Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (726)

Search Parameters:
Keywords = eEF1A

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
23 pages, 7234 KiB  
Article
Cold Exposure Exacerbates Cardiac Dysfunction in a Model of Heart Failure with Preserved Ejection Fraction in Male and Female C57Bl/6J Mice
by Sara-Ève Thibodeau, Marie-Lune Legros, Emylie-Ann Labbé, Élisabeth Walsh-Wilkinson, Audrey Morin-Grandmont, Sarra Beji, Marie Arsenault, Alexandre Caron and Jacques Couet
Biomedicines 2025, 13(8), 1900; https://doi.org/10.3390/biomedicines13081900 (registering DOI) - 4 Aug 2025
Abstract
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with [...] Read more.
Background: Standard room temperature housing (~22 °C) represents a stress for laboratory mice, resulting in an increased metabolic rate, calorie consumption, heart rate, and catecholamine levels compared to thermoneutral conditions (29–32 °C). Using a recently established two-hit model of heart failure with preserved ejection fraction (HFpEF) (Angiotensin II + High-fat diet for 28 days; MHS), we investigated how housing temperature modulates cardiac remodelling and function in male and female C57Bl/6J mice. Methods: Using the MHS mouse model, we investigated cardiac remodelling and function in 8-week-old C57BL/6J mice of both sexes housed at 10 °C, 22 °C, and 30 °C for four weeks. Control mice were analyzed in parallel. Before the MHS, the animals were allowed to acclimate for a week before the MHS started. Results: Mice housed at 10 °C consumed more food and had increased fat mass compared to those at 22 °C or 30 °C. This was accompanied by increased heart weight, stroke volume, heart rate, and cardiac output. Mice housed at 22 °C and 30 °C were similar for these cardiac parameters. Following MHS, mice at 10 °C and 22 °C developed marked cardiac hypertrophy, whereas thermoneutral housing attenuated this response and reduced left atrial enlargement. Cold-exposed females showed more diastolic dysfunction after MHS (increased E’ wave, E/E’, and isovolumetric relaxation time) than those at 22 °C or 30 °C. Ejection fraction and cardiac output declined significantly at 10 °C after MHS but were preserved at 22 °C and 30 °C in females. Conclusions: Cold housing exacerbates cardiac dysfunction in mice subjected to HFpEF-inducing stress, with pronounced effects in females. In contrast, thermoneutrality limits the cardiac hypertrophic response. Full article
Show Figures

Figure 1

11 pages, 231 KiB  
Review
The Current Landscape of Molecular Pathology for the Diagnosis and Treatment of Pediatric High-Grade Glioma
by Emma Vallee, Alyssa Steller, Ashley Childress, Alayna Koch and Scott Raskin
J. Mol. Pathol. 2025, 6(3), 17; https://doi.org/10.3390/jmp6030017 - 1 Aug 2025
Viewed by 122
Abstract
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular [...] Read more.
Pediatric high-grade glioma (pHGG) is a devastating group of childhood cancers associated with poor outcomes. Traditionally, diagnosis was based on histologic and immunohistochemical characteristics, including high mitotic activity, presence of necrosis, and presence of glial cell markers (e.g., GFAP). With advances in molecular tumor profiling, these tumors have been recategorized based on specific molecular findings that better lend themselves to prediction of treatment response and prognosis. pHGG is now categorized into four subtypes: H3K27-altered, H3G34-mutant, H3/IDH-WT, and infant-type high-grade glioma (iHGG). Molecular profiling has not only increased the specificity of diagnosis but also improved prognostication. Additionally, these molecular findings provide novel targets for individual tumor-directed therapy. While these therapies are largely still under investigation, continued investigation of distinct molecular markers in these tumors is imperative to extending event-free survival (EFS) and overall survival (OS) for patients with pHGG. Full article
(This article belongs to the Collection Feature Papers in Journal of Molecular Pathology)
12 pages, 2346 KiB  
Article
SERS and Chiral Properties of Cinnamic Acid Derivative Langmuir-Blodgett Films Complexed with Dyes
by Xingdi Zhao, Xinyu Li, Pengfei Bian, Qingrui Zhang, Yuqing Qiao, Mingli Wang and Tifeng Jiao
Coatings 2025, 15(8), 890; https://doi.org/10.3390/coatings15080890 (registering DOI) - 1 Aug 2025
Viewed by 124
Abstract
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated [...] Read more.
Chiral molecules are crucial in the field of optical devices, molecular recognition, and other novel functional materials due to their unique spatially asymmetric configuration and optical activity. In this study, a chiral molecule, Cholest-3-yl (E)-3-(4-carbamoylphenyl)acrylate (CCA), was combined with dyes containing large conjugated structures, tetramethylporphyrin tetrasulfonic acid (TPPS), and Nickel(II) phthalocyanine-tetrasulfonic acid tetrasodium salt (TsNiPc), and composite LB films of CCA/TPPS and CCA/TsNiPc were successfully prepared by using Langmuir-Blodgett (LB) technology. The circular dichroism (CD) test proved that the CCA/TPPS composite film had a strong CD signal at 300–400 nm, and the composite film showed chirality. This significant optical activity provides a new idea and option for the application of LB films in chiral sensors. In the Surface Enhanced Raman Spectroscopy (SERS) test, the CCA/TPPS composite film was sensitive to signal sensing, in which the enhancement factor EF = 2.28 × 105, indicating that a large number of effective signal response regions were formed on the surface of the film, and the relative standard deviation (RSD) = 12.08%, which demonstrated that the film had excellent uniformity and reproducibility. The high sensitivity and low signal fluctuation make the CCA/TPPS composite LB film a promising SERS substrate material. Full article
Show Figures

Figure 1

15 pages, 606 KiB  
Article
Assessment of the Physical and Emotional Health-Related Quality of Life Among Congestive Heart Failure Patients with Preserved and Reduced Ejection Fraction at a Quaternary Care Teaching Hospital in Coastal Karnataka in India
by Rajesh Kamath, Vineetha Poojary, Nishanth Shekar, Kanhai Lalani, Tarushree Bari, Prajwal Salins, Gwendolen Rodrigues, Devesh Teotia and Sanjay Kini
Healthcare 2025, 13(15), 1874; https://doi.org/10.3390/healthcare13151874 - 31 Jul 2025
Viewed by 154
Abstract
Introduction: Congestive heart failure (CHF), a complex clinical syndrome characterized by the heart’s inability to pump blood effectively due to structural or functional impairments, is a growing public health concern, with profound implications for patients’ physical and emotional well-being. In India, the burden [...] Read more.
Introduction: Congestive heart failure (CHF), a complex clinical syndrome characterized by the heart’s inability to pump blood effectively due to structural or functional impairments, is a growing public health concern, with profound implications for patients’ physical and emotional well-being. In India, the burden of CHF is rising due to aging demographics and increasing prevalence of lifestyle-related risk factors. Among the subtypes of CHF, heart failure with preserved ejection fraction (HFpEF), i.e., heart failure with left ventricular ejection fraction of ≥50% with evidence of spontaneous or provokable increased left ventricular filling pressure, and heart failure with reduced ejection fraction (HFrEF), i.e., heart failure with left ventricular ejection fraction of 40% or less and is accompanied by progressive left ventricular dilatation and adverse cardiac remodeling, may present differing impacts on health-related quality of life (HRQoL), i.e., an individual’s or a group’s perceived physical and mental health over time, yet comparative data remains limited. This study assesses HRQoL among CHF patients using the Minnesota Living with Heart Failure Questionnaire (MLHFQ), one of the most widely used health-related quality of life questionnaires for patients with heart failure based on physical and emotional dimensions and identifies sociodemographic and clinical variables influencing these outcomes. Methods: A cross-sectional analytical study was conducted among 233 CHF patients receiving inpatient and outpatient care at the Department of Cardiology at a quaternary care teaching hospital in coastal Karnataka in India. Participants were enrolled using convenience sampling. HRQoL was evaluated through the MLHFQ, while sociodemographic and clinical characteristics were recorded via a structured proforma. Statistical analyses included descriptive measures, independent t-test, Spearman’s correlation and stepwise multivariable linear regression to identify associations and predictors. Results: The mean HRQoL score was 56.5 ± 6.05, reflecting a moderate to high symptom burden. Patients with HFpEF reported significantly worse HRQoL (mean score: 61.4 ± 3.94) than those with HFrEF (52.9 ± 4.64; p < 0.001, Cohen’s d = 1.95). A significant positive correlation was observed between HRQoL scores and age (r = 0.428; p < 0.001), indicating that older individuals experienced a higher burden of symptoms. HRQoL also varied significantly across NYHA functional classes (χ2 = 69.9, p < 0.001, ε2 = 0.301) and employment groups (χ2 = 17.0, p < 0.001), with further differences noted by education level, gender and marital status (p < 0.05). Multivariable linear regression identified age (B = 0.311, p < 0.001) and gender (B = –4.591, p < 0.001) as significant predictors of poorer HRQoL. Discussion: The findings indicate that patients with HFpEF experience significantly poorer HRQoL than those with HFrEF. Older adults and female patients reported greater symptom burden, underscoring the importance of demographic-sensitive care approaches. These results highlight the need for routine integration of HRQoL assessment into clinical practice and the development of comprehensive, personalized interventions addressing both physical and emotional health dimensions, especially for vulnerable subgroups. Conclusions: CHF patients, especially those with HFpEF, face reduced HRQoL. Key factors include age, gender, education, employment, marital status, and NYHA class, underscoring the need for patient-centered care. Full article
(This article belongs to the Special Issue Patient Experience and the Quality of Health Care)
Show Figures

Figure 1

16 pages, 919 KiB  
Systematic Review
Renal Biomarkers and Prognosis in HFpEF and HFrEF: The Role of Albuminuria and eGFR—A Systematic Review
by Claudia Andreea Palcău, Livia Florentina Păduraru, Cătălina Paraschiv, Ioana Ruxandra Poiană and Ana Maria Alexandra Stănescu
Medicina 2025, 61(8), 1386; https://doi.org/10.3390/medicina61081386 - 30 Jul 2025
Viewed by 97
Abstract
Background and Objectives: Heart failure (HF) and chronic kidney disease (CKD) frequently coexist and are closely interrelated, significantly affecting clinical outcomes. Among CKD-related markers, albuminuria and estimated glomerular filtration rate (eGFR) have emerged as key prognostic indicators in HF. However, their specific [...] Read more.
Background and Objectives: Heart failure (HF) and chronic kidney disease (CKD) frequently coexist and are closely interrelated, significantly affecting clinical outcomes. Among CKD-related markers, albuminuria and estimated glomerular filtration rate (eGFR) have emerged as key prognostic indicators in HF. However, their specific predictive value across different HF phenotypes—namely HF with preserved ejection fraction (HFpEF) and HF with reduced ejection fraction (HFrEF)—remains incompletely understood. This systematic review aims to evaluate the prognostic significance of albuminuria and eGFR in patients with HF and to compare their predictive roles in HFpEF versus HFrEF populations. Materials and Methods: We conducted a systematic search of major databases to identify clinical studies evaluating the association between albuminuria, eGFR, and adverse outcomes in HF patients. Inclusion criteria encompassed studies reporting on cardiovascular events, all-cause mortality, or HF-related hospitalizations, with subgroup analyses based on ejection fraction. Data extraction and quality assessment were performed independently by two reviewers. Results: Twenty-one studies met the inclusion criteria, including diverse HF populations and various biomarker assessment methods. Both albuminuria and reduced eGFR were consistently associated with increased risk of mortality and hospitalization. In HFrEF populations, reduced eGFR demonstrated stronger prognostic associations, whereas albuminuria was predictive across both HF phenotypes. Heterogeneity in study design and outcome definitions limited comparability. Conclusions: Albuminuria and eGFR are valuable prognostic biomarkers in HF and may enhance risk stratification and clinical decision-making, particularly when integrated into clinical assessment models. Differential prognostic implications in HFpEF versus HFrEF highlight the need for phenotype-specific approaches. Further research is warranted to validate these findings and clarify their role in guiding personalized therapeutic strategies in HF populations. Limitations: The current evidence base consists primarily of observational studies with variable methodological quality and inconsistent reporting of effect estimates. Full article
(This article belongs to the Special Issue Early Diagnosis and Treatment of Cardiovascular Disease)
Show Figures

Figure 1

13 pages, 762 KiB  
Article
Implementation of Medical Therapy in Different Stages of Heart Failure with Reduced Ejection Fraction: An Analysis of the VIENNA-HF Registry
by Noel G. Panagiotides, Annika Weidenhammer, Suriya Prausmüller, Marc Stadler, Georg Spinka, Gregor Heitzinger, Henrike Arfsten, Guido Strunk, Philipp E. Bartko, Georg Goliasch, Christian Hengstenberg, Martin Hülsmann and Noemi Pavo
Biomedicines 2025, 13(8), 1846; https://doi.org/10.3390/biomedicines13081846 - 30 Jul 2025
Viewed by 378
Abstract
Background/Objectives: Real-world evidence shows alarmingly suboptimal utilization of guideline directed medical therapy (GDMT) in heart failure with reduced ejection fraction (HFrEF). One of the barriers of GDMT implementation appears to be concerns about the potential development of drug-related adverse events (AEs), particularly in [...] Read more.
Background/Objectives: Real-world evidence shows alarmingly suboptimal utilization of guideline directed medical therapy (GDMT) in heart failure with reduced ejection fraction (HFrEF). One of the barriers of GDMT implementation appears to be concerns about the potential development of drug-related adverse events (AEs), particularly in high-risk patients. This study aimed to evaluate whether advanced HFrEF (AHF) patients can be up-titrated safely and whether AHF predisposes individuals to the occurrence of putatively drug-related AEs. Methods: A total of 373 HFrEF patients with documented baseline, 2 months, and 12 months visits were analyzed for utilization and target dosages (TDs) of HF drugs. Successful up-titration and AEs were evaluated for different stages of HF reflected by N-terminal pro-B type natriuretic peptide (NT-proBNP) (<1000 pg/mL, 1000–2000 pg/mL, >2000 pg/mL). Results: A stepwise increase in HF medications was observed for all drug classes during follow-up. At 12 months, 73%, 75%, 62%, 86%, and 45% of patients received ≥90% of TDs of beta-blockers (BBs), renin–angiotensin system inhibitors (RASis), mineralocorticoid receptor antagonists (MRAs), sodium–glucose cotransporter-2 inhibitors (SGLT2 i), and triple-therapy, respectively. Predictors of successful up-titration in logistic regression were baseline HF drug TDs, estimated glomerular filtration rate (eGFR), and potassium, but not NT-proBNP or age. The development of AEs was rare, with hyperkalemia as the most common event (34% at 12 months). AEs were comparable in all stages of HF. However, the development of hyperkalemia was more frequent in patients with higher NT-proBNP and also accounted for most cases of incomplete up-titration. Conclusions: This study suggests that with dedicated protocols and frequent visits, GDMT can be successfully implemented across all stages of HFrEF, including patients with AHF. Full article
(This article belongs to the Special Issue Advanced Research on Heart Failure and Heart Transplantation)
Show Figures

Figure 1

18 pages, 506 KiB  
Review
Targeting Eukaryotic Elongation Factor 1A: How Small-Molecule Inhibitors Suppress Tumor Growth via Diverse Pathways
by Han Zhang, Siqi Yu, Ying Wang, Shanmei Wu, Changliang Shan and Weicheng Zhang
Int. J. Mol. Sci. 2025, 26(15), 7331; https://doi.org/10.3390/ijms26157331 - 29 Jul 2025
Viewed by 186
Abstract
Eukaryotic elongation factor 1A (eEF1A), the second most abundant intracellular protein, not only plays a key role in peptide elongation, but is also capable of numerous moonlighting functions. Within malignant cells, eEF1A is by no means a neutral bystander but instead actively participates [...] Read more.
Eukaryotic elongation factor 1A (eEF1A), the second most abundant intracellular protein, not only plays a key role in peptide elongation, but is also capable of numerous moonlighting functions. Within malignant cells, eEF1A is by no means a neutral bystander but instead actively participates in oncogenic transformations via a myriad of molecular pathways. Thus far, a broad range of small-molecule inhibitors have been identified, which, despite their structural diversity, suppress tumor growth by targeting eEF1A. Interestingly, just as eEF1A enables its oncogenic potential far beyond boosting protein translation, these targeted agents disrupt this oncoprotein via multiple axes distinct from mere protein synthesis inhibition. Whereas the oncogenic mechanisms of eEF1A has been well documented, there lacks a systemic survey of the eEF1A-targeting agents in terms of their mechanisms. Accordingly, the present work aims to examine their multifaceted modes of action more than just blocking protein synthesis. By unveiling these insights, our deepened knowledge of these eEF1A-binding inhibitors will inform the development of future eEF1A-targeted drugs for cancer treatment. Full article
Show Figures

Figure 1

16 pages, 654 KiB  
Article
Effect of Pharmacogenetics on Renal Outcomes of Heart Failure Patients with Reduced Ejection Fraction (HFrEF) in Response to Dapagliflozin
by Neven Sarhan, Mona F. Schaalan, Azza A. K. El-Sheikh and Bassem Zarif
Pharmaceutics 2025, 17(8), 959; https://doi.org/10.3390/pharmaceutics17080959 - 24 Jul 2025
Viewed by 339
Abstract
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability [...] Read more.
Background/Objectives: Heart failure with reduced ejection fraction (HFrEF) is associated with significant renal complications, affecting disease progression and patient outcomes. Sodium-glucose co-transporter-2 (SGLT2) inhibitors have emerged as a key therapeutic strategy, offering cardiovascular and renal benefits in these patients. However, interindividual variability in response to dapagliflozin underscores the role of pharmacogenetics in optimizing treatment efficacy. This study investigates the influence of genetic polymorphisms on renal outcomes in HFrEF patients treated with dapagliflozin, focusing on variations in genes such as SLC5A2, UMOD, KCNJ11, and ACE. Methods: This prospective, observational cohort study was conducted at the National Heart Institute, Cairo, Egypt, enrolling 200 patients with HFrEF. Genotyping of selected single nucleotide polymorphisms (SNPs) was performed using TaqMan™ assays. Renal function, including estimated glomerular filtration rate (eGFR), Kidney Injury Molecule-1 (KIM-1), and Neutrophil Gelatinase-Associated Lipocalin (NGAL) levels, was assessed at baseline and after six months of dapagliflozin therapy. Results: Significant associations were found between genetic variants and renal outcomes. Patients with AA genotype of rs3813008 (SLC5A2) exhibited the greatest improvement in eGFR (+7.2 mL ± 6.5, p = 0.004) and reductions in KIM-1 (−0.13 pg/mL ± 0.49, p < 0.0001) and NGAL (−6.1 pg/mL ± 15.4, p < 0.0001). Similarly, rs12917707 (UMOD) TT genotypes showed improved renal function. However, rs5219 (KCNJ11) showed no significant impact on renal outcomes. Conclusions: Pharmacogenetic variations influenced renal response to dapagliflozin in HFrEF patients, particularly in SLC5A2 and UMOD genes. These findings highlighted the potential of personalized medicine in optimizing therapy for HFrEF patients with renal complications. Full article
(This article belongs to the Section Clinical Pharmaceutics)
Show Figures

Figure 1

16 pages, 1415 KiB  
Article
Targeted Overexpression of Mitochondrial ALDH2 in Coronary Endothelial Cells Mitigates HFpEF in a Diabetic Mouse Model
by Guodong Pan, Bipradas Roy, Emmanuel Oppong Yeboah, Thomas Lanigan, Roland Hilgarth, Rajarajan A. Thandavarayan, Michael C. Petriello, Shailendra Giri and Suresh Selvaraj Palaniyandi
Biomolecules 2025, 15(7), 1029; https://doi.org/10.3390/biom15071029 - 16 Jul 2025
Viewed by 426
Abstract
Heart failure (HF) has become an epidemic, with a prevalence of ~7 million cases in the USA. Despite accounting for nearly 50% of all HF cases, heart failure with a preserved ejection fraction (HFpEF) remains challenging to treat. Common pathophysiological mechanisms in HFpEF [...] Read more.
Heart failure (HF) has become an epidemic, with a prevalence of ~7 million cases in the USA. Despite accounting for nearly 50% of all HF cases, heart failure with a preserved ejection fraction (HFpEF) remains challenging to treat. Common pathophysiological mechanisms in HFpEF include oxidative stress, microvascular dysfunction, and chronic unresolved inflammation. Our lab focuses on oxidative stress-mediated cellular dysfunction, particularly the toxic effects of lipid peroxidation products like 4-hydroxy-2-nonenal (4HNE). Aldehyde dehydrogenase 2 (ALDH2), a mitochondrial enzyme, plays a vital role in detoxifying 4HNE and thereby protecting the heart against pathological stress. ALDH2 activity is reduced in various metabolic stress-mediated cardiac pathologies. The dysfunction of coronary vascular endothelial cells (CVECs) is critical in initiating HFpEF development. Thus, we hypothesized that ectopic overexpression of ALDH2 in CVECs could mitigate metabolic stress-induced HFpEF pathogenesis. In this study, we tested the efficacy of intracardiac injections of the ALDH2 gene into CVECs in db/db mice—a model of obesity-induced type 2 diabetes mellitus (T2DM)—and their controls, db/m mice, by injection with ALDH2 constructs (AAV9-VE-cadherin-hALDH2-HA tag-P2A) or control constructs (AAV9-VE-cadherin-HA tag-P2A-eGFP). We found that intracardiac ALDH2 gene transfer increased ALDH2 levels specifically in CVECs compared to other myocardial cells. Additionally, we observed increased ALDH2 levels and activity, along with decreased 4HNE adducts, in the hearts of mice receiving ALDH2 gene transfer compared to control GFP transfer. Furthermore, ALDH2 gene transfer to CVECs improved diastolic function compared to GFP control alone. In conclusion, ectopic ALDH2 expression in CVECs can contribute, at least partially, to the amelioration of HFpEF. Full article
Show Figures

Figure 1

16 pages, 4529 KiB  
Article
Inhibition of FOXM1 Leads to Suppression of Cell Proliferation, Migration, and Invasion Through AXL/eEF2 Kinase Signaling and Induces Apoptosis and Ferroptosis in GBM Cells
by Ezgi Biltekin, Nermin Kahraman, Ogun Ali Gul, Yasemin M. Akay, Metin Akay and Bulent Ozpolat
Int. J. Mol. Sci. 2025, 26(14), 6792; https://doi.org/10.3390/ijms26146792 - 15 Jul 2025
Viewed by 398
Abstract
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We [...] Read more.
Glioblastoma multiforme (GBM) is an aggressive and molecularly heterogeneous brain cancer with a poor prognosis. Despite advancements in standard-of-care therapies, including surgery, radiotherapy, and temozolomide (TMZ), the median survival remains approximately 15 months, with a 5-year survival rate of less than 10%. We and others have demonstrated that FOXM1 is a critical oncogenic driver of GBM cell proliferation. However, the role of FOXM1 and its interaction with other oncogenic signaling pathways in GBM remains incompletely understood. In this study, we identified FOXM1, AXL, and eEF2K as highly upregulated oncogenes in GBM patient tumors. We demonstrated, for the first time, that FOXM1 directly interacts with AXL and eEF2K, regulating their expression and promoting GBM cell proliferation, migration, and invasion. Knockdown of these genes disrupted cell proliferation, spheroid formation, migration, and invasion, and induced apoptosis and ferroptosis. Additionally, inhibiting the FOXM1–AXL/eEF2K signaling axis sensitized GBM cells to TMZ, further enhancing apoptotic and ferroptotic responses. These findings highlight the critical role of the FOXM1–AXL/eEF2K signaling pathway in GBM progression and suggest that targeting this axis may offer a novel multitargeted therapeutic strategy in GBM. Full article
Show Figures

Figure 1

40 pages, 2915 KiB  
Review
Marine-Derived Compounds: A New Horizon in Cancer, Renal, and Metabolic Disease Therapeutics
by Jinwei Zhang
Mar. Drugs 2025, 23(7), 283; https://doi.org/10.3390/md23070283 - 9 Jul 2025
Viewed by 870
Abstract
Marine-derived compounds represent a rich source of structurally diverse molecules with therapeutic potential for cancer, renal disorders, metabolic-associated fatty liver disease (MAFLD), and atherosclerosis. This review systematically evaluates recent advances, highlighting compounds such as Microcolin H, Benzosceptrin C, S14, HN-001, Equisetin, glycosides (e.g., [...] Read more.
Marine-derived compounds represent a rich source of structurally diverse molecules with therapeutic potential for cancer, renal disorders, metabolic-associated fatty liver disease (MAFLD), and atherosclerosis. This review systematically evaluates recent advances, highlighting compounds such as Microcolin H, Benzosceptrin C, S14, HN-001, Equisetin, glycosides (e.g., cucumarioside A2-2), ilimaquinone, and Aplidin (plitidepsin). Key mechanisms include autophagy modulation, immune checkpoint inhibition, anti-inflammatory effects, and mitochondrial homeostasis. Novel findings reveal glycosides’ dual role in cytotoxicity and immunomodulation, ilimaquinone’s induction of the DNA damage response, and Aplidin’s disruption of protein synthesis via eEF1A2 binding. Pharmacokinetic challenges and structure–activity relationships are critically analyzed, emphasizing nanodelivery systems and synthetic analog development. This review bridges mechanistic insights with translational potential, offering a cohesive framework for future drug development. Full article
Show Figures

Figure 1

12 pages, 552 KiB  
Article
Impact of Kidney Function on the Survival of Patients with Chagas Cardiomyopathy and Implantable Cardioverter Defibrillators
by Fernanda Pinheiro Martin Tapioca, Luiz Carlos Santana Passos, Caio Cafezeiro, Willian Carvalho, Paulo Novis Rocha and Maria Gabriela Guimarães
J. Clin. Med. 2025, 14(14), 4862; https://doi.org/10.3390/jcm14144862 - 9 Jul 2025
Viewed by 351
Abstract
Background/Objectives: Impaired kidney function significantly increases mortality in recipients of implantable cardioverter defibrillators (ICDs). However, in the landmark studies evaluating ICDs and cardiac resynchronization therapy with a defibrillator (CRT-D) for the treatment of heart failure (HF) with a reduced ejection fraction (HFrEF), patients [...] Read more.
Background/Objectives: Impaired kidney function significantly increases mortality in recipients of implantable cardioverter defibrillators (ICDs). However, in the landmark studies evaluating ICDs and cardiac resynchronization therapy with a defibrillator (CRT-D) for the treatment of heart failure (HF) with a reduced ejection fraction (HFrEF), patients with Chagas cardiomyopathy (CC) have been underrepresented. This study aimed to determine whether kidney dysfunction has the same negative impacts on patients with ICDs or CRT-Ds and CC. Methods: We prospectively followed patients with CC and left ventricular ejection fractions (LVEFs) of ≤40% who underwent ICD or CRT-D implantation and had at least one prior creatinine measurement. The primary outcome was the survival rate during follow-up. Variables with a p of <0.10 from the univariate analysis were selected for inclusion in the Cox regression model. Results: A total of 343 patients were enrolled, with a median follow-up duration of 777 days. The mean age was 60.2 (±11.2) years. Fifty percent of patients were observed to have a New York Heart Association (NYHA) functional class of III, and the median left ventricular ejection fraction (LVEF) was 27% (22–32). Overall mortality events occurred in 113 (32.9%) participants during follow-up. Although the estimated glomerular filtration rate (eGFR) was significantly associated with survival in the univariate analysis [HR 0.98 (CI 95% 0.98–0.99), p = 0.007], it did not retain significance in the multivariate model [HR 0.99 (0.98–1.00), p = 0.138], which was adjusted for age, gender, atrial fibrillation (AF), body mass index (BMI), and the use of digoxin, furosemide, anticoagulants, and LVEF. Conclusions: Unlike other cardiomyopathies, impaired eGFR was not an independent predictor of mortality in this cohort of CC patients undergoing ICD or CRT-D implantation, possibly due to the distinctive pathophysiological mechanisms of the disease. These findings suggest that clinicians should not be discouraged from recommending CIEDs in patients with CC and moderately impaired kidney function, although further studies are warranted to assess outcomes in those with advanced CKD. Full article
(This article belongs to the Section Nephrology & Urology)
Show Figures

Figure 1

16 pages, 2023 KiB  
Article
The Prognostic Implication of Left Atrial Strain Parameters with Conventional Left Atrial Parameters for the Prediction of Adverse Outcomes in Asian Patients with Hypertrophic Cardiomyopathy—An Echocardiographic Study
by Andre Seah, Tony Y. W. Li, Novi Yanti Sari, Chi-Hang Lee, Tiong-Cheng Yeo, James W. L. Yip, Yoke Ching Lim, Kian-Keong Poh, William K. F. Kong, Weiqin Lin, Ching-Hui Sia and Raymond C. C. Wong
J. Cardiovasc. Dev. Dis. 2025, 12(7), 261; https://doi.org/10.3390/jcdd12070261 - 8 Jul 2025
Viewed by 325
Abstract
Background/Objectives: Left atrial function can be a tool for risk stratification for hypertrophic cardiomyopathy (HCM). Over the past decade, there has been growing interest in the application of strain analysis for earlier and more accurate prediction of cardiovascular disease prognosis. This study aimed [...] Read more.
Background/Objectives: Left atrial function can be a tool for risk stratification for hypertrophic cardiomyopathy (HCM). Over the past decade, there has been growing interest in the application of strain analysis for earlier and more accurate prediction of cardiovascular disease prognosis. This study aimed to investigate the performance of left atrial strain analysis compared to conventional left atrial measures in predicting clinical outcomes in Asian patients with HCM. Methods and Results: This was a retrospective study involving 291 patients diagnosed with HCM between 2010 and 2017. Left atrial volumes were assessed using the method of discs in orthogonal plans at both end diastole and end systole. Left atrial (LA) strain was obtained using a post-hoc analysis with TOMTEC software. We tested the various left atrial parameters against outcomes of (1) heart failure hospitalization and (2) event-free survival from a composite of adverse events, including all-cause mortality, ventricular tachycardia (VT)/ventricular fibrillation (VF) events, appropriate device therapy if an implantable cardioverter defibrillator (ICD) was implanted, stroke, and heart failure hospitalization. The patients had a mean age of 59.0 ± 16.7 years with a male preponderance (71.2%). The cumulative event-free survival over a follow-up of 3.9 ± 2.7 years was 55.2% for patients with an abnormal LA strain versus 82.4% for patients without one (p < 0.001). Multivariable Cox regression analyses were performed separately for each LA parameter, adjusting for age, sex, LV mass index, LV ejection fraction (EF), E/e’, the presence of LV outflow tract (LVOT) obstruction at rest, and atrial fibrillation. An analysis showed that all parameters except for LAEF demonstrated an independent association with heart failure hospitalization. Left atrial strain outperformed the rest of the parameters by demonstrating an association with a composite of adverse events. Conclusions: In Asian patients with HCM, measures of left atrial strain were independently associated with heart failure hospitalization and a composite of adverse outcomes. Left atrial strain may be used as a tool to predict adverse outcomes in patients with HCM. Full article
(This article belongs to the Special Issue Role of Cardiovascular Imaging in Heart Failure)
Show Figures

Figure 1

13 pages, 3756 KiB  
Article
Expanding the Phenotypic Spectrum Associated with DPH5-Related Diphthamide Deficiency
by Davide Politano, Cecilia Mancini, Massimiliano Celario, Francesca Clementina Radio, Fulvio D'Abrusco, Jessica Garau, Silvia Kalantari, Gaia Visani, Simone Carbonera, Simone Gana, Marco Ferilli, Luigi Chiriatti, Camilla Cappelletti, Katia Ellena, Elena Prodi, Renato Borgatti, Enza Maria Valente, Simona Orcesi, Marco Tartaglia and Fabio Sirchia
Genes 2025, 16(7), 799; https://doi.org/10.3390/genes16070799 - 2 Jul 2025
Viewed by 491
Abstract
Background/Objectives: Neurodevelopmental disorders (NDDs) represent a clinically diverse group of conditions that affect brain development, often leading to varying degrees of functional impairment. Many NDDs, particularly syndromic forms, are caused by genetic mutations affecting critical cellular pathways. Ribosomopathies, a subgroup of NDDs, are [...] Read more.
Background/Objectives: Neurodevelopmental disorders (NDDs) represent a clinically diverse group of conditions that affect brain development, often leading to varying degrees of functional impairment. Many NDDs, particularly syndromic forms, are caused by genetic mutations affecting critical cellular pathways. Ribosomopathies, a subgroup of NDDs, are linked to defects in ribosomal function, including those involving the synthesis of diphthamide, a post-translational modification of translation elongation factor 2 (eEF2). Loss-of-function (LoF) mutations in genes involved in diphthamide biosynthesis, such as DPH1, DPH2, and DPH5, result in developmental delay (DD), intellectual disability (ID), and multisystemic abnormalities. DPH5-related diphthamide deficiency syndrome has recently been reported as an ultrarare disorder linked to LoF mutations in DPH5, encoding a methyltransferase required for diphthamide synthesis. Methods: Clinical, neurological, and dysmorphological evaluations were performed by a multidisciplinary team. Brain MRI was acquired on a 3T scanner. Craniofacial abnormalities were assessed using the GestaltMatcher phenotyping tool. Whole exome sequencing (WES) was conducted on leukocyte-derived DNA with a trio-based approach. Bioinformatic analyses included variant annotation, filtering, and pathogenicity prediction using established databases and tools. Results: The affected subject carried a previously reported missense change, p.His260Arg, suggesting the occurrence of genotype–phenotype correlations and a hypomorphic behavior of the variant, likely explaining the overall milder phenotype compared to the previously reported patients with DPH5-related diphthamide deficiency syndrome. Conclusions: Overall, the co-occurrence of short stature, relative macrocephaly, congenital heart defects, variable DD/ID, minor skeletal and ectodermal features, and consistent craniofacial features suggests a differential diagnosis with Noonan syndrome and related phenotypes. Full article
(This article belongs to the Special Issue Advances in Neurogenetics and Neurogenomics)
Show Figures

Figure 1

27 pages, 3232 KiB  
Article
Genomic and Functional Characterization of Multidrug-Resistant E. coli: Insights into Resistome, Virulome, and Signaling Systems
by Vijaya Bharathi Srinivasan, Naveenraj Rajasekar, Karthikeyan Krishnan, Mahesh Kumar, Chankit Giri, Balvinder Singh and Govindan Rajamohan
Antibiotics 2025, 14(7), 667; https://doi.org/10.3390/antibiotics14070667 - 30 Jun 2025
Viewed by 498
Abstract
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, [...] Read more.
Introduction: Genetic plasticity and adaptive camouflage in critical pathogens have contributed to the global surge in multidrug-resistant (MDR) infections, posing a serious threat to public health and therapeutic efficacy. Antimicrobial resistance, now a leading cause of global mortality, demands urgent action through diagnostics, vaccines, and therapeutics. In India, the Indian Council of Medical Research’s surveillance network identifies Escherichia coli as a major cause of urinary tract infections, with increasing prevalence in human gut microbiomes, highlighting its significance across One Health domains. Methods: Whole-genome sequencing of E. coli strain ECG015, isolated from a human gut sample, was performed using the Illumina NextSeq platform. Results: Genomic analysis revealed multiple antibiotic resistance genes, virulence factors, and efflux pump components. Phylogenomic comparisons showed close relatedness to pathovars from both human and animal origins. Notably the genome encoded protein tyrosine kinases (Etk/Ptk and Wzc) and displayed variations in the envelope stress-responsive CpxAR two-component system. Promoter analysis identified putative CpxR-binding sites upstream of genes involved in resistance, efflux, protein kinases, and the MazEF toxin–antitoxin module, suggesting a potential regulatory role of CpxAR in stress response and persistence. Conclusions: This study presents a comprehensive genomic profile of E. coli ECG015, a gut-derived isolate exhibiting clinically significant resistance traits. For the first time, it implicates the CpxAR two-component system as a potential central regulator coordinating antimicrobial resistance, stress kinase signaling, and programmed cell death. These findings lay the groundwork for future functional studies aimed at targeting stress-response pathways as novel intervention strategies against antimicrobial resistance. Full article
(This article belongs to the Special Issue Genomic Analysis of Drug-Resistant Pathogens)
Show Figures

Figure 1

Back to TopTop