprus | 2,765,181 EUR | −75,748 EUR | −266,163 EUR | −105,415 EUR | −347,656 EUR | −794,983 EUR | 4% | −243,065 EUR | 10 |
Czechia | 42,392,722 EUR | −1,074,645 EUR | −4,655,344 EUR | −1,843,775 EUR | −6,080,705 EUR | −13,654,469 EUR | 16% | −16,078,638 EUR | 8 |
Denmark | 12,004,555 EUR | −986,488 EUR | −1,273,636 EUR | −504,431 EUR | −1,663,595 EUR | −4,428,151 EUR | 32% | −8,927,853 EUR | 6 |
Estonia | 5,414,049 EUR | −179,318 EUR | −385,321 EUR | −152,609 EUR | −503,298 EUR | −1,220,546 EUR | −21% | 2,596,971 EUR | Payback time is over 10 years |
Finland | 9,938,809 EUR | −729,463 EUR | −880,790 EUR | −348,842 EUR | −1,150,468 EUR | −3,109,561 EUR | 14% | −3,220,562 EUR | 8 |
France | 265,082,878 EUR | −17,200,629 EUR | −25,263,440 EUR | −10,005,728 EUR | −32,998,533 EUR | −85,468,330 EUR | 17% | −107,571,072 EUR | 8 |
Germany | 462,297,452 EUR | −33,049,912 EUR | −55,464,245 EUR | −21,966,927 EUR | −72,446,139 EUR | −182,927,223 EUR | 41% | −431,561,390 EUR | 6 |
Greece | 39,587,888 EUR | −1,925,701 EUR | −3,656,889 EUR | −1,448,332 EUR | −4,776,546 EUR | −11,807,468 EUR | 6% | −5,762,508 EUR | 9 |
Hungary | 37,578,515 EUR | −1,002,977 EUR | −3,122,977 EUR | −1,236,872 EUR | −4,079,161 EUR | −9,441,988 EUR | −16% | 13,036,748 EUR | Payback time is over 10 years |
Ireland | 11,161,662 EUR | −888,126 EUR | −1,377,476 EUR | −545,557 EUR | −1,799,228 EUR | −4,610,386 EUR | 48% | −12,257,144 EUR | 5 |
Italy | 150,243,911 EUR | −8,405,259 EUR | −18,130,170 EUR | −7,180,556 EUR | −23,681,217 EUR | −57,397,201 EUR | 35% | −120,509,066 EUR | 6 |
Latvia | 8,887,886 EUR | −186,043 EUR | −637,784 EUR | −252,598 EUR | −833,060 EUR | −1,909,485 EUR | −26% | 5,156,987 EUR | Payback time is over 10 years |
Lithuania | 12,203,267 EUR | −255,744 EUR | −875,692 EUR | −346,823 EUR | −1,143,810 EUR | −2,622,069 EUR | −24% | 6,699,946 EUR | Payback time is over 10 years |
Luxembourg | 1,834,928 EUR | −211,861 EUR | −191,189 EUR | −75,721 EUR | −249,727 EUR | −728,498 EUR | 45% | −1,959,036 EUR | 6 |
Malta | 1,517,048 EUR | −82,032 EUR | −147,261 EUR | −58,324 EUR | −192,349 EUR | −479,966 EUR | 14% | −479,647 EUR | 8 |
Netherlands | 39,552,005 EUR | −2,923,760 EUR | −4,093,503 EUR | −1,621,255 EUR | −5,346,840 EUR | −13,985,357 EUR | 27% | −24,767,037 EUR | 7 |
Poland | 153,470,733 EUR | −4,622,264 EUR | −10,833,812 EUR | −4,290,792 EUR | −14,150,880 EUR | −33,897,748 EUR | −27% | 86,828,881 EUR | Payback time is over 10 years |
Portugal | 29,220,155 EUR | −1,118,407 EUR | −2,871,759 EUR | −1,137,376 EUR | −3,751,027 EUR | −8,878,570 EUR | 9% | −5,789,569 EUR | 9 |
Romania | 91,607,157 EUR | −2,202,736 EUR | −8,124,849 EUR | −3,217,892 EUR | −10,612,493 EUR | −24,157,970 EUR | −11% | 21,005,960 EUR | Payback time is over 10 years |
Slovakia | 22,830,010 EUR | −881,563 EUR | −1,939,872 EUR | −768,297 EUR | −2,533,817 EUR | −6,123,550 EUR | −9% | 4,271,938 EUR | Payback time is over 10 years |
Slovenia | 8,000,360 EUR | −167,032 EUR | −692,122 EUR | −274,119 EUR | −904,034 EUR | −2,037,306 EUR | −11% | 1,908,494 EUR | Payback time is over 10 years |
Spain | 81,263,924 EUR | −4,416,519 EUR | −8,542,769 EUR | −3,383,412 EUR | −11,158,371 EUR | −27,501,071 EUR | 19% | −34,016,945 EUR | 700% |
Sweden | 17,011,895 EUR | −770,674 EUR | −1,543,574 EUR | −611,341 EUR | −2,016,181 EUR | −4,941,770 EUR | 3% | −1,288,881 EUR | 1000% |
Total EU27 | 1,632,696,089 EUR | −90,510,064 EUR | −167,674,950 EUR | −66,408,609 EUR | −219,013,218 EUR | −543,606,841 EUR | 20% | −676,614,045 EUR | 7 |
United Kingdom | 127,568,647 EUR | −7,845,993 EUR | −15,093,277 EUR | −5,977,777 EUR | −19,714,496 EUR | −48,631,543 EUR | 37% | −109,240,844 EUR | 600% |
Total EU27 + UK | 1,760,264,736 EUR | −98,356,058 EUR | −182,768,227 EUR | −72,386,386 EUR | −238,727,714 EUR | −592,238,384 EUR | 22% | −785,854,889 EUR | 7 |
Country | DERS Investment | DERS HR Efficiency Savings | DERS Wastage Reduction Savings | DERS Inventory Reduction Savings | DERS MAE Reduction Savings (Indirect) | DERS Total Savings | DERS ROI | DERS NPV | DERS Payback Time |
---|---|---|---|---|---|---|---|---|---|
Austria | 8,831,041 EUR | −676,837 EUR | 0 EUR | 0 EUR | −6,300,363 EUR | −6,977,200 EUR | 178% | −35,668,813 EUR | 3 |
Belgium | 10,982,754 EUR | −765,228 EUR | 0 EUR | 0 EUR | −8,215,731 EUR | −8,980,959 EUR | 182% | −44,374,438 EUR | 3 |
Bulgaria | 7,900,807 EUR | −125,371 EUR | 0 EUR | 0 EUR | −3,454,788 EUR | −3,580,159 EUR | 64% | −11,716,313 EUR | 5 |
Croatia | 2,657,142 EUR | −59,738 EUR | 0 EUR | 0 EUR | −1,068,938 EUR | −1,128,676 EUR | 50% | −2,985,356 EUR | 5 |
Cyprus | 486,542 EUR | −10,327 EUR | 0 EUR | 0 EUR | −275,397 EUR | −285,723 EUR | 112% | −1,271,059 EUR | 4 |
Czechia | 8,813,516 EUR | −282,852 EUR | 0 EUR | 0 EUR | −3,951,482 EUR | −4,234,334 EUR | 73% | −15,096,045 EUR | 4 |
Denmark | 1,973,014 EUR | −159,484 EUR | 0 EUR | 0 EUR | −2,589,230 EUR | −2,748,715 EUR | 399% | −18,212,922 EUR | 2 |
Estonia | 763,634 EUR | −20,788 EUR | 0 EUR | 0 EUR | −314,756 EUR | −335,544 EUR | 53% | −910,405 EUR | 5 |
Finland | 1,633,497 EUR | −104,330 EUR | 0 EUR | 0 EUR | −2,160,963 EUR | −2,265,293 EUR | 404% | −15,547,293 EUR | 2 |
France | 76,254,086 EUR | −4,383,255 EUR | 0 EUR | 0 EUR | −41,315,860 EUR | −45,699,115 EUR | 118% | −211,695,232 EUR | 3 |
Germany | 96,112,394 EUR | −6,190,202 EUR | 0 EUR | 0 EUR | −43,815,585 EUR | −50,005,786 EUR | 85% | −187,357,789 EUR | 4 |
Greece | 7,041,324 EUR | −290,144 EUR | 0 EUR | 0 EUR | −3,824,878 EUR | −4,115,022 EUR | 108% | −17,541,418 EUR | 4 |
Hungary | 7,591,619 EUR | −164,627 EUR | 0 EUR | 0 EUR | −3,005,928 EUR | −3,170,554 EUR | 39% | −6,360,431 EUR | 6 |
Ireland | 3,006,508 EUR | −181,095 EUR | 0 EUR | 0 EUR | −2,677,561 EUR | −2,858,656 EUR | 240% | −16,626,461 EUR | 2 |
Italy | 26,723,225 EUR | −1,399,008 EUR | 0 EUR | 0 EUR | −14,754,143 EUR | −16,153,151 EUR | 114% | −69,383,017 EUR | 3 |
Latvia | 1,253,608 EUR | −13,106 EUR | 0 EUR | 0 EUR | −520,984 EUR | −534,090 EUR | 46% | −1,267,132 EUR | 5 |
Lithuania | 1,721,232 EUR | −18,141 EUR | 0 EUR | 0 EUR | −715,323 EUR | −733,463 EUR | 50% | −1,972,598 EUR | 5 |
Luxembourg | 411,881 EUR | −39,572 EUR | 0 EUR | 0 EUR | −318,644 EUR | −358,216 EUR | 218% | −2,124,919 EUR | 3 |
Malta | 269,831 EUR | −12,268 EUR | 0 EUR | 0 EUR | −154,026 EUR | −166,294 EUR | 121% | −759,500 EUR | 3 |
Netherlands | 8,878,116 EUR | −712,312 EUR | 0 EUR | 0 EUR | −4,702,174 EUR | −5,414,486 EUR | 119% | −24,514,471 EUR | 3 |
Poland | 21,646,561 EUR | −536,383 EUR | 0 EUR | 0 EUR | −8,849,762 EUR | −9,386,146 EUR | 44% | −20,378,915 EUR | 5 |
Portugal | 7,265,307 EUR | −241,446 EUR | 0 EUR | 0 EUR | −4,988,515 EUR | −5,229,961 EUR | 157% | −26,348,568 EUR | 3 |
Romania | 18,506,496 EUR | −295,598 EUR | 0 EUR | 0 EUR | −7,820,330 EUR | −8,115,928 EUR | 49% | −19,632,341 EUR | 5 |
Slovakia | 4,612,123 EUR | −166,924 EUR | 0 EUR | 0 EUR | −2,085,047 EUR | −2,251,971 EUR | 66% | −6,703,674 EUR | 5 |
Slovenia | 1,616,234 EUR | −36,153 EUR | 0 EUR | 0 EUR | −666,181 EUR | −702,334 EUR | 53% | −1,922,683 EUR | 5 |
Spain | 25,065,029 EUR | −1,058,434 EUR | 0 EUR | 0 EUR | −17,494,652 EUR | −18,553,086 EUR | 159% | −90,017,925 EUR | 3 |
Sweden | 2,795,997 EUR | −131,605 EUR | 0 EUR | 0 EUR | −3,669,250 EUR | −3,800,855 EUR | 383% | −24,579,274 EUR | 2 |
Total EU27 | 354,813,518 EUR | −18,075,228 EUR | 0 EUR | 0 EUR | −189,710,489 EUR | −207,785,717 EUR | 112% | −874,968,995 EUR | 4 |
United Kingdom | 30,925,733 EUR | −1,877,099 EUR | 0 EUR | 0 EUR | −19,204,524 EUR | −21,081,623 EUR | 145% | −103,896,007 EUR | 3 |
Total EU27 + UK | 385,739,250 EUR | −19,952,327 EUR | 0 EUR | 0 EUR | −208,915,013 EUR | −228,867,340 EUR | 114% | −978,865,002 EUR | 4 |
Country | Med, Traceability System (Oncology) Investment | Med, Traceability System (Oncology) HR Efficiency Savings | Med, Traceability System (Oncology) Wastage Reduction Savings | Med, Traceability System (Oncology) Inventory Reduction Savings | Med, Traceability System (Oncology) MAE Reduction Savings (Indirect) | Med, Traceability System (Oncology) Total Savings | Medication Traceability System ROI | Medication Traceability System NPV | Medication Traceability System Payback Time |
---|---|---|---|---|---|---|---|---|---|
Austria | 7,139,199 EUR | −5,401,104 EUR | −921,596 EUR | 0 EUR | −8,543,333 EUR | −14,866,032 EUR | 518% | −99,450,091 EUR | 2 |
Belgium | 7,321,836 EUR | −5,195,135 EUR | −847,750 EUR | 0 EUR | −7,743,082 EUR | −13,785,966 EUR | 449% | −86,286,272 EUR | 2 |
Bulgaria | 5,711,427 EUR | −1,228,759 EUR | −602,398 EUR | 0 EUR | −2,073,227 EUR | −3,904,384 EUR | 107% | −17,017,091 EUR | 3 |
Croatia | 1,920,825 EUR | −450,644 EUR | −186,386 EUR | 0 EUR | −907,066 EUR | −1,544,097 EUR | 139% | −7,158,786 EUR | 3 |
Cyprus | 201,825 EUR | −48,504 EUR | −22,326 EUR | 0 EUR | −225,455 EUR | −296,285 EUR | 345% | −1,934,663 EUR | 2 |
Czechia | 7,125,032 EUR | −2,394,563 EUR | −899,189 EUR | 0 EUR | −4,492,030 EUR | −7,785,781 EUR | 231% | −45,779,342 EUR | 2 |
Denmark | 2,643,838 EUR | −2,107,660 EUR | −322,358 EUR | 0 EUR | −2,932,290 EUR | −5,362,307 EUR | 511% | −37,160,975 EUR | 2 |
Estonia | 946,907 EUR | −279,381 EUR | −77,448 EUR | 0 EUR | −601,748 EUR | −958,578 EUR | 198% | −4,976,153 EUR | 2 |
Finland | 2,188,886 EUR | −1,488,837 EUR | −222,928 EUR | 0 EUR | −2,138,784 EUR | −3,850,549 EUR | 437% | −26,822,861 EUR | 2 |
France | 65,922,887 EUR | −39,445,908 EUR | −7,220,223 EUR | 0 EUR | −59,013,622 EUR | −105,679,754 EUR | 389% | −719,754,013 EUR | 2 |
Germany | 77,699,282 EUR | −51,547,657 EUR | −10,713,028 EUR | 0 EUR | −79,722,686 EUR | −141,983,371 EUR | 447% | −946,016,662 EUR | 2 |
Greece | 2,920,845 EUR | −1,257,516 EUR | −310,071 EUR | 0 EUR | −2,488,462 EUR | −4,056,050 EUR | 317% | −25,267,350 EUR | 2 |
Hungary | 5,487,917 EUR | −1,274,387 EUR | −524,132 EUR | 0 EUR | −2,590,023 EUR | −4,388,542 EUR | 126% | −17,448,880 EUR | 3 |
Ireland | 3,607,810 EUR | −2,508,968 EUR | −511,685 EUR | 0 EUR | −4,095,816 EUR | −7,116,469 EUR | 493% | −48,759,946 EUR | 2 |
Italy | 11,085,190 EUR | −5,858,096 EUR | −1,537,276 EUR | 0 EUR | −9,378,088 EUR | −16,773,460 EUR | 351% | −105,306,173 EUR | 2 |
Latvia | 1,554,474 EUR | −258,706 EUR | −128,192 EUR | 0 EUR | −782,684 EUR | −1,169,582 EUR | 118% | −4,771,812 EUR | 3 |
Lithuania | 2,134,328 EUR | −356,139 EUR | −176,011 EUR | 0 EUR | −1,031,684 EUR | −1,563,834 EUR | 118% | −6,790,489 EUR | 3 |
Luxembourg | 197,703 EUR | −199,553 EUR | −23,673 EUR | 0 EUR | −554,658 EUR | −777,885 EUR | 1106% | −6,174,540 EUR | 1 |
Malta | 111,930 EUR | −54,295 EUR | −12,486 EUR | 0 EUR | −97,758 EUR | −164,539 EUR | 344% | −1,061,911 EUR | 2 |
Netherlands | 4,261,496 EUR | −3,150,739 EUR | −506,865 EUR | 0 EUR | −4,987,577 EUR | −8,645,181 EUR | 512% | −60,263,820 EUR | 2 |
Poland | 26,841,735 EUR | −7,151,569 EUR | −2,177,559 EUR | 0 EUR | −12,722,500 EUR | −22,051,628 EUR | 132% | −88,927,539 EUR | 3 |
Portugal | 6,561,246 EUR | −2,333,888 EUR | −741,064 EUR | 0 EUR | −4,155,910 EUR | −7,230,861 EUR | 231% | −41,606,148 EUR | 2 |
Romania | 13,378,190 EUR | −2,684,282 EUR | −1,363,600 EUR | 0 EUR | −4,568,559 EUR | −8,616,440 EUR | 85% | −29,240,266 EUR | 4 |
Slovakia | 3,334,065 EUR | −1,197,215 EUR | −325,570 EUR | 0 EUR | −2,032,401 EUR | −3,555,186 EUR | 208% | −17,895,938 EUR | 2 |
Slovenia | 1,168,362 EUR | −296,908 EUR | −116,159 EUR | 0 EUR | −915,668 EUR | −1,328,736 EUR | 237% | −7,417,004 EUR | 2 |
Spain | 9,207,562 EUR | −4,406,021 EUR | −1,112,370 EUR | 0 EUR | −7,377,337 EUR | −12,895,728 EUR | 314% | −77,234,481 EUR | 2 |
Sweden | 3,746,636 EUR | −1,828,773 EUR | −390,679 EUR | 0 EUR | −3,946,595 EUR | −6,166,047 EUR | 393% | −40,069,529 EUR | 2 |
Total EU27 | 274,421,434 EUR | −144,405,207 EUR | −31,993,020 EUR | 0 EUR | −230,119,044 EUR | −406,517,271 EUR | 350% | −2,570,592,736 EUR | 2 |
United Kingdom | 29,688,703 EUR | −17,825,418 EUR | −4,036,774 EUR | 0 EUR | −32,543,630 EUR | −54,405,822 EUR | 453% | −371,331,564 EUR | 2 |
Total EU27 + UK | 304,110,137 EUR | −162,230,625 EUR | −36,029,794 EUR | 0 EUR | −262,662,674 EUR | −460,923,093 EUR | 360% | −2,941,924,300 EUR | 2 |
Appendix B
- Human Resources
- Pharmacist average hourly wage (EUR): country-specific, from SalaryExpert, OECD, or national statistics.
- Nurse average hourly wage (EUR): used for technologies impacting preparation/administration phases.
- Technical/logistics staff wage (EUR): relevant for inventory/transport automation.
- Time saved per activity: estimated via the literature (% reduction per dose/patient) and expert validation (Table 1).
- Hospital Activity and Size
- Total number of hospital beds per country.
- Annual number of oncology inpatients: used for technologies affecting cancer drug preparation.
- Baseline operational volumes: modeled on an average 561-bed hospital and scaled nationally.
- Medication-Related Costs
- Drug wastage and expiry rates: estimated per dose or unit (literature-based).
- Cost per wasted drug unit: derived from national pharma spending (e.g., OSMED).
- Avoidable costs from Medication Errors (MEs):
- Based on extended length of stay due to adverse events.
- Valued using national cost per hospital day.
- Proportional drug cost adjustment factor: based on cross-country comparison of pharma prices (e.g., Standards och Läkemedelsförmånsverket report, Sweden).
- Inventory Holding and Optimization
- Baseline stock value: estimated from hospital drug expenditure per bed.
- Avoidable inventory cost: annual holding cost rate (4.65%) applied to optimized stock.
- Technologies considered: inventory robots, ADCs.
- Capital Investment and Technology Data
- Technology acquisition prices: based on supplier benchmarks and market intelligence.
- Technology penetration rates (baseline): obtained from ECAMET study and used to estimate marginal savings.
- Discount rate (national inflation rate): used to discount future savings and evaluate NPV scenarios.
- Cost of Hospital Care.
- Cost per ordinary inpatient day: national DRG/tariff-based or benchmarked via WHO/OECD data.
- Cost per ICU day: where relevant, e.g., to value MAEs with severe clinical consequences.
- Economic Conversion and Standardization
- Currency exchange rates: national-to-euro conversion using average annual rates.
- National inflation rates: used for sensitivity scenarios on discounting.
References
- Iglesias, M. European Collaborative Action on Medication Errors and Traceability: Annual Report; IPSOS: Paris, France, 2022. [Google Scholar]
- Bonnabry, P.; François, O. Return on investment: A practical calculation tool to convince your institution. Eur. J. Hosp. Pharm. 2020, 27, 111–113. [Google Scholar] [CrossRef] [PubMed]
- Berdot, S.; Roudot, M.; Schramm, C.; Katsahian, S.; Durieux, P.; Sabatier, B. Interventions to reduce nurses’ medication administration errors in inpatient settings: A systematic review and meta-analysis. Int. J. Nurs. Stud. 2016, 53, 342–350. [Google Scholar] [CrossRef]
- Ahtiainen, H.K.; Kallio, M.M.; Airaksinen, M.; Holmström, A.R. Safety, time and cost evaluation of automated and semi-automated drug distribution systems in hospitals: A systematic review. Eur. J. Hosp. Pharm. 2020, 27, 253–262. [Google Scholar] [CrossRef] [PubMed]
- Mathy, C.; Pascal, C.; Fizesan, M.; Boin, C.; Délèze, N.; Aujoulat, O. Automated hospital pharmacy supply chain and the evaluation of organisational impacts and costs. Supply Chain Forum Int. J. 2020, 21, 206–218. [Google Scholar] [CrossRef]
- Yoo, S.; Kim, S.; Kim, T.; Baek, R.-M.; Suh, C.S.; Chung, C.Y.; Hwang, H. Economic analysis of cloud-based desktop virtualization implementation at a hospital. BMC Med. Inform. Decis. Mak. 2012, 12, 119. [Google Scholar] [CrossRef] [PubMed]
- Bertolotti, F.; Schettini, F.; Ferrario, L.; Bellavia, D.; Foglia, E. A prediction framework for pharmaceutical drug consumption using short time-series. Expert Syst. Appl. 2024, 253, 124265. [Google Scholar] [CrossRef]
- Chen, C.N.; Lai, C.H.; Lu, G.W.; Huang, C.C.; Wu, L.J.; Lin, H.C.; Chen, P.S. Applying Simulation Optimization to Minimize Drug Inventory Costs: A Study of a Case Outpatient Pharmacy. Healthcare 2022, 10, 556. [Google Scholar] [CrossRef]
- Broomhead, S.; Mars, M. Retrospective return on investment analysis of an electronic treatment adherence device piloted in the Northern Cape Province. Telemed. E-Health 2012, 18, 24–31. [Google Scholar] [CrossRef]
- Foglia, E.; Asperti, F.; Antonacci, G.; Jani, Y.H.; Garagiola, E.; Bellavia, D.; Ferrario, L. Automated Drugs Dispensing Systems in Hospitals: A Health Technology Assessment (HTA) Study Across Six European Countries. Clin. Outcomes Res. 2024, 16, 679–696. [Google Scholar] [CrossRef]
- Nanni, A.N.; Rana, T.S.; Schenkat, D.H. Screening for expired medications in automated dispensing cabinets. Am. J. Health-Syst. Pharm. 2020, 77, 2107–2111. [Google Scholar] [CrossRef]
- Giménez, E.; Reynolds, J.; Espallargues, M. Evaluación del Impacto Económico, Organizativo y de la Seguridad de la Dispensación Robotizada de Fármacos en Hospitales en España; Agencia de Calidad y Evaluación Sanitaria de Cataluña: Barcelona, Spain, 2019. [Google Scholar]
- Burkoski, V.; Yoon, J.; Solomon, S.; Hall, T.N.T.; Karas, A.B.; Jarrett, S.R.; Collins, B.E. Closed-Loop Medication System: Leveraging Technology to Elevate Safety. Nurs. Leadersh. 2019, 32, 16–28. [Google Scholar] [CrossRef]
- Herrmann, S.; Giesel-Gerstmeier, J.; Steiner, T.; Lendholt, F.; Fenske, D. Introduction of Unit-Dose Care in the 1125 Bed Teaching Hospital: Practical Experience and Time Saving on Wards. J. Multidiscip. Healthc. 2024, 17, 1137–1145. [Google Scholar] [CrossRef] [PubMed]
- Cina, J.L.; Gandhi, T.K.; Churchill, W.; Fanikos, J.; McCrea, M.; Mitton, P.; Rothschild, J.M.; Featherstone, E.; Keohane, C.; Bates, D.W.; et al. How many hospital pharmacy medication dispensing errors go undetected? Jt. Comm. J. Qual. Patient Saf. 2006, 32, 73–80. [Google Scholar] [CrossRef]
- Cousein, E.; Mareville, J.; Lerooy, A.; Caillau, A.; Labreuche, J.; Dambre, D.; Odou, P.; Bonte, J.P.; Puisieux, F.; Decaudin, B.; et al. Effect of automated drug distribution systems on medication error rates in a short-stay geriatric unit. J. Eval. Clin. Pract. 2014, 20, 678–684. [Google Scholar] [CrossRef] [PubMed]
- Kastrup, M.; Balzer, F.; Volk, T.; Spies, C. Analysis of Event Logs from Syringe Pumps A Retrospective Pilot Study to Assess Possible Effects of Syringe Pumps on Safety in. Drug Saf. 2012, 35, 563–574. [Google Scholar] [CrossRef]
- Jommi, C.; Costa, E.; Michelon, A.; Pisacane, M.; Scroccaro, G. Multi-tier drugs assessment in a decentralised health care system. The Italian case-study. Health Policy 2013, 112, 241–247. [Google Scholar] [CrossRef]
- Cayot-Constantin, S.; Constantin, J.M.; Perez, J.P.; Chevallier, P.; Clapson, P.; Bazin, J.E. Description de la prévention et estimation de la fréquence des erreurs de programmation de vitesse d’administration en continu des médicaments en réanimation par une application informatique. Ann. Fr. D’Anesthesie Reanim. 2010, 29, 204–208. [Google Scholar] [CrossRef] [PubMed]
- Waterson, J.; Bedner, A. Types and frequency of infusion pump alarms and infusion-interruption to infusion-recovery times for critical short half-life infusions: Retrospective data analysis. JMIR Hum. Hum. Factors 2019, 6, e14123. [Google Scholar] [CrossRef]
- Reece, K.M.; Lozano, M.A.; Roux, R.; Spivey, S.M. Implementation and evaluation of a gravimetric i.v. workflow software system in an oncology ambulatory care pharmacy. Am. J. Health Syst. Pharm. 2016, 73, 165–173. [Google Scholar] [CrossRef]
- Terkola, R.; Czejka, M.; Bérubé, J. Evaluation of real-time data obtained from gravimetric preparation of antineoplastic agents shows medication errors with possible critical therapeutic impact: Results of a large-scale, multicentre, multinational, retrospective study. J. Clin. Pharm. Ther. 2017, 42, 446–453. [Google Scholar] [CrossRef]
- Ferrario, L.; Schettini, F.; Garagiola, E.; Cecchi, A.; Lugoboni, L.; Serra, P.; Porazzi, E.; Foglia, E. Advanced medical devices for preparation and administration of chemotherapeutic agents: Results from a multi-dimensional evaluation. Clin. Outcomes Res. 2020, 12, 711–722. [Google Scholar] [CrossRef] [PubMed]
- Reinhardt, H.; Otte, P.; Eggleton, A.G.; Ruch, M.; Wöhrl, S.; Ajayi, S.; Duyster, J.; Jung, M.; Hug, M.J.; Engelhardt, M. Avoiding chemotherapy prescribing errors: Analysis and innovative strategies. Cancer 2019, 125, 1547–1557. [Google Scholar] [CrossRef] [PubMed]
- Markert, A.; Thierry, V.; Kleber, M.; Behrens, M.; Engelhardt, M. Chemotherapy safety and severe adverse events in cancer patients: Strategies to efficiently avoid chemotherapy errors in in- And outpatient treatment. Int. J. Cancer 2009, 124, 722–728. [Google Scholar] [CrossRef]
- Sarfati, L.; Ranchon, F.; Vantard, N.; Schwiertz, V.; Gauthier, N.; He, S.; Kiouris, E.; Gourc-Berthod, C.; Guédat, M.G.; Alloux, C.; et al. SIMMEON-Prep study: SIMulation of Medication Errors in ONcology: Prevention of antineoplastic preparation errors. J. Clin. Pharm. Ther. 2015, 40, 55–62. [Google Scholar] [CrossRef]
- Aita, M.; Belvedere, O.; De Carlo, E.; Deroma, L.; De Pauli, F.; Gurrieri, L.; Denaro, A.; Zanier, L.; Fasola, G. Chemotherapy prescribing errors: An observational study on the role of information technology and computerized physician order entry systems. BMC Heal. Serv. Res. 2013, 13, 522. [Google Scholar] [CrossRef]
- Meren, Ü.H.; Waterson, J. Evaluating an automated compounding workflow software for safety and efficiency: Implementation study. JMIR Hum. Factors 2021, 8, e29180. [Google Scholar] [CrossRef]
- Gamlen, C.; Clancy, T.R.; Moengen, D.; Rauen, J. Measuring return on investment in complex healthcare systems. J. Nurs. Adm. 2012, 42, 353–355. [Google Scholar] [CrossRef] [PubMed]
- Aanestad, M.; Jensen, T.B. Building nation-wide information infrastructures in healthcare through modular implementation strategies. J. Strateg. Inf. Syst. 2011, 20, 161–176. [Google Scholar] [CrossRef]
- de Amorim, F.J.R.; Valença-Feitosa, F.; Rios, M.C.; Souza, C.A.S.; da Cunha Barros, I.M.; de Oliveira-Filho, A.D.; de Lyra-Júnior, D.P. The Pharmacoeconomic Impact of Pharmaceutical Care in the Hospital: Protocol for an Overview of Systematic Reviews. JMIR Res. Res. Protocols 2023, 12, e35865. [Google Scholar] [CrossRef]
- Franklin, B.D.; O’Grady, K.; Donyai, P.; Jacklin, A.; Barber, N. The impact of a closed-loop electronic prescribing and administration system on prescribing errors, administration errors and staff time: A before-and-after study. Quality and Safety in Health Care 2007, 16, 279–284. [Google Scholar] [CrossRef]
- Ouheda, S.; Murray, P.A.; Alam, K.; Ali, O. Assessing the Impact of Innovation Processes on Electronic Systems Technology Adoption. Emerg. Sci. J. 2024, 8, 1697–1715. [Google Scholar] [CrossRef]
Hospital-Based results | |||
---|---|---|---|
Technology | Investment | Annual Savings | NPV |
Inventory Robot | −190,163 EUR | 140,488 EUR | 780,692 EUR |
UDDS | −151,171 EUR | 55,301 EUR | 186,550 EUR |
ACDs | −495,031 EUR | 151,310 EUR | 96,363 EUR |
DERS | −99,017 EUR | 65,300 EUR | 304,488 EUR |
Med, Traceability System | −78,549 EUR | 111,783 EUR | 696,935 EUR |
Total | −1,013,931 EUR | 524,183 EUR | 2,065,029 EUR |
Technology | Investment | HR Efficiency Savings | Wastage Reduction Savings | Inventory Reduction Savings | MAE Reduction Savings (Indirect Benefit) | Total Annual Savings | ROI | NPV | Payback Time |
---|---|---|---|---|---|---|---|---|---|
Inventory Robot | −600,130,638 EUR | 105,401,590 EUR | 298,558,225 EUR | 61,611,921 EUR | 8,807,528 EUR | 474,379,264 EUR | 253% | 2,871,105,529 EUR | 2.75 |
UDDS | −507,585,002 EUR | 100,732,484 EUR | 98,798,224 EUR | 0 EUR | 14,016,421 EUR | 213,547,129 EUR | 88% | 843,421,857 EUR | 5.5 |
ACDs | −1,760,264,736 EUR | 98,356,058 EUR | 182,768,227 EUR | 72,386,386 EUR | 238,727,714 EUR | 592,238,384 EUR | 22% | 887,897,647 EUR | 7.33 |
DERS | −385,739,250 EUR | 19,952,327 EUR | 0 EUR | 0 EUR | 208,915,013 EUR | 228,867,340 EUR | 114% | 1,031,345,807 EUR | 3.75 |
Med, Traceability System | −304,110,137 EUR | 162,230,625 EUR | 36,029,794 EUR | 0 EUR | 262,662,674 EUR | 460,923,093 EUR | 360% | 3,046,279,644 EUR | 2.25 |
Total | −3,557,829,764 EUR | 486,673,083 EUR | 616,154,470 EUR | 133,998,307 EUR | 733,129,349 EUR | 1,969,955,209 EUR | 167% | 8,213,739,492 EUR | 4.46 |
Scenario | ROI | Total NPV (EUR) | Payback Time (Years) |
---|---|---|---|
Baseline | 167% | EUR 8,213,739,492 | 4.46 |
Hospital size −20% | 133% | EUR 7,661,066,552 | 4.71 |
Hospital size +20% | 164% | EUR 8,778,311,040 | 4.93 |
Discount rate −20% | 167% | EUR 8,585,215,964 | 4.39 |
Discount rate +20% | 167% | EUR 7,859,352,036 | 4.46 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Orsini, F.F.; Bellavia, D.; Schettini, F.; Foglia, E. The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries. Healthcare 2025, 13, 1604. https://doi.org/10.3390/healthcare13131604
Orsini FF, Bellavia D, Schettini F, Foglia E. The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries. Healthcare. 2025; 13(13):1604. https://doi.org/10.3390/healthcare13131604
Chicago/Turabian StyleOrsini, Federico Filippo, Daniele Bellavia, Fabrizio Schettini, and Emanuela Foglia. 2025. "The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries" Healthcare 13, no. 13: 1604. https://doi.org/10.3390/healthcare13131604
APA StyleOrsini, F. F., Bellavia, D., Schettini, F., & Foglia, E. (2025). The Impact of Automation and Digitalization in Hospital Medication Management: Economic Analysis in the European Countries. Healthcare, 13(13), 1604. https://doi.org/10.3390/healthcare13131604