Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (144,642)

Search Parameters:
Keywords = dynamism

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
29 pages, 6449 KiB  
Article
New Approach for Detecting Variability in Industrial Assembly Line Balancing Based on Multi-Criteria Analysis
by Youness Hillali, Mourad Zegrari, Najlae Alfathi and Samir Chafik
Automation 2025, 6(3), 33; https://doi.org/10.3390/automation6030033 (registering DOI) - 19 Jul 2025
Abstract
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer [...] Read more.
This paper focuses on the complex dynamics that concern assembly line balance in the context of mass customization within manufacturing. In fact, the increase in demand for customized products has heightened the complexities associated with achieving optimal efficiency, productivity, product quality, and customer satisfaction. The research proposes a multi-criteria analysis of statistical methods to determine the fluctuation of parameters affecting the state of balance of an assembly line. A 3D matrix model is suggested to analyze the parameters managing the assembly line. This representation is executed using the MATLAB R2024b tool, and a methodology for finding the variability of parameters affecting balance through statistical approaches is proposed. We observed that changes in parameters such as task times, worker efficiency, or material flow led to significant changes in the line’s overall balance. As a result, static balancing becomes inadequate to deal with the complexities introduced by these highly variable parameters. The novelty of this paper consists of the innovative integration of multi-criteria statistical analysis and 3D matrix modeling to detect parameter variability and optimize assembly line balancing. Conventional static approaches are often unable to capture the process-dynamic aspect of modern manufacturing. This work presents a systematic methodology capable of identifying, quantifying, and moderating the variability of key operating parameters. This methodology, carried out using MATLAB-based simulations, is based on principal component analysis (PCA) and correlation analysis to detect critical factors influencing balancing efficiency. By structuring assembly line parameters in a 3D matrix representation, this research gives a holistic, data-based method for improving decision-making in balancing procedures. The research goes beyond theoretical modeling by applying the approach to a real automotive assembly line, validating its effectiveness and demonstrating its practical applicability in industrial conditions. Full article
(This article belongs to the Section Industrial Automation and Process Control)
Show Figures

Figure 1

17 pages, 3136 KiB  
Article
Financial Market Resilience in the GCC: Evidence from COVID-19 and the Russia–Ukraine Conflict
by Farrukh Nawaz, Christopher Gan, Maaz Khan and Umar Kayani
J. Risk Financial Manag. 2025, 18(7), 398; https://doi.org/10.3390/jrfm18070398 (registering DOI) - 19 Jul 2025
Abstract
Global financial markets have experienced significant volatility during crises, particularly COVID-19 and the Russia–Ukraine conflict, prompting questions about how regional markets respond to such shocks. Previous research highlights the influence of crises on stock market volatility, focusing on individual events or global markets, [...] Read more.
Global financial markets have experienced significant volatility during crises, particularly COVID-19 and the Russia–Ukraine conflict, prompting questions about how regional markets respond to such shocks. Previous research highlights the influence of crises on stock market volatility, focusing on individual events or global markets, but less is known about the comparative dynamics within the Gulf Cooperation Council (GCC) markets. Our study investigated volatility and asymmetric behavior within GCC stock markets during both crises. Furthermore, the econometric model E-GARCH(1,1) was applied to the daily frequency data of financial stock market returns from 11 March 2020 to 31 July 2023. This study examined volatility fluctuation patterns and provides a comparative assessment of GCC stock markets’ behavior during crises. Our findings reveal varying degrees of market volatility across the region during the COVID-19 crisis, with Qatar and the UAE exhibiting the highest levels of volatility persistence. In contrast, the Russia–Ukraine conflict has had a distinct effect on GCC markets, with Oman exhibiting the highest volatility persistence and Kuwait having the lowest volatility persistence. This study provides significant insights for policymakers and investors in managing risk and enhancing market resilience during economic and geopolitical uncertainty. Full article
(This article belongs to the Special Issue Behavioral Finance and Financial Management)
Show Figures

Figure 1

24 pages, 3950 KiB  
Article
Dynamic Model Selection in a Hybrid Ensemble Framework for Robust Photovoltaic Power Forecasting
by Nakhun Song, Roberto Chang-Silva, Kyungil Lee and Seonyoung Park
Sensors 2025, 25(14), 4489; https://doi.org/10.3390/s25144489 (registering DOI) - 19 Jul 2025
Abstract
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of [...] Read more.
As global electricity demand increases and concerns over fossil fuel usage intensify, renewable energy sources have gained significant attention. Solar energy stands out due to its low installation costs and suitability for deployment. However, solar power generation remains difficult to predict because of its dependence on weather conditions and decentralized infrastructure. To address this challenge, this study proposes a flexible hybrid ensemble (FHE) framework that dynamically selects the most appropriate base model based on prediction error patterns. Unlike traditional ensemble methods that aggregate all base model outputs, the FHE employs a meta-model to leverage the strengths of individual models while mitigating their weaknesses. The FHE is evaluated using data from four solar power plants and is benchmarked against several state-of-the-art models and conventional hybrid ensemble techniques. Experimental results demonstrate that the FHE framework achieves superior predictive performance, improving the Mean Absolute Percentage Error by 30% compared to the SVR model. Moreover, the FHE model maintains high accuracy across diverse weather conditions and eliminates the need for preliminary validation of base and ensemble models, streamlining the deployment process. These findings highlight the FHE framework’s potential as a robust and scalable solution for forecasting in small-scale distributed solar power systems. Full article
(This article belongs to the Special Issue Energy Harvesting and Self-Powered Sensors)
Show Figures

Figure 1

23 pages, 5173 KiB  
Article
Improvement of Cooperative Localization for Heterogeneous Mobile Robots
by Efe Oğuzhan Karcı, Ahmet Mustafa Kangal and Sinan Öncü
Drones 2025, 9(7), 507; https://doi.org/10.3390/drones9070507 (registering DOI) - 19 Jul 2025
Abstract
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By [...] Read more.
This research focuses on enhancing cooperative localization for heterogeneous mobile robots composed of a quadcopter and an unmanned ground vehicle. The study employs sensor fusion techniques, particularly the Extended Kalman Filter, to fuse data from various sensors, including GPSs, IMUs, and cameras. By integrating these sensors and optimizing fusion strategies, the research aims to improve the precision and reliability of cooperative localization in complex and dynamic environments. The primary objective is to develop a practical framework for cooperative localization that addresses the challenges posed by the differences in mobility and sensing capabilities among heterogeneous robots. Sensor fusion is used to compensate for the limitations of individual sensors, providing more accurate and robust localization results. Moreover, a comparative analysis of different sensor combinations and fusion strategies helps to identify the optimal configuration for each robot. This research focuses on the improvement of cooperative localization, path planning, and collaborative tasks for heterogeneous robots. The findings have broad applications in fields such as autonomous transportation, agricultural operation, and disaster response, where the cooperation of diverse robotic platforms is crucial for mission success. Full article
Show Figures

Figure 1

31 pages, 3506 KiB  
Article
Influence of the Upstream Channel of a Ship Lift on the Hydrodynamic Performance of a Fleet Entry Chamber and Design of Traction Scheme
by Haichao Chang, Qiang Zheng, Zuyuan Liu, Yu Yao, Xide Cheng, Baiwei Feng and Chengsheng Zhan
J. Mar. Sci. Eng. 2025, 13(7), 1375; https://doi.org/10.3390/jmse13071375 - 18 Jul 2025
Abstract
This study investigates the hydrodynamic performance of ships entering a ship lift compartment that is under the influence of upstream channel geometry and proposes a mechanical traction scheme to enhance operational safety and efficiency. Utilizing a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD) [...] Read more.
This study investigates the hydrodynamic performance of ships entering a ship lift compartment that is under the influence of upstream channel geometry and proposes a mechanical traction scheme to enhance operational safety and efficiency. Utilizing a Reynolds-averaged Navier–Stokes (RANS)-based computational fluid dynamics (CFD) approach with overlapping grid technology, numerical simulations were conducted for both single and grouped ships navigating through varying water depths, speeds, and shore distances. The results revealed significant transverse force oscillations near the floating navigation wall due to unilateral shore effects, posing risks of deviation. The cargo ship experienced drastic resistance fluctuations in shallow-to-very-shallow-water transitions, while tugboats were notably affected by hydrodynamic interactions during group entry. A mechanical traction system with a four-link robotic arm was designed and analyzed kinematically and statically, demonstrating structural feasibility under converted real-ship traction forces (55.1 kN). The key findings emphasize the need for collision avoidance measures in wall sections and validate the proposed traction scheme for safe and efficient ship entry/exit. This research provides critical insights for optimizing ship lift operations in restricted waters. Full article
(This article belongs to the Section Ocean Engineering)
28 pages, 3531 KiB  
Review
Review of Acoustic Emission Detection Technology for Valve Internal Leakage: Mechanisms, Methods, Challenges, and Application Prospects
by Dongjie Zheng, Xing Wang, Lingling Yang, Yunqi Li, Hui Xia, Haochuan Zhang and Xiaomei Xiang
Sensors 2025, 25(14), 4487; https://doi.org/10.3390/s25144487 - 18 Jul 2025
Abstract
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is [...] Read more.
Internal leakage within the valve body constitutes a severe potential safety hazard in industrial fluid control systems, attributable to its high concealment and the resultant difficulty in detection via conventional methodologies. Acoustic emission (AE) technology, functioning as an efficient non-destructive testing approach, is capable of capturing the transient stress waves induced by leakage, thereby furnishing an effective means for the real-time monitoring and quantitative assessment of internal leakage within the valve body. This paper conducts a systematic review of the theoretical foundations, signal-processing methodologies, and the latest research advancements related to the technology for detecting internal leakage in the valve body based on acoustic emission. Firstly, grounded in Lechlier’s acoustic analogy theory, the generation mechanism of acoustic emission signals arising from valve body leakage is elucidated. Secondly, a detailed analysis is conducted on diverse signal processing techniques and their corresponding optimization strategies, encompassing parameter analysis, time–frequency analysis, nonlinear dynamics methods, and intelligent algorithms. Moreover, this paper recapitulates the current challenges encountered by this technology and delineates future research orientations, such as the fusion of multi-modal sensors, the deployment of lightweight deep learning models, and integration with the Internet of Things. This study provides a systematic reference for the engineering application and theoretical development of the acoustic emission-based technology for detecting internal leakage in valves. Full article
(This article belongs to the Topic Advances in Non-Destructive Testing Methods, 3rd Edition)
Show Figures

Figure 1

24 pages, 2377 KiB  
Article
Mechanisms and Genesis of Acidic Goaf Water in Abandoned Coal Mines: Insights from Mine Water–Surrounding Rock Interaction
by Zhanhui Wu, Xubo Gao, Chengcheng Li, Hucheng Huang, Xuefeng Bai, Lihong Zheng, Wanpeng Shi, Jiaxin Han, Ting Tan, Siyuan Chen, Siyuan Ma, Siyu Li, Mengyun Zhu and Jiale Li
Minerals 2025, 15(7), 753; https://doi.org/10.3390/min15070753 - 18 Jul 2025
Abstract
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column [...] Read more.
The formation of acidic goaf water in abandoned coal mines poses significant environmental threats, especially in karst regions where the risk of groundwater contamination is heightened. This study investigates the geochemical processes responsible for the generation of acidic water through batch and column leaching experiments using coal mine surrounding rocks (CMSR) from Yangquan, China. The coal-bearing strata, primarily composed of sandstone, mudstone, shale, and limestone, contain high concentrations of pyrite (up to 12.26 wt%), which oxidizes to produce sulfuric acid, leading to a drastic reduction in pH (approximately 2.5) and the mobilization of toxic elements. The CMSR samples exhibit elevated levels of arsenic (11.0 mg/kg to 18.1 mg/kg), lead (69.5 mg/kg to 113.5 mg/kg), and cadmium (0.6 mg/kg to 2.6 mg/kg), all of which exceed natural crustal averages and present significant contamination risks. The fluorine content varies widely (106.1 mg/kg to 1885 mg/kg), with the highest concentrations found in sandstone. Sequential extraction analyses indicate that over 80% of fluorine is bound in residual phases, which limits its immediate release but poses long-term leaching hazards. The leaching experiments reveal a three-stage release mechanism: first, the initial oxidation of sulfides rapidly lowers the pH (to between 2.35 and 2.80), dissolving heavy metals and fluorides; second, slower weathering of aluminosilicates and adsorption by iron and aluminum hydroxides reduce the concentrations of dissolved elements; and third, concentrations stabilize as adsorption and slow silicate weathering regulate the long-term release of contaminants. The resulting acidic goaf water contains extremely high levels of metals (with aluminum at 191.4 mg/L and iron at 412.0 mg/L), which severely threaten groundwater, particularly in karst areas where rapid cross-layer contamination can occur. These findings provide crucial insights into the processes that drive the acidity of goaf water and the release of contaminants, which can aid in the development of effective mitigation strategies for abandoned mines. Targeted management is essential to safeguard water resources and ecological health in regions affected by mining activities. Full article
13 pages, 1803 KiB  
Article
Analysis of Weather Conditions and Synoptic Systems During Different Stages of Power Grid Icing in Northeastern Yunnan
by Hongwu Wang, Ruidong Zheng, Gang Luo and Guirong Tan
Atmosphere 2025, 16(7), 884; https://doi.org/10.3390/atmos16070884 - 18 Jul 2025
Abstract
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted [...] Read more.
Various data such as power grid sensors and manual observed icing, CMA (China Meteorological Administration) Land Surface Data Assimilation System (CLDAS) products, and the Fifth Generation Atmospheric Reanalysis of the Global Climate from Europe Center of Middle Range Weather Forecast (ERA5) are adopted to diagnose an icing process under a cold surge during 16–23 December 2023 in northeastern Yunnan Province. The results show that: (1) in the early stage of the process, mainly the freezing types, such as GG (temperature > 0 °C, relative humidity ≥ 75%) and DG (temperature < 0 °C, relative humidity ≥ 75%), occur. At the end of the process, an increase in icing type as GD (temperature > 0 °C, relative humidity < 75%) appears. (2) Significant differences exist in the elements during different stages of icing, and the atmospheric thermal, dynamic, and water vapor conditions are conducive to the occurrence of freezing rain during ice accretion. The main impact weather systems of this process include a strong high ridge in the mid to high latitudes of East Asia, transverse troughs in front of the high ridge south to Lake Baikal, low altitude troughs, and ground fronts. The transverse trough in front of the high ridge can cause cold air to accumulate and then move eastward and southward. The southerly flows, surface fronts, and other low-pressure systems can provide powerful thermodynamic and moisture conditions for ice accumulation. Full article
(This article belongs to the Section Meteorology)
17 pages, 1262 KiB  
Article
Gel Electrophoresis of an Oil Drop
by Hiroyuki Ohshima
Gels 2025, 11(7), 555; https://doi.org/10.3390/gels11070555 - 18 Jul 2025
Abstract
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. [...] Read more.
We present a theoretical model for the electrophoresis of a weakly charged oil drop migrating through an uncharged polymer gel medium saturated with an aqueous electrolyte solution. The surface charge of the drop arises from the specific adsorption of ions onto its interface. Unlike solid particles, liquid drops exhibit internal fluidity and interfacial dynamics, leading to distinct electrokinetic behavior. In this study, the drop motion is driven by long-range hydrodynamic effects from the surrounding gel, which are treated using the Debye–Bueche–Brinkman continuum framework. A simplified version of the Baygents–Saville theory is adopted, assuming that no ions are present inside the drop and that the surface charge distribution results from linear ion adsorption. An approximate analytical expression is derived for the electrophoretic mobility of the drop under the condition of low zeta potential. Importantly, the derived expression explicitly includes the Marangoni effect, which arises from spatial variations in interfacial tension due to non-uniform ion adsorption. This model provides a physically consistent and mathematically tractable basis for understanding the electrophoretic transport of oil drops in soft porous media such as hydrogels, with potential applications in microfluidics, separation processes, and biomimetic systems. These results also show that the theory could be applied to more complicated or biologically important soft materials. Full article
(This article belongs to the Section Gel Applications)
29 pages, 3158 KiB  
Article
A Forecasting Method for COVID-19 Epidemic Trends Using VMD and TSMixer-BiKSA Network
by Yuhong Li, Guihong Bi, Taonan Tong and Shirui Li
Computers 2025, 14(7), 290; https://doi.org/10.3390/computers14070290 - 18 Jul 2025
Abstract
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely [...] Read more.
The spread of COVID-19 is influenced by multiple factors, including control policies, virus characteristics, individual behaviors, and environmental conditions, exhibiting highly complex nonlinear dynamic features. The time series of new confirmed cases shows significant nonlinearity and non-stationarity. Traditional prediction methods that rely solely on one-dimensional case data struggle to capture the multi-dimensional features of the data and are limited in handling nonlinear and non-stationary characteristics. Their prediction accuracy and generalization capabilities remain insufficient, and most existing studies focus on single-step forecasting, with limited attention to multi-step prediction. To address these challenges, this paper proposes a multi-module fusion prediction model—TSMixer-BiKSA network—that integrates multi-feature inputs, Variational Mode Decomposition (VMD), and a dual-branch parallel architecture for 1- to 3-day-ahead multi-step forecasting of new COVID-19 cases. First, variables highly correlated with the target sequence are selected through correlation analysis to construct a feature matrix, which serves as one input branch. Simultaneously, the case sequence is decomposed using VMD to extract low-complexity, highly regular multi-scale modal components as the other input branch, enhancing the model’s ability to perceive and represent multi-source information. The two input branches are then processed in parallel by the TSMixer-BiKSA network model. Specifically, the TSMixer module employs a multilayer perceptron (MLP) structure to alternately model along the temporal and feature dimensions, capturing cross-time and cross-variable dependencies. The BiGRU module extracts bidirectional dynamic features of the sequence, improving long-term dependency modeling. The KAN module introduces hierarchical nonlinear transformations to enhance high-order feature interactions. Finally, the SA attention mechanism enables the adaptive weighted fusion of multi-source information, reinforcing inter-module synergy and enhancing the overall feature extraction and representation capability. Experimental results based on COVID-19 case data from Italy and the United States demonstrate that the proposed model significantly outperforms existing mainstream methods across various error metrics, achieving higher prediction accuracy and robustness. Full article
12 pages, 1218 KiB  
Article
Contrasting Effects of Moso Bamboo Expansion into Broad-Leaved and Coniferous Forests on Soil Microbial Communities
by Rong Lin, Wenjie Long, Fanqian Kong, Juanjuan Zhu, Miaomiao Wang, Juan Liu, Rui Li and Songze Wan
Forests 2025, 16(7), 1188; https://doi.org/10.3390/f16071188 - 18 Jul 2025
Abstract
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical [...] Read more.
Soil microbes play a crucial role in driving biogeochemical cycles and are closely linked with aboveground plants during forest succession. Moso bamboo (Phyllostachys edulis) encroachment into adjacent forests of varying composition is known to alter plant diversity in subtropical and tropical regions. However, how soil microbial communities respond to this vegetation type transformation has not fully explored. To address this knowledge gap, a time-alternative spatial method was employed in the present study, and we investigated the effect of Moso bamboo expansion into subtropical broad-leaved forest and coniferous forest on soil microbial phospholipid fatty acids (PLFAs). We also measured the dynamics of key soil properties during the Moso bamboo expansion processes. Our results showed that Moso bamboo encroachment into subtropical broad-leaved forest induced an elevation in soil bacterial PLFAs (24.78%) and total microbial PLFAs (22.70%), while decreasing the fungal-to-bacterial (F:B) ratio. This trend was attributed to declines in soil NO3-N (18.63%) and soil organic carbon (SOC) concentrations (28.83%). Conversely, expansion into coniferous forests promoted soil fungal PLFAs (40.41%) and F:B ratio, primarily driven by increases in soil pH (4.83%) and decreases in SOC (36.18%). These results provide mechanistic insights into how contrasting expansion trajectories of Moso bamboo restructure soil microbial communities and highlight the need to consider vegetation context-dependency when evaluating the ecological consequences of Moso bamboo expansion. Full article
(This article belongs to the Special Issue Forest Soil Microbiology and Biogeochemistry)
23 pages, 5229 KiB  
Article
Design and Experiment of Autonomous Shield-Cutting End-Effector for Dual-Zone Maize Field Weeding
by Yunxiang Li, Yinsong Qu, Yuan Fang, Jie Yang and Yanfeng Lu
Agriculture 2025, 15(14), 1549; https://doi.org/10.3390/agriculture15141549 - 18 Jul 2025
Abstract
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, [...] Read more.
This study presented an autonomous shield-cutting end-effector for maize surrounding weeding (SEMSW), addressing the challenges of the low weed removal rate (WRR) and high seedling damage rate (SDR) in northern China’s 3–5 leaf stage maize. The SEMSW integrated seedling positioning, robotic arm control, and precision weeding functionalities: a seedling positioning sensor identified maize seedlings and weeds, guiding XYZ translational motions to align the robotic arm. The seedling-shielding anti-cutting mechanism (SAM) enclosed crop stems, while the contour-adaptive weeding mechanism (CWM) activated two-stage retractable blades (TRWBs) for inter/intra-row weeding operations. The following key design parameters were determined: 150 mm inner diameter for the seedling-shielding disc; 30 mm minimum inscribed-circle for retractable clamping units (RCUs); 40 mm ground clearance for SAM; 170 mm shielding height; and 100 mm minimum inscribed-circle diameter for the TRWB. Mathematical optimization defined the shape-following weeding cam (SWC) contour and TRWB dimensional chain. Kinematic/dynamic models were introduced alongside an adaptive sliding mode controller, ensuring lateral translation error convergence. A YOLOv8 model achieved 0.951 precision, 0.95 mAP50, and 0.819 mAP50-95, striking a balance between detection accuracy and localization precision. Field trials of the prototype showed 88.3% WRR and 2.2% SDR, meeting northern China’s agronomic standards. Full article
19 pages, 13416 KiB  
Article
Unveiling PM2.5 Transport Pathways: A Trajectory-Channel Model Framework for Spatiotemporally Quantitative Source Apportionment
by Yong Pan, Jie Zheng, Fangxin Fang, Fanghui Liang, Mengrong Yang, Lei Tong and Hang Xiao
Atmosphere 2025, 16(7), 883; https://doi.org/10.3390/atmos16070883 - 18 Jul 2025
Abstract
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory [...] Read more.
In this study, we introduced a novel Trajectory-Channel Transport Model (TCTM) to unravel spatiotemporal dynamics of PM2.5 pollution. By integrating high-resolution simulations from the Weather Research and Forecasting (WRF) model with the Nested Air-Quality Prediction Modeling System (WRF-NAQPMS) and 72 h backward-trajectory analysis, TCTM enables the precise identification of source regions, the delineation of key transport corridors, and a quantitative assessment of regional contributions to receptor sites. Focusing on four Yangtze River Delta cities (Hangzhou, Shanghai, Nanjing, Hefei) during a January 2020 pollution event, the results demonstrate that TCTM’s Weighted Concentration Source (WCS) and Source Pollution Characteristic Index (SPCI) outperform traditional PSCF and CWT methods in source-attribution accuracy and resolution. Unlike receptor-based statistical approaches, TCTM reconstructs pollutant transport processes, quantifies spatial decay, and assigns contributions via physically interpretable metrics. This innovative framework offers actionable insights for targeted air-quality management strategies, highlighting its potential as a robust tool for pollution mitigation planning. Full article
(This article belongs to the Special Issue Feature Papers in Atmospheric Techniques, Instruments, and Modeling)
46 pages, 10548 KiB  
Review
A Review of Hybrid LSTM Models in Smart Cities
by Bum-Jun Kim and Il-Woo Nam
Processes 2025, 13(7), 2298; https://doi.org/10.3390/pr13072298 - 18 Jul 2025
Abstract
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM [...] Read more.
Rapid global urbanization poses complex challenges that demand advanced data-driven forecasting solutions for smart cities. Traditional statistical and standalone Long Short-Term Memory (LSTM) models often struggle to capture non-linear dynamics and long-term dependencies in urban time-series data. This review critically examines hybrid LSTM models that integrate LSTM with complementary algorithms, including CNN, GRU, ARIMA, and SVM. These hybrid architectures aim to enhance prediction accuracy, integrate diverse data sources, and improve computational efficiency. This study systematically reviews principles, trends, and real-world applications, quantitatively evaluating hybrid LSTM models using performance metrics such as mean absolute error (MAE), root mean square error (RMSE), and the coefficient of determination (R2), while identifying key study limitations. The case studies considered include traffic management, environmental monitoring, energy forecasting, public health, infrastructure assessment, and urban waste management. For example, hybrid models have achieved substantial accuracy improvements in traffic congestion forecasting, reducing their mean absolute error by up to 29%. Despite the inherent challenges related to structural complexity, interpretability, and data requirements, ongoing research on attention mechanisms, model compression, and explainable AI has significantly mitigated these limitations. Thus, hybrid LSTM models have emerged as vital analytical tools capable of robust spatiotemporal prediction, effectively supporting sustainable urban development and data-driven decision-making in evolving smart city environments. Full article
Show Figures

Figure 1

18 pages, 1411 KiB  
Article
A Framework for Joint Beam Scheduling and Resource Allocation in Beam-Hopping-Based Satellite Systems
by Jinfeng Zhang, Wei Li, Yong Li, Haomin Wang and Shilin Li
Electronics 2025, 14(14), 2887; https://doi.org/10.3390/electronics14142887 - 18 Jul 2025
Abstract
With the rapid development of heterogeneous satellite networks integrating geostationary earth orbit (GEO) and low earth orbit (LEO) satellite systems, along with the significant growth in the number of satellite users, it is essential to consider frequency compatibility and coexistence between GEO and [...] Read more.
With the rapid development of heterogeneous satellite networks integrating geostationary earth orbit (GEO) and low earth orbit (LEO) satellite systems, along with the significant growth in the number of satellite users, it is essential to consider frequency compatibility and coexistence between GEO and LEO systems, as well as to design effective system resource allocation strategies to achieve efficient utilization of system resources. However, existing beam-hopping (BH) resource allocation algorithms in LEO systems primarily focus on beam scheduling within a single time slot, lacking unified beam management across the entire BH cycle, resulting in low beam-resource utilization. Moreover, existing algorithms often employ iterative optimization across multiple resource dimensions, leading to high computational complexity and imposing stringent requirements on satellite on-board processing capabilities. In this paper, we propose a BH-based beam scheduling and resource allocation framework. The proposed framework first employs geographic isolation to protect the GEO system from the interference of the LEO system and subsequently optimizes beam partitioning over the entire BH cycle, time-slot beam scheduling, and frequency and power resource allocation for users within the LEO system. The proposed scheme achieves frequency coexistence between the GEO and LEO satellite systems and performs joint optimization of system resources across four dimensions—time, space, frequency, and power—with reduced complexity and a progressive optimization framework. Simulation results demonstrate that the proposed framework achieves effective suppression of both intra-system and inter-system interference via geographic isolation, while enabling globally efficient and dynamic beam scheduling across the entire BH cycle. Furthermore, by integrating the user-level frequency and power allocation algorithm, the scheme significantly enhances the total system throughput. The proposed progressive optimization framework offers a promising direction for achieving globally optimal and computationally tractable resource management in future satellite networks. Full article
Back to TopTop