Numerical Prediction of the NPSH Characteristics in Centrifugal Pumps
Abstract
1. Introduction
2. Materials and Methods
2.1. Prediction of the NPSH Characteristics
2.2. Dimensionless Numbers
2.3. Numerical Analysis
2.3.1. Governing Equation
2.3.2. Numerical Model
2.3.3. Computational Domain and Mesh
- Mesh I (k–ω SST): approximately 20 million finite volumes,
- Mesh II (k–ε): approximately 10 million finite volumes,
- Mesh III (k–ω SST): approximately 16 million finite volumes, with a denser mesh in the impeller and diffuser regions, and a coarser mesh in the other parts of the domain.
Number of Volumes | |||
---|---|---|---|
Mesh I | Mesh II | Mesh III | |
Intake | 101,574 | 101,574 | 101,574 |
Impeller | 6,998,383 | 3,206,358 | 6,998,383 |
Diffuser | 2,674,931 | 1,214,287 | 1,706,753 |
Volute | 10,186,937 | 5,464,427 | 6,968,725 |
Total | 20,043,825 | 9,986,646 | 15,775,435 |
2.3.4. Boundary Condition
2.4. Experiment
3. Results and Discussion
3.1. Energetic Characteristics
3.2. Cavitation Characteristics
- –
- At 0.6 QBEP, the inlet pressure was reduced in uniform steps of about 10 kPa;
- –
- At 0.8 QBEP, the first two reductions were 50 kPa followed by 10 kPa steps;
- –
- At 1.0 QBEP and 1.2 QBEP, the first two reductions were 50 kPa, then 25 kPa, and finally 10 kPa as cavitation approached.
4. Conclusions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics | |
Measurement uncertainty of head | ||
Measurement uncertainty of rotation speed | ||
Measurement uncertainty of flow rate | ||
ε | Dissipation of turbulence kinetic energy | m2/s3 |
Vector of the mass density of the external forces | M/kg | |
FSI | Fluid–structure interaction | - |
Acceleration due to gravity | m/s2 | |
Pump head | m | |
Hydraulic losses | m | |
relative head (ratio H/HBEP) | % | |
HRS | High Resolution Scheme | - |
Water level | m | |
k | Turbulence kinetic energy | m2/s2 |
Kinematic viscosity | m2/s | |
n | Rotational speed | rpm |
NPSH | Net Positive Suction Head | m |
NPSH3 | Net Positive Suction Head, the 3% head drop criterion | m |
NPSHA | Net Positive Suction Head available | m |
NPSHR | Net Positive Suction Head required | m |
NPSHi | Net Positive Suction Head, the critical limit | m |
Input power | W | |
Pressure at the reference point | Pa | |
Pressure at inlet | Pa | |
Total pressure at inlet | Pa | |
Total pressure at outlet | Pa | |
Atmospheric pressure | Pa | |
Vapor pressure | Pa | |
QBEP | Best efficiency point | - |
Flow rate | m3/s | |
RANS | Reynolds-averaged Navier–Stokes equations | - |
cavitation number | - | |
Initial cavitation number | - | |
SST | Shear Stress Transport | - |
Torque | N/m | |
t | Time | S |
Fluid temperature | °C | |
Viscous stress tensor | N/m2 | |
Velocity | m/s | |
Friction velocity | m/s | |
Velocity | m/s | |
Reference velocity | m/s | |
Velocity | m/s | |
Position vector | m | |
Non dimensional number | - | |
ω | Dissipation of turbulent kinetic energy | m2/s3 |
Dynamic viscosity | N·s/m2 | |
Efficiency | - | |
Relative efficiency (ratio η/ηBEP) | % | |
z (blades) | Number of blades | - |
z | Elevation head | m |
References
- Napierała, M.A. Study on Improving Economy Efficiency of Pumping Stations Based on Tariff Changes. Energies 2022, 15, 799. [Google Scholar] [CrossRef]
- Ješe, U. Numerical Study of Pump-Turbine Instabilities: Pumping Mode off-Design Conditions; Université Grenoble Alpes: Grenoble, France, 2015. [Google Scholar]
- ISO 9906; Rotodynamic Pumps-Hydraulic Performance Acceptance Tests-Grades 1, 2 and 3, 2nd ed. International Organization for Standardization: Geneva, Switzerland, 2012.
- Ocepek, M.; Lipej, A. Numerical and experimental analysis of guide vane pivot torque prediction in the reversible pump-turbine. Proc. Inst. Mech. Eng. Part A J. Power Energy 2024, 239, 284–294. [Google Scholar] [CrossRef]
- Pei, J.; Osman, M.K.; Wang, W.; Appiah, D.; Yin, T.; Deng, Q. A Practical Method for Speeding up the Cavitation Prediction in an Industrial Double-Suction Centrifugal Pump. Energies 2019, 12, 2088. [Google Scholar] [CrossRef]
- Pei, J.; Osman, M.K.; Wang, W.; Yuan, J.; Yin, T.; Appiah, D. Unsteady flow characteristics and cavitation prediction in the double-suction centrifugal pump using a novel approach. Proc. Inst. Mech. Eng. Part A 2019, 234, 283–299. [Google Scholar] [CrossRef]
- Cui, B.; Chen, J. Visual experiment and numerical simulation of cavitation instability in a high-speed inducer. Proc. Inst. Mech. Eng. Part A J. Power Energy 2020, 234, 470–480. [Google Scholar] [CrossRef]
- Ennouri, M.; Kanfoudi, H.; Taher, A.B.H.; Zgolli, R. Numerical flow simulation and cavitation prediction in a centrifugal pump using an SST-SAS turbulence model. J. Appl. Fluid Mech. 2019, 12, 25–39. [Google Scholar] [CrossRef]
- Wu, D.; Ren, Y.; Mou, J.; Gu, Y.; Jiang, L. Unsteady Flow and Structural Behaviors of Centrifugal Pump under Cavitation Conditions. Chin. J. Mech. Eng. 2019, 32, 17. [Google Scholar] [CrossRef]
- Lorusso, M.; Capurso, T.; Torresi, M.; Fortunato, B.; Fornarelli, F.; Camporeale, S.M.; Monteriso, R. Efficient CFD evaluation of the NPSH for centrifugal pumps. Energy Procedia 2017, 126, 778–785. [Google Scholar] [CrossRef]
- Mousmoulis, G.; Anagnostopoulos, J.; Papantonis, D. A review of experimental detection methods of cavitation in centrifugal pumps and inducers. Int. J. Fluid Mach. Syst. 2019, 12, 71–88. [Google Scholar] [CrossRef]
- Rakibuzzaman, M.; Kim, K.; Suh, S.H. Numerical and experimental investigation of cavitation flows in a multistage centrifugal pump. J. Mech. Sci. Technol. 2018, 32, 1071–1078. [Google Scholar] [CrossRef]
- Lu, J.; Yuan, S.; Luo, Y.; Yuan, J.; Zhou, B.; Sun, H. Numerical and experimental investigation on the development of cavitation in a centrifugal pump. Proc. Inst. Mech. Eng. Part E 2014, 230, 171–182. [Google Scholar] [CrossRef]
- Hatano, S.; Kang, D.; Kagawa, S.; Nohmi, M.; Yokota, K. Study of cavitation instabilities in double-suction centrifugal pump. Int. J. Fluid Mach. Syst. 2014, 7, 94–100. [Google Scholar] [CrossRef]
- Xu, Y.; Tian, J.; Wang, Z.; Zhang, J.; Li, S.; Yan, Y.; Ge, M. A comprehensive study on the flow field of cylindrical cavitation nozzle jet under different turbulence models. Ocean Eng. 2025, 315, 119596. [Google Scholar] [CrossRef]
- Apte, D.; Ge, M.; Zhang, G.; Coutier-Delgosha, O. Numerical investigation of three-dimensional effects of hydrodynamic cavitation in a Venturi tube. Ultrason. Sonochem. 2024, 111, 107122. [Google Scholar] [CrossRef]
- Ge, M.; Sun, C.; Zhang, G.; Coutier-Delgosha, O.; Fan, D. Combined suppression effects on hydrodynamic cavitation performance in Venturi-type reactor for process intensification. Ultrason. Sonochem. 2022, 86, 106035. [Google Scholar] [CrossRef]
- Fetting, C. The European Green Deal; ESDN Report; ESDN Office: Vienna, Austria, 2020; Volume 53. [Google Scholar]
- Vuković, Ž.; Halkijević, I. Kavitacija u centrifugalnim crpkama. Gradjevinar 2011, 63, 11–17. [Google Scholar]
- Poullikkas, A.; Turton, R.K. Two Phase Flow and Cavitation in Centrifugal Pump—A Theoretical and Experimental Investigation. Master’s Thesis, Loughborough University, Loughborough, UK, 1992. [Google Scholar]
- Hydraulic Institute Standards. Rotodynamic Pumps Guideline for NPSH Margin; Hydraulic Institute: Parsippany, NJ, USA, 2012; ISBN 978-1-935762-10-2. [Google Scholar]
- Lipej, A.; Mitruševski, D. Numerical prediction of inlet recirculation in pumps. Int. J. Fluid Mach. Syst. 2016, 9, 277–286. [Google Scholar] [CrossRef]
- Michel, J.M. Introduction to Cavitation and Supercavitation. 2001. Available online: https://apps.dtic.mil/sti/html/tr/ADP012072/ (accessed on 16 September 2025).
- Menter, F.R.; Kuntz, M.; Langtry, R. Ten Years of Industrial Experience with the SST Turbulence Model. Turbul. Heat Mass Transf. 2003, 4, 625–632. [Google Scholar]
- Kato, M.; Launder, B. The Modelling of Turbulent Flow Around Stationary and Vibrating Square Cylinders. 1993. Available online: https://cir.nii.ac.jp/crid/1571135649542053888 (accessed on 16 September 2025).
- Ansys Inc. ANSYS CFX-Solver Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2020. [Google Scholar]
- Ansys Inc. ANSYS FLUENT Theory Guide; ANSYS Inc.: Canonsburg, PA, USA, 2020; Volume 20. [Google Scholar]
- Zwart, P.J.; Gerber, A.G.; Belamri, T. A two-phase flow model for predicting cavitation dynamics. In Proceedings of the 5th International Conference on Multiphase Flow, Yokohama, Japan, 30 May–3 June 2004; Volume 152, p. 152. [Google Scholar]
- Mejri, I.; Bakir, F.; Rey, R.; Belamri, T. Comparison of Computational Results Obtained From a Homogeneous Cavitation Model With Experimental Investigations of Three Inducers. J. Fluids Eng. 2006, 128, 1308–1323. [Google Scholar] [CrossRef]
- Shi, J.; Zhao, Z.; Song, W.; Jin, Y.; Lu, J. Numerical simulation analysis of flow characteristics in the cavity of the rotor-stator system. Eng. Appl. Comput. Fluid Mech. 2022, 16, 501–513. [Google Scholar] [CrossRef]
- Sedlar, M.; Sputa, O.; Komárek, M. CFD Analysis of Cavitation Phenomena in Mixed-Flow Pump. Int. J. Fluid Mach. Syst. 2012, 5, 18–29. [Google Scholar] [CrossRef]
- Cui, B.; Han, X.; An, Y. Numerical Simulation of Unsteady Cavitation Flow in a Low-Specific-Speed Centrifugal Pump with an Inducer. J. Mar. Sci. Eng. 2022, 10, 630. [Google Scholar] [CrossRef]
- Štefanič, M.; Lipej, A. Numerical Investigation and Experimental Validation of Different Air Flow Conditioners using Up-and Down-Stream Pipeline. J. Appl. Fluid Mech. 2023, 16, 983–991. [Google Scholar] [CrossRef]
- Orlandi, F.; Montorsi, L.; Milani, M. Cavitation analysis through CFD in industrial pumps: A review. Int. J. Thermofluids 2023, 20, 100506. [Google Scholar] [CrossRef]
- Shen, Z.; Wang, C.; Zhang, J.; Qiu, S.; Lin, R. Study on Part-Load Cavitation in High-Specific-Speed Centrifugal Pump. Water 2024, 16, 2180. [Google Scholar] [CrossRef]
- Lipej, A. Challenges in the Numerical Analysis of Centrifugal Pumps. Eng. Technol. Appl. Sci. Res. 2022, 12, 8217–8222. [Google Scholar] [CrossRef]
- Lipej, A. Analysis of numerical instability of centrifugal pumps operational characteristics. J. Mech. Energy Eng. 2021, 4, 357–364. [Google Scholar] [CrossRef]
- Zhao, G.S.; Zhao, W.G. Investigation of cavitation instabilities in a centrifugal pump based on one-element theory. IOP Conf. Ser. Earth Environ. Sci. 2018, 163, 012042. [Google Scholar] [CrossRef]
- González, J.; Parrondo, J.; Santolaria, C.; Blanco, E. Steady and Unsteady Radial Forces for a Centrifugal Pump With Impeller to Tongue Gap Variation. J. Fluids Eng. 2005, 128, 454–462. [Google Scholar] [CrossRef]
- Casimir, N.; Xiangyuan, Z.; Ludwig, G.; Skoda, R. Assessment of statistical eddy-viscosity turbulence models for unsteady flow at part and overload operation of centrifugal pumps. In Proceedings of the 13th European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, Lausanne, Switzerland, 8–12 April 2019. [Google Scholar] [CrossRef]
- Wang, C.-N.; Yang, F.-C.; Nguyen, V.T.; Vo, N.T.M. CFD Analysis and Optimum Design for a Centrifugal Pump Using an Effectively Artificial Intelligent Algorithm. Micromachines 2022, 13, 1208. [Google Scholar] [CrossRef]
- Shao, C.; Zhou, J.; Cheng, W. Experimental and numerical study of external performance and internal flow of a molten salt pump that transports fluids with different viscosities. Int. J. Heat Mass Transf. 2015, 89, 627–640. [Google Scholar] [CrossRef]
- Derakhshan, S.; Nourbakhsh, A. Theoretical, numerical and experimental investigation of centrifugal pumps in reverse operation. Exp. Therm. Fluid Sci. 2008, 32, 1620–1627. [Google Scholar] [CrossRef]
- Wang, C.; Shi, W.; Wang, X.; Jiang, X.; Yang, Y.; Li, W.; Zhou, L. Optimal design of multistage centrifugal pump based on the combined energy loss model and computational fluid dynamics. Appl. Energy 2017, 187, 10–26. [Google Scholar] [CrossRef]
- Li, H.; Chen, Y.; Yang, Y.; Wang, S.; Bai, L.; Zhou, L. CFD Simulation of Centrifugal Pump with Different Impeller Blade Trailing Edges. J. Mar. Sci. Eng. 2023, 11, 402. [Google Scholar] [CrossRef]
- Lei, L.; Wang, T.; Qiu, B.; Yu, H.; Liu, Y.; Dong, Y. The influence of ring clearance on the performance of a double-suction centrifugal pump. Phys. Fluids 2024, 36, 25133. [Google Scholar] [CrossRef]
- Reeves, T.D.; Bower, J.; Nevěřil, J.; Janigro, A.; Schofield, S. Guide to the Selection of Rotodynamic Pumps. Available online: https://www.europump.net/files/Publications/Guides/Guide_to_the_Selection_of_Rotodynamic_Pumps_Final.pdf (accessed on 16 September 2025).
- De Bernardi, J. Aspects Expérimentaux et Théoriques des Instabilités de Cavitation Dans les Turbopompes de Moteurs de Fusée. Ph.D. Thesis, Polytechnique de Grenoble, Grenoble, France, 1996. [Google Scholar]
- Ge, M.; Sun, C.; Zhang, X.; Coutier-Delgosha, O.; Zhang, G. Synchrotron X-ray based particle image velocimetry to measure multiphase streamflow and densitometry. Radiat. Phys. Chem. 2022, 200, 110395. [Google Scholar] [CrossRef]
Design Parameters | Value |
---|---|
Rotational speed, N (rpm) | 2900 |
Impeller inlet diameter, D1 (mm) | 100 |
Impeller outlet diameter, D2 (mm) | 270 |
Number of blades, z (blades) | 6 |
Value | ||||||
---|---|---|---|---|---|---|
Mesh I | Mesh II | Mesh III | ||||
Intake | 208 | 278 | 207 | 280 | 216 | 268 |
Impeller | 0.002 | 0.86 | 1.19 | 365 | 0.001 | 0.67 |
Diffuser | 0.006 | 2.42 | 0.74 | 393 | 0.1 | 82 |
Volute | 0.045 | 229 | 3 | 281 | 0.54 | 241 |
Measuring Quantities | Location and Label | |
---|---|---|
1. | Pressure measurements | P1, P2, P3, Pt |
2. | Flow rate measurements | F1 |
3. | Temperature measurements | T1, T2, T3 |
4. | Vacuum measurements | Vt |
5. | Power, rpm, current, voltage | VFD true Command desk |
Percentage Deviation [%] | ||||
---|---|---|---|---|
QBEP | Mesh I (k–ω SST) | Mesh II (k–ε) | Mesh III (k–ω SST) | Mesh III—Unsteady (k–ω SST) |
0.6 | −14.5 | −14.5 | −14.5 | 0 |
0.8 | 2.5 | 17.5 | 0 | −9.5 |
1 | −29.5 | 0 | 0 | 0 |
1.2 | −0.5 | −2.5 | −2.5 | −2.5 |
Steady-State cm3 | Unsteady cm3 | Steady-State % | Unsteady % | |
---|---|---|---|---|
0.6 QBEP | 3.17 | 20.68 | 0.3 | 2 |
0.8 QBEP | 39.97 | 16.77 | 3.9 | 1.6 |
1 QBEP | 19.61 | 6.46 | 1.9 | 0.6 |
1.2 QBEP | 4.8 | 3.48 | 0.5 | 0.3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Štefanič, M. Numerical Prediction of the NPSH Characteristics in Centrifugal Pumps. Fluids 2025, 10, 274. https://doi.org/10.3390/fluids10100274
Štefanič M. Numerical Prediction of the NPSH Characteristics in Centrifugal Pumps. Fluids. 2025; 10(10):274. https://doi.org/10.3390/fluids10100274
Chicago/Turabian StyleŠtefanič, Matej. 2025. "Numerical Prediction of the NPSH Characteristics in Centrifugal Pumps" Fluids 10, no. 10: 274. https://doi.org/10.3390/fluids10100274
APA StyleŠtefanič, M. (2025). Numerical Prediction of the NPSH Characteristics in Centrifugal Pumps. Fluids, 10(10), 274. https://doi.org/10.3390/fluids10100274