Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

Search Results (21)

Search Parameters:
Keywords = earthquake-induced environmental effects

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 16026 KiB  
Article
Study on Surface Damage Induced by High Heavy Layer Movement and Mining-Induced Earthquakes
by Zonglong Mu, Jingqi Ji, Jinglong Cao, Maoning Shi, Jiaxin Zhuang, Chunlong Jiang and Jiaxun Li
Appl. Sci. 2025, 15(12), 6577; https://doi.org/10.3390/app15126577 - 11 Jun 2025
Viewed by 334
Abstract
In practice, the bending and fracturing of heavy layers is often considered the primary cause of surface damage, leading to significant environmental impacts, whereas heavy layer-type mining-induced earthquakes are frequently overlooked. This study combines theoretical analysis, UDEC numerical simulations, and industrial experiments to [...] Read more.
In practice, the bending and fracturing of heavy layers is often considered the primary cause of surface damage, leading to significant environmental impacts, whereas heavy layer-type mining-induced earthquakes are frequently overlooked. This study combines theoretical analysis, UDEC numerical simulations, and industrial experiments to investigate the dynamic behavior of heavy layers and the mechanisms through which mining-induced earthquakes trigger surface damage. It aims to demonstrate that heavy layer movement and mining-induced earthquakes cause surface damage and to develop a replicable engineering solution for seismic prevention and subsidence control in heavy layer mining areas. The results reveal that surface damage stems from the synergistic effects of heavy layer fracturing and associated mining-induced earthquakes, where bending subsidence from heavy layer fracturing is the primary driver, and mining-induced earthquakes act as a secondary factor by compressing fragmented rock pores to amplify overlying layer subsidence. Industrial tests at the 7202 working face using deep-hole roof pre-splitting blasting successfully fractured the heavy conglomerate layer, enhanced goaf bulking, and reduced the intensity of layer movement. This intervention significantly decreased the frequency and energy of mining-induced earthquakes, mitigating surface damage. These findings provide a practical framework for the integrated control of mining-induced earthquakes and subsidence in heavy layer environments. Full article
Show Figures

Figure 1

30 pages, 5472 KiB  
Data Descriptor
The 1688 Sannio–Matese Earthquake: A Dataset of Environmental Effects Based on the ESI-07 Scale
by Angelica Capozzoli, Valeria Paoletti, Sabina Porfido, Alessandro Maria Michetti and Rosa Nappi
Data 2025, 10(3), 39; https://doi.org/10.3390/data10030039 - 19 Mar 2025
Viewed by 1617
Abstract
The 1688 Sannio–Matese earthquake, with a macroseismically derived magnitude of Mw = 7 and an epicentral intensity of IMCS = XI, had a deep impact on Southern Italy, causing thousands of casualties, extensive damage and significant environmental effects (EEEs) in the [...] Read more.
The 1688 Sannio–Matese earthquake, with a macroseismically derived magnitude of Mw = 7 and an epicentral intensity of IMCS = XI, had a deep impact on Southern Italy, causing thousands of casualties, extensive damage and significant environmental effects (EEEs) in the epicentral area. Despite a comprehensive knowledge of its economic and social impacts, information regarding the earthquake’s environmental effects remains poorly studied and far from complete, hindering accurate intensity calculations by the Environmental Seismic Intensity Scale (ESI-07). This study aims to address this knowledge gap by compiling a thorough dataset of the EEEs induced by the earthquake. By consulting over one hundred historical, geological and scientific reports, we have collected and classified, using the ESI-07 scale, its primary and secondary EEEs, most of which were previously undocumented in the literature. We verified the historical sources regarding some of these effects through reconnaissance field mapping. Analysis of the obtained dataset reveals some primary effects (surface faulting) and extensive secondary effects, such as slope movements, ground cracks, hydrological anomalies, liquefaction and gas exhalation, which affected numerous towns. These findings enabled us to reassess the Sannio earthquake intensity, considering its environmental impact and comparing traditional macroseismic scales with the ESI-07. Our analysis allowed us to provide an epicentral intensity ESI of I = X, one degree lower than the published IMCS = XI. This study highlights the importance of combining traditional scales with the ESI-07 for more accurate hazard assessments. The macroseismic revision provides valuable insights for seismic hazard evaluation and land-use planning in the Sannio–Matese region, especially considering the distribution of the secondary effects. Full article
Show Figures

Figure 1

24 pages, 30156 KiB  
Article
Chopped Basalt Fibers Reinforced Mortar for Strengthening the Architectural Heritage
by Micaela Mercuri, Marco Vailati and Amedeo Gregori
Fibers 2025, 13(2), 20; https://doi.org/10.3390/fib13020020 - 11 Feb 2025
Cited by 1 | Viewed by 2369
Abstract
The high seismic vulnerability of unreinforced masonry buildings urgently calls for researchers to develop sustainable reinforcing methods and materials. This paper presents an innovative lime-based mortar reinforced with randomly oriented basalt fibers for the reinforcement of masonry heritage. The main aim of this [...] Read more.
The high seismic vulnerability of unreinforced masonry buildings urgently calls for researchers to develop sustainable reinforcing methods and materials. This paper presents an innovative lime-based mortar reinforced with randomly oriented basalt fibers for the reinforcement of masonry heritage. The main aim of this study is to understand the effect of the content and the length of basalt fibers on the mortar’s mechanical behavior. As a cementitious material made mostly out of lime, the mortar is chemically compatible with the historical substrate and therefore suitable in cases of restoration works on architectural heritage. Moreover, the chopped basalt fibers are randomly oriented, and this characteristic makes the overall layer effective in all directions, as the state of stress induced by seismic action is directionally undetermined. The newly proposed reinforcement system is characterized by a twofold aspect related to sustainability: 30% of the aggregates composing the mortar mix design is a recycled result of the ruins of the 2009 L’Aquila earthquake, and the chopped fibers are made out of basalt, widely known for its environmentally supportable peculiarity. The study consists of testing samples characterized by two fiber lengths and six fiber contents, along with one set of plain mortar samples. Specimens measuring 160 mm × 40 mm × 40 mm are first tested in a three-point bending (TPB) configuration, aiming to determine the flexural strength and the post-peak capacity through the calculation of the fracture energy. Then, the two broken pieces resulting from the TPB tests, each measuring 80 mm × 40 mm × 40 mm, are tested in splitting and compression, respectively, aiming to compute the tensile and compressive strengths. Finally, to provide a trend for the mortar’s mechanical properties, a regression analysis is performed by fitting the experimental data with simple linear, polynomial, and exponential regression models. Results show that: (i) both fiber content and fiber length are responsible for a linear increase of the flexural strength and the fracture energy; (ii) for both short- and long-fiber mortar samples, the tensile strength and the compressive strength parabolically increase with the fiber content; (iii) the increase in fiber content and fiber length always generates a reduction in the conglomerate workability. The fiber content (FC) optimization with respect to the mechanical properties leads to a basalt FC equal to 1.2% for long-fiber samples and an FC equal to 1.9% for short-fiber ones. Full article
Show Figures

Figure 1

51 pages, 13757 KiB  
Article
Coastal Hazard and Vulnerability Assessment in Cameroon
by Mesmin Tchindjang, Philippes Mbevo Fendoung and Casimir Kamgho
J. Mar. Sci. Eng. 2025, 13(1), 65; https://doi.org/10.3390/jmse13010065 - 2 Jan 2025
Cited by 2 | Viewed by 2339
Abstract
The coast is the most dynamic part of the Earth’s surface due to its strategic position at the interface of the land and the sea. It is, therefore, exposed to hazards and specific risks because of the geography as well as the geological [...] Read more.
The coast is the most dynamic part of the Earth’s surface due to its strategic position at the interface of the land and the sea. It is, therefore, exposed to hazards and specific risks because of the geography as well as the geological and environmental characteristics of different countries. The coastal environment is essentially dynamic and evolving in time and space, marked by waves, tides, and seasons; moreover, it is subjected to many marine and continental processes (forcing). This succession of events significantly influences the frequency and severity of coastal hazards. The present paper aims at describing and characterizing the hazards and vulnerabilities on the Cameroonian coast. Cameroon possesses 400 km of coastline, which is exposed to various hazards. It is important to determine the probabilities of these hazards, the associated effects, and the related vulnerabilities. In this study, in this stable intraplate setting, the methodology used was diverse and combined techniques for the study of the shore and methods for the treatment of climatic data. Also, historical data were collected during field observations and from the CRED website for all the natural hazards recorded in Cameroon. In addition, documents on climate change were consulted. Remotely sensed data, combined with GIS tools, helped to determine and assess the associated risks. A critical grid combining a severity and frequency analysis was used to better understand these hazards and the coastal vulnerabilities of Cameroon. The results show that Cameroon’s coastal margins are subject to natural processes that cause shoreline changes, including inundation, erosion, and accretion. This study identified seven primary hazard types (earthquakes, volcanism, landslides, floods, erosion, sea level rise, and black tides) affecting the Cameroonian coastline, with the erosion rate exceeding 1.15 m/year at Cape Cameroon. Coastal populations are continuously threatened by these natural or man-induced hazards, and they are periodically subjected to catastrophic disasters such as floods and landslides, as experienced in Cameroon. In addition, despite the existence of the National Contingency Plan devised by the Directorate of Civil Protection, National Risk, and Climate Change Observatories, the implementation of disaster risk reduction and mitigation strategies is suboptimal. Full article
(This article belongs to the Special Issue Monitoring and Analysis of Coastal Hazard Risks)
Show Figures

Figure 1

27 pages, 7914 KiB  
Article
Development of a Matrix for Seismic Isolators Using Recycled Rubber from Vehicle Tires
by Alex Oswaldo Meza-Muñoz, Faider Sebastian Rivas-Ordoñez, Ingrid Elizabeth Madera-Sierra, Manuel Alejandro Rojas-Manzano, Edwin Dielmig Patino-Reyes, Manuel Iván Salmerón-Becerra and Shirley J. Dyke
Polymers 2024, 16(21), 2977; https://doi.org/10.3390/polym16212977 - 24 Oct 2024
Cited by 4 | Viewed by 2071
Abstract
Over recent decades, numerous strong earthquakes have caused widespread devastation, including citywide destruction, significant loss of life, and severe structural damage. Seismic base isolation is a well-established method for mitigating earthquake-induced risks in buildings; however, its high cost often limits its implementation in [...] Read more.
Over recent decades, numerous strong earthquakes have caused widespread devastation, including citywide destruction, significant loss of life, and severe structural damage. Seismic base isolation is a well-established method for mitigating earthquake-induced risks in buildings; however, its high cost often limits its implementation in developing countries. Simultaneously, the global rise in vehicle numbers has led to the accumulation of discarded tires, intensifying environmental challenges. In response to these issues, this study investigates the development of a seismic isolator matrix using recycled rubber from vehicle tires, proposed as a sustainable and cost-effective alternative. Ten recycled rubber matrices were experimentally evaluated for their physical and mechanical properties. The matrix with optimal granulometry and binder content, demonstrating superior performance, was identified. This optimized matrix underwent further validation through compression and cyclic shear tests on reduced-scale prototypes of fiber-reinforced isolators, which included five prototype designs, two of which featured flexible reinforcement. The best-performing prototype comprised a recycled rubber matrix with 15% binder and glass fiber, exhibiting vertical stiffness and damping characteristics superior to those of natural rubber. Specifically, this prototype achieved a damping ratio of up to 22%, surpassing the 10% minimum required for seismic isolation, along with a vertical stiffness of 45 kN/mm, critical for withstanding the vertical loads transferred by buildings. These findings suggest that the recycled tire rubber matrix, when combined with glass fiber, is a viable material for the production of seismic isolators. This combination utilizes discarded materials, contributing to environmental sustainability. Full article
(This article belongs to the Special Issue Sustainable Polymeric Materials in Building and Construction)
Show Figures

Figure 1

32 pages, 2292 KiB  
Review
Autoimmune Diseases Following Environmental Disasters: A Narrative Review of the Literature
by Alexandra Mpakosi, Vasileios Cholevas, Ioannis Tzouvelekis, Ioannis Passos, Christiana Kaliouli-Antonopoulou and Maria Mironidou-Tzouveleki
Healthcare 2024, 12(17), 1767; https://doi.org/10.3390/healthcare12171767 - 4 Sep 2024
Cited by 1 | Viewed by 3745
Abstract
Environmental disasters are extreme environmental processes such as earthquakes, volcanic eruptions, landslides, tsunamis, floods, cyclones, storms, wildfires and droughts that are the consequences of the climate crisis due to human intervention in the environment. Their effects on human health have alarmed the global [...] Read more.
Environmental disasters are extreme environmental processes such as earthquakes, volcanic eruptions, landslides, tsunamis, floods, cyclones, storms, wildfires and droughts that are the consequences of the climate crisis due to human intervention in the environment. Their effects on human health have alarmed the global scientific community. Among them, autoimmune diseases, a heterogeneous group of disorders, have increased dramatically in many parts of the world, likely as a result of changes in our exposure to environmental factors. However, only a limited number of studies have attempted to discover and analyze the complex association between environmental disasters and autoimmune diseases. This narrative review has therefore tried to fill this gap. First of all, the activation pathways of autoimmunity after environmental disasters have been analyzed. It has also been shown that wildfires, earthquakes, desert dust storms and volcanic eruptions may damage human health and induce autoimmune responses to inhaled PM2.5, mainly through oxidative stress pathways, increased pro-inflammatory cytokines and epithelial barrier damage. In addition, it has been shown that heat stress, in addition to increasing pro-inflammatory cytokines, may also disrupt the intestinal barrier, thereby increasing its permeability to toxins and pathogens or inducing epigenetic changes. In addition, toxic volcanic elements may accelerate the progressive destruction of myelin, which may potentially trigger multiple sclerosis. The complex and diverse mechanisms by which vector-borne, water-, food-, and rodent-borne diseases that often follow environmental diseases may also trigger autoimmune responses have also been described. In addition, the association between post-disaster stress and the onset or worsening of autoimmune disease has been demonstrated. Given all of the above, the rapid restoration of post-disaster health services to mitigate the flare-up of autoimmune conditions is critical. Full article
Show Figures

Graphical abstract

19 pages, 2808 KiB  
Review
The Importance of Assessing the Geological Site Effects of Ancient Earthquakes from the Archaeoseismological Point of View
by Hector R. Hinojosa
Eng 2023, 4(1), 719-737; https://doi.org/10.3390/eng4010043 - 22 Feb 2023
Cited by 4 | Viewed by 3557
Abstract
Earthquakes have and continue to, occur worldwide, though some places are affected more than others by earthquake-induced ground shaking and the same earthquake can cause more damage in one area than in nearby locations due to site-specific geological site conditions, also known as [...] Read more.
Earthquakes have and continue to, occur worldwide, though some places are affected more than others by earthquake-induced ground shaking and the same earthquake can cause more damage in one area than in nearby locations due to site-specific geological site conditions, also known as local site effects. Depending on the chronology of the earthquakes, various disciplines of seismology include instrumental and historical seismology, archaeoseismology, palaeoseismology and neotectonics, each focusing on using specific sources of information to evaluate recent or ancient earthquakes. Past earthquakes are investigated to expand the pre-instrumental and instrumental earthquake catalog and better evaluate a region’s seismic hazard. Archaeoseismology offers a way to achieve these goals because it links how ancient civilizations and their environment might have interacted and responded to past earthquake-induced ground motion and soil amplification. Hence, archaeoseismology explores pre-instrumental (past) earthquakes that might have affected sites of human occupation and their nearby settings, which have left their co-seismic marks in ancient manufactured constructions exhumed by archaeological excavations. However, archaeoseismological observations are often made on a limited epicentral area, poorly constrained dated earthquakes and occasionally on unclear evidence of earthquake damage. Archaeological excavations or field investigations often underestimate the critical role that an archaeological site’s ancient geological site conditions might have played in causing co-seismic structural damage to ancient anthropogenic structures. Nevertheless, the archaeological community might document and inaccurately diagnose structural damage by ancient earthquake shaking to structures and even estimate the size of past earthquakes giving little or no consideration to the role of geological site effects in addressing the causative earthquake. This mixture of factors frequently leads to imprecise estimates of the size of ancient earthquakes and unlikely earthquake environmental impacts, leaving unexplained the location and the moment magnitude of the causative earthquake. Hence, it is essential not to rely solely on earthquake intensities based on archaeologically documented co-seismic damage without assessing the nature of the observed structural damage and the contribution of the geological site effects. This paper explains the geological site effects concept to archaeologists unfamiliar with the notion. It clarifies its role in assessing ground shaking, soil amplification and earthquake intensity by past earthquakes and how and why the geological site effects can be estimated when a site is thought to have been struck by an earthquake. Hence, the geological site effects must be considered when archaeological excavations describe and interpret destruction layers. Conversely, engineers and seismologists dealing with seismic hazard risk assessment must pay close attention to archaeological investigations assessing earthquake intensities and locations based on field evidence of damage to structures attributed to past earthquakes, because the geological site effects might have been factored in inaccurately or not at all. Full article
(This article belongs to the Section Chemical, Civil and Environmental Engineering)
Show Figures

Figure 1

16 pages, 5461 KiB  
Article
Reappraisal of Data of Hydrological Changes Associated with Some Strong Historical Italian Earthquakes
by Corrado Castellano, Luigi Cucci and Andrea Tertulliani
Geosciences 2023, 13(2), 55; https://doi.org/10.3390/geosciences13020055 - 10 Feb 2023
Cited by 3 | Viewed by 2002
Abstract
Historical seismology retrieves information about the effects of earthquakes that occurred in the past, mostly regarding the damage, but also on environmental effects. In this paper, we describe the methodology of our research on earthquake-induced hydrological effects, which have been long observed and [...] Read more.
Historical seismology retrieves information about the effects of earthquakes that occurred in the past, mostly regarding the damage, but also on environmental effects. In this paper, we describe the methodology of our research on earthquake-induced hydrological effects, which have been long observed and documented, and are among the most outstanding coseismic phenomena. The method of research follows two distinct paths, depending on whether the investigated event occurred before or after the end of the 18th Century. For the most ancient events, we present examples of historical accounts, local reports, private letters, and diaries, in which the information of interest is often hidden within broader descriptions and mentioned as a minor curiosity. On the contrary, for more recent earthquakes, the research benefits from the growing interest in naturalistic observations that marked the onset of the 19th Century, and is achieved through detailed descriptions, journals, seismic postcards, and through the first systematic collections of instrumental data. Finally, we describe a possible method of classification of the hydrological data and show an analysis of the potential applications and outcomes of this type of research. Full article
(This article belongs to the Special Issue Modern Perspectives in Historical Seismology)
Show Figures

Graphical abstract

28 pages, 7686 KiB  
Article
Statistical Analysis of the Potential of Landslides Induced by Combination between Rainfall and Earthquakes
by Chih-Ming Tseng, Yie-Ruey Chen, Chwen-Ming Chang, Ya-Ling Yang, Yu-Ru Chen and Shun-Chieh Hsieh
Water 2022, 14(22), 3691; https://doi.org/10.3390/w14223691 - 15 Nov 2022
Cited by 3 | Viewed by 2876
Abstract
This study analyzed the potential of landslides induced by the interaction between rainfall and earthquakes. Dapu Township and Alishan Township in Chiayi County, southern Taiwan, were included as study areas. From satellite images and the literature, we collected data for multiple years and [...] Read more.
This study analyzed the potential of landslides induced by the interaction between rainfall and earthquakes. Dapu Township and Alishan Township in Chiayi County, southern Taiwan, were included as study areas. From satellite images and the literature, we collected data for multiple years and time series and then used the random forest data mining algorithm for satellite image interpretation. A hazard index for the interaction between earthquakes and rainfall (IHERI) was proposed, and an index for the degree of land disturbance (IDLD) was estimated to explore the characteristics of IHERI under specific natural environmental and slope land use conditions. The results revealed that among the investigated disaster-causing factors, the degree of slope land use disturbance, the slope of the natural environment, and rainfall exerted the strongest effect on landslide occurrence. When IHERI or IDLD was higher, the probability of a landslide also increased, and under conditions of a similar IDLD, the probability of landslides increased as the IHERI value increased, and vice versa. Thus, given the interaction between rainfall and earthquakes in the study area, the effect of the degree of slope land use disturbance on landslides should not be ignored. The results of a receiver operating characteristic (ROC) curve analysis indicated that the areas under the ROC curve for landslides induced by different trigger factors were all above 0.94. The results indicate that the area in which medium–high-level landslides are induced by an interaction between rainfall and earthquakes is large. Full article
(This article belongs to the Special Issue Rainfall-Induced Geological Disasters)
Show Figures

Figure 1

14 pages, 3255 KiB  
Article
Seabed Liquefaction around Pipeline with Backfilling Trench Subjected to Strong Earthquake Motions
by Qiuzhe Wang, Jiang Bian, Wenting Huang, Qingrui Lu, Kai Zhao and Zhaoyan Li
Sustainability 2022, 14(19), 12825; https://doi.org/10.3390/su141912825 - 8 Oct 2022
Cited by 4 | Viewed by 2079
Abstract
As an indispensable part of the lifeline for the offshore gas and oil industry, submarine pipelines under long-term marine environmental loadings have historically been susceptible to earthquakes. This study investigates the impact of trench backfilling on the residual liquefaction around a pipeline and [...] Read more.
As an indispensable part of the lifeline for the offshore gas and oil industry, submarine pipelines under long-term marine environmental loadings have historically been susceptible to earthquakes. This study investigates the impact of trench backfilling on the residual liquefaction around a pipeline and the induced uplift of a pipeline under the combined action of an earthquake, ocean wave and current loading. A fully coupled nonlinear effective stress analysis method, which can consider the nonlinear hysteresis and the large deformation after liquefaction of the seabed soil, is adopted to describe the interaction between the seabed soil and the submarine pipeline. Taking a typical borehole in the Bohai strait as the site condition, the nonlinear seismic response analysis of the submarine pipeline under the combined action of seismic loading and ocean wave and current is carried out. The numerical results show that trench backfilling has a significant impact on the seismic response of the pipeline. The existence of trench backfilling reduces the accumulation of the residual excess pore water pressure, so that the seabed liquefaction around the pipeline is mitigated and the uplift of the pipeline is also decreased. Full article
(This article belongs to the Special Issue Earthquake Engineering Technology and Its Application)
Show Figures

Figure 1

34 pages, 31457 KiB  
Article
Coastal Environment Impact on the Construction Materials of Anfushi’s Necropolis (Pharos’s Island) in Alexandria, Egypt
by Abdelrhman Fahmy, Eduardo Molina-Piernas, Javier Martínez-López, Philip Machev and Salvador Domínguez-Bella
Minerals 2022, 12(10), 1235; https://doi.org/10.3390/min12101235 - 28 Sep 2022
Cited by 5 | Viewed by 4823
Abstract
The only example and reference of Ptolemaic Alexandrian tombs, with clear integrations of Egyptian-style scenes and decorations, is considered an endangered archaeological site due to different coastal environmental risks in Alexandria and the absence of maintenance. Anfushi’s Necropolis is located near the western [...] Read more.
The only example and reference of Ptolemaic Alexandrian tombs, with clear integrations of Egyptian-style scenes and decorations, is considered an endangered archaeological site due to different coastal environmental risks in Alexandria and the absence of maintenance. Anfushi’s Necropolis is located near the western harbour (Island of Pharos) and dates back to the 2nd century BC. Sea level rises, earthquakes, flooding, storminess, variations in temperature, rainfall, and wind are the factors that have the largest effect on the destruction and decay of Anfushi’s Necropolis building materials. This paper’s main objectives were to characterize this necropolis’s building materials and assess its durability problems and risks regarding the coastal environment. Additionally, the vector mapping of its architectural and structural elements was applied for documentation and recording purposes for the necropolis. To achieve these aims, field (recording and photographs), desk (engineering drawing and mapping), and laboratory works (X-ray diffraction, X-ray fluorescence, binocular microscopy, polarizing microscopy, and scanning electron microscopy) were carried out. The results confirmed the probabilistic risk of sea level rises and its impact on the submergence of Anfushi’s Necropolis. The structural deficiencies of the tombs were caused by the effect of earthquake tremors along with anthropogenic factors. In addition, chemical and microscopic investigations showed that salt weathering (halite and gypsum) induced the decay of the building materials. Full article
Show Figures

Figure 1

20 pages, 5387 KiB  
Article
Assessing Susceptibility to Soil Liquefaction Using the Standard Penetration Test (SPT)—A Case Study from the City of Portoviejo, Coastal Ecuador
by Eduardo Ortiz-Hernández, Kervin Chunga, José Luis Pastor and Theofilos Toulkeridis
Land 2022, 11(4), 463; https://doi.org/10.3390/land11040463 - 24 Mar 2022
Cited by 13 | Viewed by 6103
Abstract
The city of Portoviejo in coastal Ecuador was severely affected during the 16 April 2016, Pedernales earthquake (Mw 7.8). Various coseismic liquefaction phenomena occurred, inducing lateral spreading, sand boils, ground subsidence, and sinkholes in soils with poor geotechnical quality in the alluvial and [...] Read more.
The city of Portoviejo in coastal Ecuador was severely affected during the 16 April 2016, Pedernales earthquake (Mw 7.8). Various coseismic liquefaction phenomena occurred, inducing lateral spreading, sand boils, ground subsidence, and sinkholes in soils with poor geotechnical quality in the alluvial and alluvial–colluvial sedimentary environment. Therefore, the main aim of this study was to collect data from standard penetration tests (SPT) and shear velocity and exploratory trenches and to calculate the liquefaction potential index (LPI) by considering a corresponding seismic hazard scenario with an amax = 0.5 g. From these data, a liquefaction hazard map was constructed for the city of Portoviejo, wherein an Fs of 1.169 was obtained. It was determined that strata at a depth of between 8 and 12 m are potentially liquefiable. Our quantitative results demonstrate that the city of Portoviejo’s urban area has a high probability of liquefaction, whereas the area to the southeast of the city is less sensitive to liquefaction phenomena, due to the presence of older sediments. Our results are in accordance with the environmental effects reported in the aftermath of the 2016 earthquake. Full article
(This article belongs to the Special Issue Protection, Management and Restoration of Coastal Ecosystems)
Show Figures

Figure 1

43 pages, 19843 KiB  
Article
Revisiting the Most Destructive Earthquake Sequence in the Recent History of Greece: Environmental Effects Induced by the 9, 11 and 12 August 1953 Ionian Sea Earthquakes
by Spyridon Mavroulis and Efthymis Lekkas
Appl. Sci. 2021, 11(18), 8429; https://doi.org/10.3390/app11188429 - 11 Sep 2021
Cited by 25 | Viewed by 7158
Abstract
The August 1953 seismic sequence comprised the most destructive events in the recent history of Greece. The mainshock on 12 August, and its foreshocks on 9 and 11 August, devastated the southern Ionian Islands. The existing literature emphasized the destructive effects of the [...] Read more.
The August 1953 seismic sequence comprised the most destructive events in the recent history of Greece. The mainshock on 12 August, and its foreshocks on 9 and 11 August, devastated the southern Ionian Islands. The existing literature emphasized the destructive effects of the earthquakes on buildings, as well as to the emergency response and recovery actions. This resulted in a large gap in capturing the full picture of the earthquake’s environmental effects. The present study aims to fill this gap by reconstructing the most complete picture possible of the primary and secondary effects on the environment of the southern Ionian Islands by the August 1953 earthquakes. This reconstruction is based on all available sources, comprising not only the existing scientific literature, but especially sources that have not been considered to date, including newspapers of local and national circulation. In total, 120 cases of the earthquake’s environmental effects were identified, comprised of 33 cases of primary and 87 cases of secondary effects. In descending order of occurrence, slope failures, co-seismic uplift, hydrological anomalies, ground cracks, tsunami, liquefaction, dust clouds, hydrocarbon-related phenomena, jumping stones and vegetation effects were distributed mainly in Cephalonia Island and secondarily in the Ithaki and Zakythos Islands. The primary effects were mainly detected in eastern Cephalonia, which presented uplift of up to 70 cm, while the majority of the secondary effects were triggered in specific zones with characteristics that made them susceptible to the occurrence of earthquake-related hazards. Full article
Show Figures

Figure 1

49 pages, 4342 KiB  
Article
Primary and Secondary Environmental Effects Triggered by the 30 October 2020, Mw = 7.0, Samos (Eastern Aegean Sea, Greece) Earthquake Based on Post-Event Field Surveys and InSAR Analysis
by Spyridon Mavroulis, Ioanna Triantafyllou, Andreas Karavias, Marilia Gogou, Katerina-Navsika Katsetsiadou, Efthymios Lekkas, Gerassimos A. Papadopoulos and Issaak Parcharidis
Appl. Sci. 2021, 11(7), 3281; https://doi.org/10.3390/app11073281 - 6 Apr 2021
Cited by 22 | Viewed by 7480
Abstract
On 30 October 2020, an Mw = 7.0 earthquake struck the eastern Aegean Sea. It triggered earthquake environmental effects (EEEs) on Samos Island detected by field surveys, relevant questionnaires, and Interferometric Synthetic Aperture Radar (InSAR) analysis. The primary EEEs detected in the field [...] Read more.
On 30 October 2020, an Mw = 7.0 earthquake struck the eastern Aegean Sea. It triggered earthquake environmental effects (EEEs) on Samos Island detected by field surveys, relevant questionnaires, and Interferometric Synthetic Aperture Radar (InSAR) analysis. The primary EEEs detected in the field comprise coseismic uplift imprinted on rocky coasts and port facilities around Samos and coseismic surface ruptures in northern Samos. The secondary EEEs were mainly observed in northern Samos and include slope failures, liquefaction, hydrological anomalies, and ground cracks. With the contribution of the InSAR, subsidence was detected and slope movements were also identified in inaccessible areas. Moreover, the type of the surface deformation detected by InSAR is qualitatively identical to field observations. As regards the EEE distribution, effects were generated in all fault blocks. By applying the Environmental Seismic Intensity (ESI-07) scale, the maximum intensities were observed in northern Samos. Based on the results from the applied methods, it is suggested that the northern and northwestern parts of Samos constitute an almost 30-km-long coseismic deformation zone characterized by extensive primary and secondary EEEs. The surface projection of the causative offshore northern Samos fault points to this zone, indicating a depth–surface connection and revealing a significant role in the rupture propagation. Full article
Show Figures

Figure 1

15 pages, 6911 KiB  
Article
The 2017, MD = 4.0, Casamicciola Earthquake: ESI-07 Scale Evaluation and Implications for the Source Model
by Rosa Nappi, Sabina Porfido, Elisa Paganini, Luigina Vezzoli, Maria Francesca Ferrario, Germana Gaudiosi, Giuliana Alessio and Alessandro Maria Michetti
Geosciences 2021, 11(2), 44; https://doi.org/10.3390/geosciences11020044 - 22 Jan 2021
Cited by 24 | Viewed by 4325
Abstract
On 21 August 2017 at 20:57 (local time) a very shallow (H = 1.2 km), moderate (Md = 4.0), earthquake hit the volcanic island of Ischia (Southern Italy), causing the death of two people. The study of the damage to the buildings with [...] Read more.
On 21 August 2017 at 20:57 (local time) a very shallow (H = 1.2 km), moderate (Md = 4.0), earthquake hit the volcanic island of Ischia (Southern Italy), causing the death of two people. The study of the damage to the buildings with the European Macroseismic Scale 98 (EMS-98), carried out immediately after the earthquake, highlighted that hilly area of Casamicciola Terme, on the northern side of the Mt. Epomeo, was the most damaged part of the island with locally quite relevant damage (I = VIII EMS). This seismic event is the first damaging earthquake in Ischia during the instrumental era. In fact, this provides, for the first time, the opportunity to integrate historical seismicity, macroseismic observations, instrumental information, and detailed mapping of the geological coseismic effects. In this work we evaluate the effects induced by the 2017 Casamicciola earthquake on the environment using the Environmental Seismic Intensity 2007 (ESI-07) macroseismic scale. This macroseismic analysis, together with the superficial coseismic faulting characteristics and the available geophysical information, allows us to reconsider the source model for the 2017 earthquake and the previous damaging historical earthquakes in the Casamicciola Terme area. The application of the ESI scale to the Casamicciola Terme earthquake of 21 August 2017 and the assignment of seismic intensity offers better spatial resolution, as well as an increase of the time window for the assessment of the seismic hazard, allowing to reduce the implicit uncertainty in the intensity attenuation laws in this peculiar volcano-tectonic setting. Since intensity is linked to the direct measure of damage, and it is commonly used in hazard assessment, we argue that building damage at Casamicciola Terme is strongly influenced by earthquake surface faulting and near field effects, and therefore controlled by the geometry of the seismic source. Full article
(This article belongs to the Special Issue Earthquake Environmental Effects in the Historical and Recent Data)
Show Figures

Figure 1

Back to TopTop