Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics
Abstract
1. Introduction
2. Geothermal Geological Overview
2.1. Tectonic Evolution
2.2. Stratigraphy and Thermal Reservoir
2.3. Heat Flow Background
3. Data and Methods
3.1. Data
3.2. Calculation of Geothermal Gradient
3.3. Calculation of Coherence Attribute
3.4. Structural Interpretation of Seismic Data
3.5. Structural Evolution Analysis
4. Result
4.1. Characteristics of Deep Geothermal Field
4.1.1. Temperature and Geothermal Gradient
4.1.2. The Combined Characteristics of Deep Reservoirs and Deep Caprock
4.1.3. Temperature Characteristics of Thermal Reservoirs
4.2. Deep Structural Characteristics
4.2.1. Characteristics of Fault System
4.2.2. Planar Structural Characteristics of Thermal Reservoirs
4.2.3. Structural Evolution Characteristics of the Moxi Area
5. Discussion
5.1. The Influence of Structural Characteristics on the Geothermal Field
5.2. Deep Thermal Reservoir Accumulation Mechanism
5.3. Enlightenment on Geothermal Development of Oil and Gas Fields
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SDGs | Sustainable Development Goals |
DST | drilling stem test |
Appendix A
Name | Depth (m) | Temperature (°C) | Name | Depth (m) | Temperature (°C) | Name | Depth (m) | Temperature (°C) |
---|---|---|---|---|---|---|---|---|
Gs17 | 5.42 | 25.392 | Mx008-H30 | 3000 | 96.67 | Mx201 | 4540 | 140.687 |
Gs17 | 20 | 22.854 | Mx008-H30 | 3500 | 108.97 | Mx021 | 0 | 23.003 |
Gs17 | 499.99 | 35.192 | Mx008-H30 | 4000 | 122.59 | Mx021 | 100 | 24.014 |
Gs17 | 999.98 | 47.88 | Mx008-H30 | 4200 | 130.06 | Mx021 | 500 | 30.495 |
Gs17 | 1499.98 | 61.331 | Mx008-H30 | 4300 | 132.81 | Mx021 | 1000 | 42.086 |
Gs17 | 1999.97 | 74.848 | Mx008-H30 | 4400 | 134.99 | Mx021 | 1500 | 54.931 |
Gs17 | 2499.94 | 86.526 | Mx42 | 6.05 | 36.872 | Mx021 | 2000 | 68.284 |
Gs17 | 2999.92 | 98.454 | Mx42 | 500 | 33.737 | Mx021 | 2500 | 81.16 |
Gs17 | 3499.64 | 114.374 | Mx42 | 1000 | 45.283 | Mx021 | 3000 | 91.649 |
Gs17 | 3999.17 | 130.165 | Mx42 | 1500 | 57.156 | Mx021 | 3495.29 | 102.68 |
Gs17 | 4099.14 | 133.384 | Mx42 | 2000 | 70.134 | Mx021 | 3992.37 | 116.933 |
Gs17 | 4199.11 | 138.349 | Mx42 | 2500 | 82.501 | Mx021 | 4084.72 | 122.048 |
Gs17 | 4299.09 | 140.472 | Mx42 | 3000 | 92.726 | Mx021 | 4198.28 | 127.629 |
Mx13 | 0 | 35.315 | Mx42 | 3500 | 102.381 | Mx021 | 4286.4 | 130.311 |
Mx13 | 300 | 31.327 | Mx42 | 4000 | 115.653 | Mx021 | 4346.49 | 131.94 |
Mx13 | 500 | 36.139 | Mx42 | 4300 | 123.058 | Mx021 | 4407.43 | 133.499 |
Mx13 | 1000 | 48.45 | Mx42 | 4400 | 126.89 | Db1 | 0 | 20.869 |
Mx13 | 1500 | 61.824 | Mx42 | 4525 | 130.746 | Db1 | 1000 | 39.046 |
Mx13 | 1800 | 69.377 | Mx42 | 4649.78 | 134.747 | Db1 | 2000 | 58.658 |
Mx13 | 2000 | 75.615 | Mx26a | 4600 | 136.483 | Db1 | 2437 | 69.603539 |
Mx13 | 2500 | 88.423 | Mx26a | 4700 | 139.261 | Db1 | 3000 | 83.705 |
Mx13 | 3000 | 98.097 | Mx26a | 4800 | 141.93 | Db1 | 4000 | 101.833 |
Mx13 | 3200 | 102.622 | Mx26b | 4500 | 134.266 | Db1 | 4500 | 111.387 |
Mx13 | 3400 | 108.319 | Mx26b | 4600 | 136.879 | Db1 | 5000 | 121.966 |
Mx13 | 3600 | 114.485 | Mx26b | 4700 | 139.512 | Db1 | 5250 | 129.682 |
Mx13 | 3800 | 120.452 | Mx206 | 2.7 | 16.267 | Db1 | 5350 | 133.192 |
Mx13 | 4000 | 126.25 | Mx206 | 1000 | 43.736 | Db1 | 5450 | 136.508 |
Mx13 | 4200 | 133.871 | Mx206 | 2000 | 70.95 | Gs6a | 5.92 | 22.325 |
Mx13 | 4400 | 139.222 | Mx206 | 3000 | 92.988 | Gs6a | 500 | 42.137 |
Mx13 | 4600 | 143.357 | Mx206 | 4000 | 119.264 | Gs6a | 1000 | 51.714 |
Mx13 | 4800 | 147.954 | Mx206 | 4500 | 135.24 | Gs6a | 1500 | 62.322 |
Mx13 | 5000 | 153.955 | Mx206 | 4600 | 138.121 | Gs6a | 2000 | 73.194 |
Mx13 | 5050 | 154.999 | Mx206 | 4700 | 139.951 | Gs6a | 2500 | 83.747 |
Mx19a | 7.6 | 22.511 | Mxx211 | 0 | 24.6 | Gs6a | 3000 | 92.063 |
Mx19a | 500 | 37.237 | Mxx211 | 1000 | 47.1 | Gs6a | 3500 | 103.778 |
Mx19a | 1000 | 48.481 | Mxx211 | 2000 | 73.4 | Gs6a | 4000 | 116.772 |
Mx19a | 1500 | 60.981 | Mxx211 | 4000 | 121.6 | Gs6a | 4500 | 130.452 |
Mx19a | 2000 | 74.217 | Mxx211 | 4585.31 | 138.5 | Gs6a | 4900 | 138.189 |
Mx19a | 2500 | 85.195 | Mxx211 | 4633.95 | 139.6 | Gs6a | 5000 | 143.653 |
Mx19a | 3000 | 94.733 | Mx22 | 5.5 | 12.991 | Gs6a | 5060 | 144.467 |
Mx19a | 3500 | 107.365 | Mx22 | 500 | 34.994 | Gs6a | 5080 | 144.904 |
Mx19a | 4000 | 121.311 | Mx22 | 1000 | 46.044 | Gs6b | 5.61 | 20.679 |
Mx19a | 4500 | 135.795 | Mx22 | 1500 | 58.238 | Gs6b | 50 | 20.679 |
Mx19a | 4700 | 139.724 | Mx22 | 2000 | 69.611 | Gs6b | 1000 | 33.278 |
Mx19a | 4800 | 141.821 | Mx22 | 2500 | 82.515 | Gs6b | 2000 | 52.694 |
Mx19a | 4900 | 144.102 | Mx22 | 3000 | 93.335 | Gs6b | 3000 | 76.57 |
Mx19b | 0 | 20.35 | Mx22 | 3500 | 101.568 | Gs6b | 3900 | 97.684 |
Mx19b | 1000 | 45.28 | Mx22 | 4000 | 113.355 | Gs6b | 4000 | 122.185 |
Mx19b | 2000 | 71.96 | Mx22 | 4500 | 126.156 | Gs6b | 4100 | 125.172 |
Mx19b | 2200 | 76.65 | Mx22 | 4800 | 135.598 | Gs6b | 4200 | 127.511 |
Mx19b | 2400 | 81.49 | Mx22 | 4900 | 137.984 | Gs6c | 5.22 | 28.475 |
Mx19b | 2600 | 86.03 | Mx22 | 5000 | 139.911 | Gs6c | 1000 | 52.309 |
Mx19b | 2800 | 89.82 | Mx22 | 5100 | 141.842 | Gs6c | 2000 | 76.902 |
Mx19b | 3000 | 93.1 | Mx22 | 5150 | 142.906 | Gs6c | 3000 | 98.758 |
Mx19b | 3200 | 97.36 | Mx101 | 4450 | 131.632 | Gs6c | 4000 | 127.692 |
Mx19b | 3400 | 102.23 | Mx101 | 4250 | 128.381 | Gs6c | 4100 | 130.334 |
Mx19b | 3600 | 108.14 | Mx101 | 4050 | 121.404 | Gs6c | 4200 | 132.811 |
Mx19b | 3800 | 114.16 | Mx101 | 3850 | 116.294 | Gs6c | 4300 | 137.014 |
Mx19b | 4000 | 119.4 | Mx101 | 3650 | 110.978 | Gs6c | 4350 | 138.397 |
Mx19b | 4200 | 127.47 | Mx101 | 3450 | 105.441 | Mx51 | 4 | 39.31 |
Mx19b | 4400 | 132.6 | Mx101 | 3250 | 100.783 | Mx51 | 1000 | 46.441 |
Mx19b | 4450 | 133.79 | Mx101 | 3050 | 96.446 | Mx51 | 2000 | 73.432 |
Mx008-H30 | 0 | 22.97 | Mx201 | 3540 | 110.917 | Mx51 | 3000 | 95.345 |
Mx008-H30 | 500 | 37.89 | Mx201 | 3740 | 116.791 | Mx51 | 4000 | 118.82 |
Mx008-H30 | 1000 | 50.13 | Mx201 | 3940 | 121.848 | Mx51 | 4500 | 134.052 |
Mx008-H30 | 1500 | 63.12 | Mx201 | 4140 | 128.821 | Mx51 | 4600 | 136.668 |
Mx008-H30 | 2000 | 74.92 | Mx201 | 4340 | 134.2 | Mx51 | 4700 | 138.988 |
Mx008-H30 | 2500 | 88.01 | Mx201 | 4440 | 136.801 | Mx51 | 4750 | 140.469 |
References
- United Nations. A/RES/70/1–Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: New York, NY, USA, 2015; Available online: https://sdgs.un.org/2030agenda (accessed on 5 January 2025).
- Lund, J.W.; Freeston, D.H.; Boyd, T.L. Direct utilization of geothermal energy 2010 worldwide review. Geothermics 2011, 40, 159–180. [Google Scholar] [CrossRef]
- Bertani, R. Geothermal power generation in the world 2010–2014 update report. Geothermics 2016, 60, 31–43. [Google Scholar] [CrossRef]
- Limberger, J.; Boxem, T.; Pluymaekers, M.; Bruhn, D.; Manzella, A.; Calcagno, P.; Beekman, F.; Cloetingh, S.; Wees, J.D. Geothermal energy in deep aquifers: A global assessment of the resource base for direct heat utilization. Renew. Sustain. Energy Rev. 2018, 82, 961–975. [Google Scholar] [CrossRef]
- Birdsell, D.T.; Adams, B.M.; Deb, P.; Ogland-Hand, J.D.; Bielicki, J.M.; Fleming, M.R.; Saar, M.O. Analytical solutions to evaluate the geothermal energy generation potential from sedimentary-basin reservoirs. Geothermics 2024, 116, 102843. [Google Scholar] [CrossRef]
- Jiang, G.Z.; Wang, Y.; Shi, Y.Z.; Zhang, C.; Tang, X.Y.; Hu, S.B. Estimate of Hot Dry Rock Geothermal Resource in Daqing Oilfield, Northeast China. Energies 2016, 9, 731. [Google Scholar] [CrossRef]
- Zeng, Y.; Zhang, Y. Deep bedrock geothermal resources in the Maichen Sag, Beibuwan Basin and their potential for exploitation and utilization. Energy Geosci. 2023, 4, 100223. [Google Scholar] [CrossRef]
- Wang, S.; Yan, J.; Li, F.; Hu, J.; Li, K. Exploitation and Utilization of Oilfield Geothermal Resources in China. Energies 2016, 9, 798. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Xu, T.; Qiu, N.S.; Chen, T.G.; Xu, M.; Ding, R. Distribution Characteristics of the Deep Geothermal Field in the Sichuan Basin and Its Main Controlling Factors. Front. Earth Sci. 2022, 10, 824056. [Google Scholar] [CrossRef]
- Xu, M.; Zhu, C.Q.; Tian, Y.T.; Rao, S.; Hu, S.B. Borehole Temperature Logging and Characteristics of Subsurface Temperature in the Sichuan Basin. Chin. J. Geophys.-Chin. Ed. 2011, 54, 224–233. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Qiu, N.S.; Chen, T.G.; Xu, M.; Ding, R.; Yang, Y.B. Thermal Lithospheric Thickness of the Sichuan Basin and Its Geological Implications. Acta Geol. Sin.-Engl. Ed. 2022, 96, 1323–1330. [Google Scholar] [CrossRef]
- Zuo, Y.H.; Sun, Y.G.; Zhang, L.Q.; Zhang, C.; Wang, Y.C.; Jiang, G.Z.; Wang, X.G.; Zhang, T.; Cui, L.Q. Geothermal resource evaluation in the Sichuan Basin and suggestions for the development and utilization of abandoned oil and gas wells. Renew. Energy 2024, 225, 120362. [Google Scholar] [CrossRef]
- Wang, G.L.; Liu, Y.G.; Duan, H.X.; Liu, Z.Y.; Hu, J.; Bian, K.; Xing, L.X. Crust-mantle differentiation and thermal accumulation mechanisms in the north China plain. Renew. Energy 2023, 213, 63–74. [Google Scholar] [CrossRef]
- Zhang, B.J.; Wang, S.Q.; Kang, F.X.; Wu, Y.Q.; Li, Y.Y.; Gao, J.; Yuan, W.Z.; Xing, Y.F. Heat Accumulation Mechanism of the Gaoyang Carbonatite Geothermal Field, Hebei Province, North China. Front. Earth Sci. 2022, 10, 858814. Available online: https://www.frontiersin.org/journals/earth-science/articles/10.3389/feart.2022.858814 (accessed on 20 December 2024). [CrossRef]
- Meng, Q.R.; Wang, E.; Hu, J.M. Mesozoic Sedimentary Evolution of the Northwest Sichuan Basin: Implication for Continued Clockwise Rotation of the South China Block. Geol. Soc. Am. Bull. 2005, 117, 396–410. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhao, W.Z.; Hu, S.Y.; Xu, A.N.; Jiang, Q.C.; Jiang, H.; Huang, S.P.; Li, Q.F. Control of tectonic differentiation on the formation of large oil and gas fields in craton basins: A case study of Sinian–Triassic of the Sichuan Basin. Nat. Gas Ind. B 2017, 4, 141–155. [Google Scholar] [CrossRef]
- Zhu, C.Q.; Hu, S.B.; Qiu, N.S.; Rao, S.; Yuan, Y. The thermal history of the Sichuan Basin, SW China: Evidence from the deep boreholes. Sci. China-Earth Sci. 2016, 59, 70–82. [Google Scholar] [CrossRef]
- Zheng, Z.Y.; Zuo, Y.H.; Wen, H.G.; Zhang, J.Z.; Zhou, G.; Xu, L.; Sun, H.F.; Yang, M.H.; Yan, K.N.; Zeng, J.C. Natural gas characteristics and gas-source comparisons of the lower Triassic Jialingjiang Formation, eastern Sichuan Basin. Geoenergy Sci. Eng. 2023, 221, 111165. [Google Scholar] [CrossRef]
- Song, X.Y.; Zhou, M.F.; Cao, Z.M. Late Permian rifting of the South China Craton caused by the Emeishan mantle plume. J. Geol. Soc. 2004, 161, 773–781. [Google Scholar] [CrossRef]
- Xu, Y.G.; He, B.; Chung, S.L.; Menzies, M.A.; Frey, F.A. Geologic, geochemical, and geophysical consequences of plume involvement in the Emeishan flood-basalt province. Geology 2004, 32, 917–920. [Google Scholar] [CrossRef]
- Xu, W.L.; Wang, Q.H.; Wang, D.Y.; Pei, F.P.; Gao, S. Processes and mechanism of Mesozoic lithospheric thinning in eastern North China Craton: Evidence from Mesozoic igneous rocks and deep-seated xenoliths. Earth Sci. Front. 2004, 11, 309–317, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Ali, J.R.; Fitton, J.G.; Herzberg, C. Emeishan large igneous province (SW China) and the mantle-plume up-doming hypothesis. J. Geol. Soc. 2010, 167, 953–959. [Google Scholar] [CrossRef]
- Shellnutt, J.G. The Emeishan large igneous province: A synthesis. Geosci. Front. 2014, 5, 369–394. [Google Scholar] [CrossRef]
- Wang, M.M.; Hubbard, J.; Plesch, A.; Shaw, J.H.; Wang, L.N. Three-dimensional seismic velocity structure in the Sichuan Basin, China. J. Geophys. Res.-Solid Earth 2016, 121, 1007–1022. [Google Scholar] [CrossRef]
- Liu, S.G.; Deng, B.; Zhong, Y.; Wen, L.; Sun, W.; Li, Z.W.; Jansa, L.; Li, J.X.; Song, J.M.; Zhang, X.H.; et al. Tectonic evolution of the Sichuan Basin, southwest China. Earth-Sci. Rev. 2021, 213, 103470. [Google Scholar] [CrossRef]
- Li, H.K.; Li, Z.Q.; Long, W.; Wan, S.S.; Ding, X.; Wang, S.Z.; Wang, Q.Z. Vertical configuration of Sichuan Basin and its superimposed characteristics of the prototype basin. J. Chengdu Univ. Technol. 2019, 46, 257–267, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Qiu, N.S.; Chang, J.; Zhu, C.Q.; Liu, W.; Zuo, Y.H.; Xu, W.; Li, D. Thermal regime of sedimentary basins in the Tarim, Upper Yangtze and North China Cratons, China. Earth-Sci. Rev. 2022, 224, 103884. [Google Scholar] [CrossRef]
- Ma, Y.S. Deep geothermal resources in China: Potential, distribution, exploitation, and utilization. Energy Geosci. 2023, 4, 100209. [Google Scholar] [CrossRef]
- Han, Y.H.; Wu, C.S. Geothermal Gradient and Heat Flow Values of Some Deep wells in Sichuan Basin. Oil Gas Geol. 1993, 14, 80–84, (In Chinese with English abstract). [Google Scholar]
- Wang, L.S.; Li, C.; Shi, Y.S.; Wang, Y.H. Distributions of Geotemperature and Terrestrial Heat Flow Density in Lower Yangtze Area. Chin. J. Geophys.-Chin. Ed. 1995, 38, 469–476. (In Chinese) [Google Scholar]
- Li, C.R.; Rao, S.; Hu, S.B.; Wang, J.Y.; Wei, Z.H.; Huang, Q.Q.; Hu, D.F.; GUO, X.S. Present-day Geothermal Field of the Jiaoshiba Shale Gas Area in Southeast of the Sichuan Basin, SW China. Chin. J. Geophys.-Chin. Ed. 2017, 60, 617–627. (In Chinese) [Google Scholar]
- Tang, B.N.; Zhu, C.Q.; Xu, M.; Chen, T.G.; Hu, S.B. Thermal Conductivity of Sedimentary Rocks in the Sichuan Basin, Southwest China. Energy Explor. Exploit. 2019, 37, 691–720. [Google Scholar] [CrossRef]
- Li, X.L.; Liu, S.W.; Xu, M.; Li, X.D.; Hao, C.Y. Estimation of Subsurface Formation Temperature and Its Implications for Hydrocarbon Generation and Preservation in the Upper Yangtze Area, south China. Acta Geol. Sin.-Engl. Ed. 2020, 94, 1896–1910. [Google Scholar] [CrossRef]
- Sun, Y.G.; Zuo, Y.H.; Zhang, L.Q.; Zhang, C.; Wang, Y.C.; Zhang, T.; Li, X.; Yang, M.H.; Yan, K.N.; Cui, L.Q. Geothermal resource evaluation of the Middle Permian Qixia–Maokou Formation in the southern Sichuan Basin, China. Geothermics 2024, 122, 103073. [Google Scholar] [CrossRef]
- Wang, Y.B.; Liu, S.W.; Chen, C.Q.; Jiang, G.Z.; Wu, J.H.; Guo, L.Y.; Wang, Y.Q.; Zhang, H.H.; Wang, Z.T.; Jiang, X.X.; et al. Compilation of terrestrial heat flow data in continental China (5th edition). Chin. J. Geophys.-Chin. Ed. 2024, 67, 4233–4265. (In Chinese) [Google Scholar]
- Wang, J.Y.; Huang, S.P. Compilation of heat flow data in the China continental area (Second edition). Seismol. Geol. 1990, 12, 351–366. (In Chinese) [Google Scholar]
- Sun, D.; Li, J.X.; Cao, N.; Li, Z.W.; Zhang, Z.P.; Xie, X.G.; Yuan, M.Y.; Cai, H.Y. A preliminary study of the geothermal geological characteristics an d exploration potential of the Sichuan Basin. Hydrogeol. Eng. Geol. 2023, 50, 193–206. (In Chinese) [Google Scholar]
- Zuo, Y.H.; Jiang, S.; Wu, S.H.; Xu, W.; Zhang, J.; Feng, R.P.; Yang, M.H.; Zhou, Y.S.; Santosh, M. Terrestrial heat flow and lithospheric thermal structure in the Chagan Depression of the Yingen-Ejinaqi Basin, north central China. Basin Res. 2020, 32, 1328–1346. [Google Scholar] [CrossRef]
- Albesher, Z.; Kellogg, J.; Hafiza, I.; Saeid, E. MultiAttribute Analysis Using Coherency and Ant-Tracking Techniques for Fault and Fracture Detection in La Florida Anticline, Llanos Foothills, Colombia. Geosciences 2020, 10, 154. [Google Scholar] [CrossRef]
- Bahorich, M.; Farmer, S. 3-D seismic discontinuity for faults and stratigraphic features: The coherence cube. Lead. Edge 1995, 14, 1053–1058. [Google Scholar] [CrossRef]
- Marfurt, K.J.; Kirlin, R.L.; Farmer, S.L.; Bahorich, M.S. 3-D seismic attributes using a semblance-based coherency algorithm. Geophysics 1998, 63, 1150–1165. [Google Scholar] [CrossRef]
- Gersztenkorn, A.; Marfurt, K.J. Eigenstructure-based coherence computations as an aid to 3-D structural and stratigraphic mapping. Geophysics 1999, 64, 1468–1479. [Google Scholar] [CrossRef]
- Li, M.; Zhao, Y.M. Geophysical Exploration Technology. In Seismic Coherence Technique; Li, M., Zhao, Y.M., Eds.; Elsevier: Amsterdam, The Netherlands, 2014; pp. 63–74. [Google Scholar] [CrossRef]
- Brown, A.R. Interpretation of Three-Dimensional Seismic Data; American Association of Petroleum Geologists: Tulsa, OK, USA, 2011. [Google Scholar] [CrossRef]
- Ramsay, J.G. Tectonics of the Helvetic nappes. Geol. Soc. Lond. Spec. Publ. 1981, 9, 293–309. [Google Scholar] [CrossRef]
- Suppe, J. Geometry and kinematics of fault-bend folding. Am. J. Sci. 1983, 283, 684–721. [Google Scholar] [CrossRef]
- Elliott, D. The construction of balanced cross-sections. J. Struct. Geol. 1983, 5, 101–103. [Google Scholar] [CrossRef]
- Chen, J.J.; He, D.F.; John Suppe, J.; Tian, F.L. Geometry and Kinematics of Bump-Type. Am. J. Sci. 2025, 325, 5. [Google Scholar] [CrossRef]
- Visser, P.W.; Kooi, H.; Stuyfzand, P.J. The thermal impact of aquifer thermal energy storage (ATES) systems: A case study in the Netherlands, combining monitoring and modeling. Hydrogeol. J. 2015, 23, 507–532. [Google Scholar] [CrossRef]
- Ejiga, E.G.; Yusoff, I.; Ismail, N.E.; Kumar, R. Geothermal energy assessment through the Curie point depth, geothermal gradient, and heat flow around the Akiri hot spring region in Central Nigeria. Environ. Earth Sci. 2022, 81, 115. [Google Scholar] [CrossRef]
- Gong, Z.Q.; Xu, W.; Tang, X.Y.; Zhu, G.G.; Yang, Y.L.; Guo, T.Q.; Wang, S. Terrestrial Heat Flow and Lithospheric Thermal Structure of the Hubao Basin, North Central China. Water 2024, 16, 1980. [Google Scholar] [CrossRef]
- Wang, J.J.; Deng, J.T.; Zheng, J.G.; Yu, Y.T.; Zhu, J.M.; Huang, X. A segmented analytical solution heat transfer model of U-tube ground heat exchanger based on finite solid cylindrical heat source method. Geothermics 2025, 125, 103170. [Google Scholar] [CrossRef]
- Song, X.Q.; Jiang, M.; Xiong, P.W. Analysis of the Thermophysical Properties and Influencing Factors of Various Rock Types from Guizhou Province. E3S Web Conf. 2018, 53, 03059. [Google Scholar] [CrossRef]
- Li, X.L.; Liu, S.W.; Feng, C.G. Thermal properties of sedimentary rocks in the Tarim Basin, northwestern China. AAPG Bull. 2019, 103, 1605–1624. [Google Scholar] [CrossRef]
- Xiong, J.; Lin, H.Y.; Ding, H.S.; Pei, H.C.; Rong, C.G.; Liao, W.H. Investigation on thermal property parameters characteristics of rocks and its influence factors. Nat. Gas Ind. B 2020, 7, 298–308. [Google Scholar] [CrossRef]
- Zhang, J.Q.; Zhu, C.Q. Analysis of thermal properties of main sedimentary rocks in the Beijing area. Unconv. Resour. 2024, 4, 100104. [Google Scholar] [CrossRef]
- Wang, J.Y. Geothermal and Its Application; Science Press: Beijing, China, 2015. [Google Scholar]
- He, L.J.; Xu, H.H.; Wang, J.Y. Thermal evolution and dynamic mechanism of the Sichuan Basin during the Early Permian-Middle Triassic. Sci. China-Earth Sci. 2011, 54, 1948–1954. [Google Scholar] [CrossRef]
- Xie, F.Q.; Sun, Y.H.; Wu, J.Z.; Jia, W.J. Nature and formation of evaporites in the passive continental margin period of the Sichuan Basin, China: A review. Arab. J. Geosci. 2021, 14, 1328. [Google Scholar] [CrossRef]
- He, L.J. Emeishan mantle plume and its potential impact on the Sichuan Basin: Insights from numerical modeling. Phys. Earth Planet. Inter. 2022, 323, 106841. [Google Scholar] [CrossRef]
- He, B.Z.; Zheng, M.L. Structural Characteristics and Formation Dynamics: A Review of the Main Sedimentary Basins in the Continent of China. Acta Geol. Sin.-Engl. Ed. 2016, 90, 1156–1194. [Google Scholar] [CrossRef]
- Zhang, L.; He, D.F.; Yi, Z.J.; Li, D. Tectonic relationship between the Kelameili range and the Dajing depression: Insights into the Carboniferous tectonic-sedimentary framework. Petrol. Explor. Dev. 2020, 47, 30–45. [Google Scholar] [CrossRef]
- He, Z.L.; Li, S.J.; Li, Y.Q. Multi-Directional and Multiphase Tectonic Modification, and Hydrocarbon Differential Enrichment in the Middle-Upper Yangtze Region. J. Earth Sci.-China 2022, 33, 1246–1259. [Google Scholar] [CrossRef]
- Liu, J.D.; Wang, S.H.; Pan, K.; Ren, C.G.; Zhang, Q.H.; Xu, J.T. Identification of denudation periods and thickness in petroliferous basins and their geological significance: A case study of the central Sichuan Basin. Energy Geosci. 2025, 6, 100390. [Google Scholar] [CrossRef]
- McKenzie, D. Some remarks on the development of sedimentary basins. Earth Planet. Sci. Lett. 1978, 40, 25–32. [Google Scholar] [CrossRef]
- Liang, S.Z.; Li, Z.; Zhang, W.; Gao, Y. The characteristics of strike-slip faults and their control on hydrocarbon distribution in deep carbonate reservoirs of the central Sichuan Basin. Front. Earth Sci. 2023, 11, 1064835. [Google Scholar] [CrossRef]
- Yuan, H.W.; Dai, K.; Zhang, C.; Liu, L.B.; Jing, T.T.; Li, J.Y.; Zhao, W.T.; Chen, F. Cenozoic sedimentary archives of a strike-slip fault zone in the Tanhai Region, Bohai Bay Basin, Northeastern China. J. Struct. Geol. 2024, 186, 105203. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Luo, W.; Yang, S.; Zheng, W.; Zhang, L.; Lai, F.; Yang, S.; Li, Z. Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics. Energies 2025, 18, 3901. https://doi.org/10.3390/en18153901
Yang W, Luo W, Yang S, Zheng W, Zhang L, Lai F, Yang S, Li Z. Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics. Energies. 2025; 18(15):3901. https://doi.org/10.3390/en18153901
Chicago/Turabian StyleYang, Wenbo, Weiqi Luo, Simian Yang, Wei Zheng, Luquan Zhang, Fang Lai, Shuang Yang, and Zhongquan Li. 2025. "Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics" Energies 18, no. 15: 3901. https://doi.org/10.3390/en18153901
APA StyleYang, W., Luo, W., Yang, S., Zheng, W., Zhang, L., Lai, F., Yang, S., & Li, Z. (2025). Thermal Accumulation Mechanisms of Deep Geothermal Reservoirs in the Moxi Area, Sichuan Basin, SW China: Evidence from Temperature Measurements and Structural Characteristics. Energies, 18(15), 3901. https://doi.org/10.3390/en18153901