Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications
Abstract
:1. Introduction
2. Geological Background
3. Sampling and Methodology
3.1. Heavy Minerals Analysis
3.2. Sedimentary Geochemistry Analysis
3.3. LA-ICP-MS Zircon Dating and Zircon Lu-Hf Isotopic Analysis
4. Results
4.1. Heavy Mineral Characteristics
4.2. Sedimentary Geochemistry Characteristics
4.2.1. Major Elements
4.2.2. Trace Elements and Rare Earth Elements
4.2.3. Provenance Area Weathering Conditions and Structural Background Discrimination
4.3. Zircon U-Pb Geochronology
4.4. In Situ Zircon Hf Isotopic Analyses
5. Discussion
5.1. Provenance of Heavy Minerals
5.2. Provenance of Geochemical Analysis
5.3. Provenance of Detrital Zircons
5.4. Comprehensive Provenance Analysis of the Shihezi Formation
5.5. Tectonic Implications
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, H.T.; Liu, X.W.; Xue, Y.S. Zircon LA-ICP-MS U-Pb ages and geochemical characteristics of the Changling alkaline complex in Luonan County, Shaanxi Province, northwest China. Min. Resour. Geol. 2019, 33, 287–295, (In Chinese with English Abstract). [Google Scholar]
- Chen, H.; Zhang, C.; Liu, X.; Dong, Y.; Tan, X.; Chen, Q.; Zhang, Z.; Wei, K. Detrital zircon U-Pb geochronology and provenance of Silurian, Devonian and Permian sedimentary rocks, South Qinling: Constraints on late Palaeozoic tectonic evolution history of the Qinling Orogenic Belt. Geol. J. 2023, 59, 811–837. [Google Scholar] [CrossRef]
- Huang, J.W. Geochronology and Geochemistry of the Qinling Complex and Shahewan, Caoping Granites in South Qinling and Their Significance. Master’s Thesis, Guilin University of Technology, Guilin, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Cao, H.; Li, S.; Zhao, S.; Yu, S.; Li, X.; Somerville, I. Detrital zircon geochronology of Neoproterozoic to early Paleozoic sedimentary rocks in the North. Qinling Orogenic Belt: Implications for the tectonic evolution of the Kuanping Ocean. Precambrian Res. 2016, 279, 1–16. [Google Scholar] [CrossRef]
- Wang, M.Y. The Petrological and Geochemical Study of Syenite in Changling of Luonan County, Shaanxi Province. Master’s Thesis, China University of Geosciences, Beijing, China, 2016. (In Chinese with English Abstract). [Google Scholar]
- Fang, T. Sediment Provenance Characteristics and Uplift Process of Permian in Southern Margin of North China. Master’s Thesis, Henan University of Science and Technology, Luoyang, China, 2023. (In Chinese with English Abstract). [Google Scholar]
- Yang, W.; Fang, T.; Wang, Y.; Sha, H. Late Paleozoic Tectonic Evolution of the Qinling Orogenic Belt: Constraints of Detrital Zircon U-Pb Ages from the Southern Margin of North China Block. Minerals 2022, 12, 864. [Google Scholar] [CrossRef]
- Zhu, S.Y.; Liu, L.; Wang, L.L.; Wang, Z.W.; Hu, J.L.; Zhang, J.Q.; Zhang, C.G.; Zhao, J.X.; Chen, H.D. Provenance signature and tectono–sedimentary setting of the Permian Shihezi formation (Ordos basin, China): Insights from geochemistry and detrital zircon U–Pb dating. Mar Pet. Geol. 2024, 165, 106901. [Google Scholar] [CrossRef]
- Reng, J.F. Paleozic Tectonic Transformation of the North Qinling Belt in Shanxi Province. Master’s Thesis, Northwest University, Xi’an, China, 2004. [Google Scholar]
- Peng, Z.H.; Peng, S.M.; Wu, Z.H. Basin pattern and evolution of Triassic in North China. J. Xi’an Shiyou Univ. (Nat. Sci. Ed.) 2009, 24, 34–38+4, (In Chinese with English Abstract). [Google Scholar]
- Chen, G.; Li, Y.; Han, W.; Niu, Y.; Zhang, Q. Discussion on sandstone characteristic and provenance of Permian Shihezi Formation in Luonan, Shaanxi Province. Chin. J. Geol. 2020, 55, 1001–1011. [Google Scholar] [CrossRef]
- Chen, A.; Chen, H.-D.; Xiang, F.; Liu, W.-J.; Hou, Z.; Shang, Y.-Z.; Ye, L.-M.; Li, J. Sandstone characteristic and provenance analysis of the Permian Shanxi Formation-Shangshihezi Formation in the northeast of Ordos Basin, China. J. Chengdu Univ. Technol. (Sci. Technol. Ed.) 2007, 48, 305–311, (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.; Diwu, C.; Kröner, A.; Sun, Y.; Luo, J.; Li, Q.; Gou, L.; Lin, H.; Wei, X.; Zhao, J. Archean-Paleoproterozoic crustal evolution of the Ordos Block in the North China Craton: Constraints from zircon U–Pb geochronology and Hf isotopes for gneissic granitoids of the basement. Precambrian Res. 2015, 267, 121–136. [Google Scholar] [CrossRef]
- Dong, Y.; Zhang, X.; Liu, X.; Li, W.; Chen, Q.; Zhang, G.; Zhang, H.; Yang, Z.; Sun, S.; Zhang, F. Propagation tectonics and multiple accretionary processes of the Qinling Orogen. J. Asian Earth Sci. 2015, 104, 84–98. [Google Scholar] [CrossRef]
- Liu, S.; Su, S.; Zhang, G. Early Mesozoic basin development in North China: Indications of cratonic deformation. J. Asian Earth Sci. 2013, 62, 221–236. [Google Scholar] [CrossRef]
- Morton, A.C.; Hallsworth, C. Identifying provenance-specific features of detrital heavy mineral assemblages in sandstones. Sediment. Geol. 1994, 90, 241–256. [Google Scholar] [CrossRef]
- Zhao, J. The Paleoproterozoic Tectonic Evolution of the Central Segment of the North China Craton–Constrained by Magmatic and Metamorphic Records of Lüliang Complex. Ph.D. Thesis, Northwest University, Xi’an, China, 2018. (In Chinese with English Abstract). [Google Scholar]
- Liu, Y.; Liu, X.; Hu, Z.; Diwu, C.; Yuan, H.-L.; Gao, S. Evaluation of accuracy and long-term stability of determination of 37 trace elements in geological samples by ICP-MS. Acta Petrol. Sin. 2007, 23, 1203–1210, (In Chinese with English Abstract). [Google Scholar]
- Gong, W. Provenance Analysis and Detrital Zircon U-Pb Dating of Chang 6 and Chang 4+5 of Yanchang Formation in Dingbian and Xiasiwan Area, Ordos Basin. Master’s Thesis, Northwest University, Xi’an, China, 2022. [Google Scholar] [CrossRef]
- Ludwig, K.R. User’s manual for isoplot 3.00, a geochronlogical toolkit for microsoft excel. Berkeley Geochronl. Cent. Spec. Publ. 2003, 4, 25–32. [Google Scholar]
- Jiang, Z.W. The Study of Provenance and Basin Mountain Coupling of Shan1-H8 Member, Upper Palaeozoic, Southern Ordos Basin. Ph.D. Thesis, Northwest University, Xi’an, China, 2020. (In Chinese with English Abstract). [Google Scholar]
- Blichert-Toft, J.; Albarède, F. The Lu-Hf isotope geochemistry of chondrites and the evolution of the mantle-crust system. Earth Planet. Sci. Lett. 1997, 148, 243–258. [Google Scholar] [CrossRef]
- Griffin, W.L.; Pearson, N.; Belousova, E.; Jackson, S.; van Achterbergh, E.; O’reilly, S.Y.; Shee, S. The Hf isotope composition of cratonic mantle: LAM-MC-ICPMS analysis of zircon megacrysts in kimberlites. Geochim. Cosmochim. Acta 2000, 64, 133–147. [Google Scholar] [CrossRef]
- Söderlund, U.; Patchett, P.J.; Vervoort, J.D.; Isachsen, C.E. The 176Lu decay constant determined by Lu-Hf and U–Pb isotope systematics of Precambrian mafic intrusions. Earth Planet. Sci. Lett. 2004, 219, 311–324. [Google Scholar] [CrossRef]
- Amelin, Y.; Lee, D.-C.; Halliday, A.N.; Pidgeon, R.T. Nature of the Earth′s earliest crust from hafnium isotopes in single detrital zircons. Nature 1999, 399, 252–255. [Google Scholar] [CrossRef]
- Wu, F.Y.; Li, X.H.; Zheng, Y.E.; Gao, S. Lu-Hf isotopic systematics and their applications in petrology. Acta Petrol. Sin. 2007, 23, 185–220, (In Chinese with English Abstract). [Google Scholar]
- Jiang, Z.; Luo, J.; Liu, X.; Hu, X.; Ma, S.; Hou, Y.; Fan, L.; Hu, Y. Provenance and Implication of Carboniferous–Permian Detrital Zircons from the Upper Paleozoic, Southern Ordos Basin, China: Evidence from U-Pb Geochronology and Hf Isotopes. Minerals 2020, 10, 265. [Google Scholar] [CrossRef]
- Wu, C.D.; Lin, C.S.; Shen, Y.P.; Fen, X. Characteristics of the fractions and heavy mineral assemblages of the Jurassic sandstones of the Kucha depression and their source-area properties. Prog. Nat. Sci. 2005, 15, 37–43. (In Chinese) [Google Scholar]
- Morton, A.C.; Hallsworth, C.R. Processes controlling the composition of heavy mineral assemblages in sandstones. Sediment. Geol. 1999, 124, 3–29. [Google Scholar] [CrossRef]
- Wang, Q.L.; Hu, S.H.; Li, C.A. Heavy mineral characteristics of gravel layers in the Zhoulao Town borehole. Geol. China 2009, 36, 878–884, (In Chinese with English Abstract). [Google Scholar]
- Yang, G.J.; Wu, K.Y.; Zhang, B.C. Application of U-Pb isotopic dating and heavy mineral assemblage to source-sink system analysis of the Paleogene in western margin of Qaidam Basin. Mar. Petro Geol. 2024, 29, 269–279, (In Chinese with English Abstract). [Google Scholar]
- Taylor, S.R.; Mclennan, S.M. The Continental Crust: Its Composition and Evolution, An Examination of the Geochemical Record Preserved in Sedimentary Rocks; Blackwell Scientific Publishing: Oxford, UK, 1985; pp. 117–140. [Google Scholar]
- Rudnick, R.; Gao, S. The role of lower crustal recycling in continent formation. Geochim. Cosmochim. 2003, 67, 403. [Google Scholar]
- Sun, S.S.; McDonough, W.F. Chemical and isotopic systematics of oceanic basalts: Implications for mantle composition and processes. In Magmatism in the Ocean Basins; Geological Society Special Publication: London, UK, 1989; Volume 42, pp. 313–345. [Google Scholar] [CrossRef]
- Nesbitt, H.W.; Young, G.M. Early Proterozoic climates and plate motions inferred from major element chemistry of lutites. Nature 1982, 299, 715–717. [Google Scholar] [CrossRef]
- Mclennan, S.M.; Hemming, S.; McDaniel, D.K.; Hanson, G.N. Geochemical approaches to sedimentation, provenance, and tectonics. In Processes Controlling the Composition of Clastic Sediments; Geological Society of America: New York, NY, USA, 1993. [Google Scholar] [CrossRef]
- Panahi, A.; Young, G.M.; Rainbird, R.H. Behavior of major and trace elements (including REE) during Paleoproterozoic pedogenesis and diagenetic alteration of an Archean granite near Ville Marie, Québec, Canada. Geochim. Cosmochim. 2000, 64, 2199–2220. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Determination of tectonic setting of sandstone-mudstone suites using SiO2 content and K2O/Na2O ratio. J. Geol. 1986, 94, 635–650. [Google Scholar] [CrossRef]
- Roser, B.P.; Korsch, R.J. Provenance signatures of sandstone-mudstone suites determined using discriminant function analysis of major-element data. Chem. Geol. 1988, 67, 119–139. [Google Scholar] [CrossRef]
- Bhatia, M.R.; Crook, K.A.W. Trace element characteristics of graywackes and tectonic setting discrimination of sedimentary basins. Contrib. Mineral. Petrol. 1986, 92, 181–193. [Google Scholar] [CrossRef]
- Cheng, C. The Evolution of Permian Sedimentary Sequences in Zhen’an, Shananxi, China, and Its Response to the Changes of Permian Paleoclimate, Paleoenviroment and Paleogeography. Ph.D. Thesis, Hefei University of Technology, Hefei, China, 2018. [Google Scholar] [CrossRef]
- Zhou, Z.-J.; Mao, S.-D.; Chen, Y.-J.; Santosh, M. U–Pb ages and Lu–Hf isotopes of detrital zircons from the southern Qinling Orogen: Implications for Precambrian to Phanerozoic tectonics in central China. Gondwana Res. 2016, 35, 323–337. [Google Scholar] [CrossRef]
- Pan, W.; Jiang, Z.; Fan, L.; Zhang, Z.; Li, Z.; Ma, S.; Wang, Z.; Li, X.; Zhao, W. Provenance of the He 8 Member of the Upper Paleozoic Shihezi Formation, Ordos Basin, China: Insights from Heavy Minerals, Paleocurrents, Detrital Zircon Chronology, and Hf Isotopes. Minerals 2024, 14, 1076. [Google Scholar] [CrossRef]
- Meng, E.; Xu, W.-L.; Pei, F.-P.; Yang, D.-B.; Yu, Y.; Zhang, X.-Z. Detrital-zircon geochronology of Late Paleozoic sedimentary rocks in eastern Heilongjiang Province, NE China: Implications for the tectonic evolution of the eastern segment of the Central Asian Orogenic Belt. Tectonophysics 2010, 485, 42–51. [Google Scholar] [CrossRef]
- Wang, F.; Xu, W.-L.; Gao, F.-H.; Zhang, H.-H.; Pei, F.-P.; Zhao, L.; Yang, Y. Precambrian terrane within the Songnen–Zhangguangcai Range Massif, NE China: Evidence from U–Pb ages of detrital zircons from the Dongfengshan and Tadong groups. Gondwana Res. 2014, 26, 402–413. [Google Scholar] [CrossRef]
- Cui, K. Provenance of the Upper Paleozoic Shan1-He 8 Formation in Southern Ordos Basin and Its Influence on the Sedimentary Filling Pattern. Master’s Thesis, Northwest University, Xi’an, China, 2019. (In Chinese with English Abstract). [Google Scholar]
- Zhang, C.L.; Liu, L.; Wang, T. Granitic magmatism related to early Paleozoic continental collision in North Qinling. Sci. Bull. 2013, 58, 4405–4410. [Google Scholar] [CrossRef]
- Liu, L. Multi-matemorphic timings of HP-UHP rocks in the North Qinling and their geological implications. Acta Petrol. Sin. 2013, 29, 1634–1656, (In Chinese with English Abstract). [Google Scholar]
- Liu, L.; Liao, X.; Wang, Y.; Wang, C.; Santosh, M.; Yang, M.; Zhang, C.; Chen, D. Early Paleozoic tectonic evolution of the North Qinling Orogenic Belt in Central China: Insights on continental deep subduction and multiphase exhumation. Earth-Sci. Rev. 2016, 159, 58–81. [Google Scholar] [CrossRef]
- Cheng, C.; Li, S.; Xie, X.; Manger, W.L.; Busbey, A.B. U–Pb detrital zircon geochronology and Hf isotopic composition of Permian clastic rocks, Zhen’an basin, South Qinling belt: Implications for the Paleozoic tectonic evolution of the Qinling orogenic belt. Int. Geol. Rev. 2019, 61, 1462–1478. [Google Scholar] [CrossRef]
- Li, P.; Chen, J.L.; Xu, X.Y. Petrogenesis and LA-ICPMS zircon U-Pb dating of the Wuguan intrusive body in North Qinling. Acta Petrol. Miner. 2011, 30, 610–624, (In Chinese with English Abstract). [Google Scholar]
- Li, Y.; Zhou, H.; Li, Q. Palaeozoic polymetamorphism in the North Qinling orogenic belt, Central China: Insights from petrology and in situ titanite and zircon U-Pb geochronology. J. Asian Earth Sci. 2014, 92, 77–91. [Google Scholar] [CrossRef]
- Han, H.P.; Wu, C.Y.; Bai, Q.H. Zircon U-Pb Dating of Clastic Sandstone in the Upper Paleozoic from Wushenqi Area, Ordos Basin and Its Geological Significance. Acta Sedimentol. Sin. 2014, 32, 643–653. [Google Scholar] [CrossRef]
- Chen, L.Y.; Liu, X.C.; Qu, W. U-Pb zircon ages and geochemistry of the Wuguan complex in the Qinling orogen, central China: Implications for the late Paleozoic tectonic evolution between the Sino-Korean and Yangtze cratons. Lithos 2014, 192–195, 192–207. [Google Scholar] [CrossRef]
- Yan, Z.; Fu, C.L.; Wang, Z.Q. Late Paleozoic subduction-accretion along the southern margin of the North Qinling terrane, central China: Evidence from zircon U-Pb dating and geochemistry of the Wuguan Complex. Gondwana Res. 2016, 30, 97–111. [Google Scholar] [CrossRef]
- Chen, N.S.; Ba, J.; Zhang, L.; Su, W.; Liu, J.B.; Guo, S. Zircon LA-ICP-MS U-Pb dating of the Wuguan Group, Shangdan fault zone, eastern Qinling, China. Geol. Bull. China 2009, 28, 556–560, (In Chinese with English Abstract). [Google Scholar]
- Jiang, X.J. The Study of Sedimentary Characteristic and Tectonic Setting in Easterm Qinling Orogenic Belt. Ph.D. Thesis, Chinese Academy of Geological Sciences, Beijing, China, 2013. (In Chinese with English Abstract). [Google Scholar]
- Xu, X.Y.; Chen, J.L.; Gao, T.; Li, P.; Li, T. Granitoid magmatism and tectonic evolution in northern edge of the Western Qinling terrane. Acta Petrol. Sin. 2014, 30, 371–389, (In Chinese with English Abstract). [Google Scholar]
- Sun, X.P.; Xu, X.Y.; Chen, J.L.; Gao, T.; Li, T.; Li, X.B.; Li, X.Y. Geochemical Characteristics and Chronology of the Jiangligou Granitic Pluton in West Qinling and Their Geological Significance. Acta Geol. Sin. 2013, 87, 330–342, (In Chinese with English Abstract). [Google Scholar]
- Song, D.F.; Xiao, W.J.; Collins, A. Late Carboniferous-early Permian arc magmatism in the southwestern Alxa Tectonic Belt (NW China): Constraints on the late Palaeozoic subduction history of the Palaeo-Asian Ocean. Geol. J. 2019, 54, 1046–1063. [Google Scholar] [CrossRef]
- Song, D.F.; Xiao, W.J.; Windley Brian, F. Provenance and tectonic setting of late Paleozoic sedimentary rocks from the Alxa Tectonic Belt (NW China): Implications for accretionary tectonics of the southern Central Asian Orogenic Belt. Geol. Soc. Am. Bull. 2021, 133, 253–276. [Google Scholar] [CrossRef]
- Song, J.X.; Gong, H.J.; Yao, J.L. U-Pb Dating and Hf Isotopes Analysis of Detrital Zircons of the Shanxi Formation in the Otuokeqi Area, Northwestern Ordos Basin. Geofluids 2021, 2021, 1–14. [Google Scholar] [CrossRef]
- Li, S.G.; Hou, Z.H.; Yang, Y. Timing and geochemical characters of the Sanchazi magmatic arc in Mianlüe tectonic zone, South Qinling. Sci. China Ser. D Earth Sci. 2004, 47, 317–328, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Zhang, G.; Dong, Y.; Lai, S.; Guo, A.; Meng, Q.; Liu, S.; Cheng, S.; Yao, A.; Zhang, Z.; Pei, X.; et al. Mianlüe tectonic zone and Mianlüe suture zone on southern margin of Qinling-Dabie orogenic belt. Sci. China Ser. D Earth Sci. 2004, 47, 300–316, (In Chinese with English Abstract). [Google Scholar] [CrossRef]
- Gao, X.Y.; Pei, X.Z.; Li, Z.C.; Li, R.B.; Wei, L.Y.; Wang, M.; Liu, C.J.; Gao, F.; Liang, G.B.; Shao, J.K.; et al. Age and Provenance of Upper Shilidun Formation, Lintan, West Qinling Orogen:Constraints from LA-ICP-MS U-Pb Dating of Detrital Zircons. Earth Sci. 2019, 44, 1389–1405, (In Chinese with English Abstract). [Google Scholar]
Major Elements | Hancheng | Luonan | PAAS (wt%) | ||
---|---|---|---|---|---|
Range (wt%) | Average (wt%) | Range (wt%) | Average (wt%) | ||
SiO2 | 58.61–79.49 | 69.74 | 61.93–81.42 | 70.03 | 59.52 |
Al2O3 | 8.81–20.95 | 13.34 | 8.93–25.22 | 16.16 | 23.75 |
Na2O | 0.06–1.61 | 0.81 | 0.08–1.49 | 0.22 | 0.95 |
K2O | 0.28–2.01 | 1.00 | 0.43–9.28 | 3.69 | 3.44 |
MgO | 0.54–1.34 | 0.82 | 0.04–1.26 | 0.54 | 1.81 |
TiO2 | 0.30–0.97 | 0.64 | 0.41–0.84 | 0.63 | 1.03 |
CaO | 0.24–2.83 | 0.65 | 0.02–0.37 | 0.17 | 0.57 |
Element | Hancheng | Luonan | PAAS (×10−6) | ||
---|---|---|---|---|---|
Range (×10−6) | Range (×10−6) | Range (×10−6) | Range (×10−6) | ||
Sc | 5.3–19.9 | 9.89 | 3.11–17.6 | 10.01 | 21 |
V | 0.58–4.45 | 67.3 | 29.8–114 | 64.1 | 100 |
Cr | 5.30–19.9 | 45.01 | 22.3–103 | 48.8 | 110 |
Ni | 42.58–92.1 | 28.85 | 4.84–29.9 | 11.55 | 54 |
Ga | 22.9–65.6 | 19.12 | 8.23–33.8 | 21.3 | 30 |
Rb | 18.8–117 | 46.01 | 72.9–274 | 149 | 185 |
Sr | 14.7–58.8 | 81.49 | 32.8–160 | 97 | 120 |
Zr | 3.58–47.6 | 289 | 124–408 | 266 | 185 |
Nb | 44.8–122 | 11.14 | 8.00–18.6 | 13.7 | 30 |
Cs | 0.51–6.18 | 2.78 | 0.72–55.6 | 22.2 | 10 |
Ba | 141–598 | 359 | 95.8–521 | 318 | 580 |
Hf | 3.24–15.8 | 7.59 | 3.51–11.3 | 7.56 | 4.3 |
Pb | 5.88–35.4 | 9.85 | 3.29–64.3 | 23.1 | 32 |
Th | 5.46–13.1 | 9.99 | 6.90–19.8 | 11.67 | 19 |
U | 1.19–3.33 | 2.35 | 1.51–5.33 | 3.09 | 3.3 |
La | 15.6–144.4 | 47.41 | 18.44–291.29 | 73.42 | 50 |
Ce | 24.99–260.9 | 89.79 | 38.90–510.22 | 130.95 | 104 |
Pr | 2.47–29.28 | 9.91 | 4.53–57.87 | 15.67 | 13 |
Nd | 8.7–119.1 | 48.12 | 15.92–229.59 | 60.08 | 43 |
Sm | 1.67–22.17 | 8.73 | 3.21–41.64 | 10.79 | 8.2 |
Eu | 0.36–4.51 | 1.65 | 0.59–7.01 | 1.90 | 1.7 |
Gd | 1.56–20.38 | 7.85 | 2.71–39.42 | 9.69 | 6.7 |
Tb | 0.24–2.76 | 1.12 | 0.39–5.34 | 1.34 | 1.2 |
Dy | 1.49–14.36 | 6.26 | 2.22–28.48 | 7.44 | 6.2 |
Ho | 0.29–2.76 | 1.2 | 0.45–5.19 | 1.40 | 1.4 |
Er | 0.90–8.33 | 3.35 | 1.37–13.66 | 3.86 | 3.8 |
Yb | 1.01–8.48 | 3.14 | 1.35–10.82 | 3.43 | 3.7 |
Y | 7.64–49.15 | 31.32 | 12.01–136.90 | 36.13 | 38 |
Ages (Ma) | Parameters | HC Samples | LN Samples |
---|---|---|---|
2600–2300 | Negative εHf(t) value | −0.18 to −1.39 | −2.7 to −0.3, |
TDM2 value | 2880–2955 Ma | 2984–3037 Ma | |
Positive εHf(t) value | 0.02 to 8.09 | 0.9 to 6.0 | |
TDM2 value | 2488–2955 Ma | 2591–2941 Ma | |
2300–2000 | Negative εHf(t) value | −0.18 to −3.83 | −7.4 |
TDM2 value | 2656–2867 Ma | 3127 Ma | |
Positive εHf(t) value | 2.33 | 50 | |
TDM2 value | 2688 Ma | 409 Ma | |
2000–1600 | Negative εHf(t) value | −0.1 to −10.44 | −9.5 to −1.0 |
TDM2 value | 2509–3136 Ma | 2509–3054 Ma | |
Positive εHf(t) value | 2.88 to 3.93 | 0.6 to 3.1 | |
TDM2 value | 2369–2327 Ma | 2568–2406 Ma | |
979–550 | Negative εHf(t) value | / | −1.6 |
TDM2 value | / | 1928 Ma | |
Positive εHf(t) value | / | / | |
TDM2 value | / | / | |
550–350 | Negative εHf(t) value | −17.19 to −10.26 | −41 to −0.9 |
TDM2 value | 2480–2030 Ma | 1473–3940 Ma | |
Positive εHf(t) value | / | 0.1–13.0 | |
TDM2 value | / | 596–1410 Ma | |
350–260 | Negative εHf(t) value | −14.64 to −0.61 | −16.5 to −2.8 |
TDM2 value | 1378–2222 Ma | 1482–2351 Ma | |
Positive εHf(t) value | 0.26 | 1.2 | |
TDM2 value | 1311 Ma | 1237 Ma |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Duan, Y.; Pan, W.; Zhang, X.; Zhang, Z.; Ding, Y.; Jiang, Z.; Li, Z.; Meiduo, L.; Zhao, W.; Li, W. Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications. Minerals 2025, 15, 549. https://doi.org/10.3390/min15050549
Duan Y, Pan W, Zhang X, Zhang Z, Ding Y, Jiang Z, Li Z, Meiduo L, Zhao W, Li W. Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications. Minerals. 2025; 15(5):549. https://doi.org/10.3390/min15050549
Chicago/Turabian StyleDuan, Yuliang, Wenqi Pan, Xi Zhang, Zhengtao Zhang, Yi Ding, Ziwen Jiang, Zhichao Li, Lamao Meiduo, Weiran Zhao, and Wenhou Li. 2025. "Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications" Minerals 15, no. 5: 549. https://doi.org/10.3390/min15050549
APA StyleDuan, Y., Pan, W., Zhang, X., Zhang, Z., Ding, Y., Jiang, Z., Li, Z., Meiduo, L., Zhao, W., & Li, W. (2025). Provenance of the Upper Paleozoic Shihezi Formation in the Luonan Region of the Qinling Orogenic Belt and Its Tectonic Implications. Minerals, 15(5), 549. https://doi.org/10.3390/min15050549