Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (242)

Search Parameters:
Keywords = dual-polarized SAR

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
21 pages, 7550 KB  
Article
Machine Learning-Based Sea Surface Wind Speed Retrieval from Dual-Polarized Sentinel-1 SAR During Tropical Cyclones
by Peng Yu, Yanyan Lin, Yunxuan Zhou, Lingling Suo, Sihan Xue and Xiaojing Zhong
Remote Sens. 2025, 17(21), 3626; https://doi.org/10.3390/rs17213626 - 2 Nov 2025
Viewed by 312
Abstract
Spaceborne Synthetic Aperture Radar (SAR) can be applied for monitoring tropical cyclones (TCs), but co-polarized C-band SAR suffers from signal saturation such that it is improper for high wind-speed conditions. In contrast, cross-polarized SAR data does not suffer from this issue, but the [...] Read more.
Spaceborne Synthetic Aperture Radar (SAR) can be applied for monitoring tropical cyclones (TCs), but co-polarized C-band SAR suffers from signal saturation such that it is improper for high wind-speed conditions. In contrast, cross-polarized SAR data does not suffer from this issue, but the retrieval algorithm needs more deliberation. Previously, many geophysical model functions (GMFs) have been developed using cross-polarized data, which obtain wind speeds using the complex relationships described by radar backscatter, incidence angle, wind direction, and radar look direction. In this regard, the rapid development of artificial intelligence technology has provided versatile machine learning methods for such a nonlinear inversion problem. In this study, we comprehensively compare the wind-speed retrieval performance of several models including Back Propagation Neural Network (BPNN), Support Vector Machine (SVM), Random Forest (RF), and Deep Neural Network (DNN), which were developed based on spatio-temporal matching and correlation analysis of stepped frequency microwave radiometer (SFMR) and dual-polarized Sentinel-1 SAR data after noise removal. A data set with ~2800 samples is generated during TCs for training and validating the inversion model. The generalization ability of different models is tested by the reserved independent data. When using similar parameters with GMFs, RF inversion has the highest accuracy with a Root Mean Square Error (RMSE) of 3.40 m/s and correlation coefficient of 0.94. Furthermore, considering that the sea surface temperature is a crucial factor for generating TCs and influencing ocean backscattering, its effects on the proposed RF model are also explored, the results of which show improved wind-speed retrieval performances. Full article
(This article belongs to the Special Issue Artificial Intelligence for Ocean Remote Sensing (Second Edition))
Show Figures

Graphical abstract

21 pages, 6547 KB  
Article
A High-Resolution Sea Ice Concentration Retrieval from Ice-WaterNet Using Sentinel-1 SAR Imagery in Fram Strait, Arctic
by Tingting Zhu, Xiangbin Cui and Yu Zhang
Remote Sens. 2025, 17(20), 3475; https://doi.org/10.3390/rs17203475 - 17 Oct 2025
Viewed by 453
Abstract
High spatial resolution sea ice concentration (SIC) is crucial for global climate and marine activity. However, retrieving high spatial resolution SIC from passive microwave sensors is challenging due to the trade-off between spatial resolution and atmospheric contamination. Our study develops the Ice-WaterNet framework, [...] Read more.
High spatial resolution sea ice concentration (SIC) is crucial for global climate and marine activity. However, retrieving high spatial resolution SIC from passive microwave sensors is challenging due to the trade-off between spatial resolution and atmospheric contamination. Our study develops the Ice-WaterNet framework, a novel superpixel-based deep learning model that integrates Conditional Random Fields (CRF) with a dual-attention U-Net to enhance ice–water classification in Synthetic Aperture Radar (SAR) imagery. The Ice-WaterNet model has been extensively tested on 2735 Sentinel-1 dual-polarized SAR images from 2021 to 2023, covering both winter and summer seasons in the Fram Strait. To tackle the complex surface features during the melt season, wind-roughened open water, and varying ice floe sizes, a superpixel strategy is employed to efficiently reduce classification uncertainty. Uncertain superpixels identified by CRF are iteratively refined using the U-Net attention mechanism. Experimental results demonstrate that Ice-WaterNet achieves significant improvements in classification accuracy, outperforming CRF and U-Net by 3.375% in Intersection over Union (IoU) and 3.09% in F1-score during the melt season, and by 1.96 in IoU and 1.75 in F1-score during the freeze season. The derived high-resolution SIC products, updated every two days, were evaluated against Met Norway ice charts and compared with ASI from AMSR-2 and SSM/I, showing a substantial reduction in misclassification in marginal ice zones, particularly under melting conditions. These findings underscore the potential of Ice-WaterNet in supporting precise sea ice monitoring and climate change research. Full article
Show Figures

Figure 1

16 pages, 20370 KB  
Article
High Resolution Synthetic Aperture Radar Based on Multiple Reflectarray Apertures
by Min Zhou, Pasquale G. Nicolaci, David Marote, Javier Herreros, Niels Vesterdal, Michael F. Palvig, Stig B. Sørensen and Giovanni Toso
Electronics 2025, 14(19), 3832; https://doi.org/10.3390/electronics14193832 - 27 Sep 2025
Viewed by 320
Abstract
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration [...] Read more.
This paper presents the design, manufacturing, testing, and validation of the MASKARA (Multiple Apertures for high-resolution SAR based on Ka-band Reflectarray) Breadboard Model (BBM), a large Ka-band reflectarray antenna developed for Synthetic Aperture Radar (SAR) applications. The BBM features a dual-offset antenna configuration intended for a high-resolution, wide-swath SAR instrument. At the core of the system is a 1.5 m × 0.55 m reflectarray operating between 35.5–36.0 GHz in the Ka-band. To our knowledge, this is the first demonstration of a reflectarray antenna designed to support two distinct modes of operation, exploiting the inherent advantages of reflectarrays—such as reduced cost and compact stowage—over traditional solutions. The antenna provides a high-resolution mode requiring a higher-gain beam in one polarization and a low-resolution mode covering a larger swath with broader beam coverage in the orthogonal polarization. The design process follows a holistic, multidisciplinary approach, integrating RF and thermomechanical considerations through iterative and concurrent design reviews. The BBM has been successfully manufactured and experimentally tested, and the measurement results show good agreement with simulations, confirming the validity of the proposed concept and demonstrating its potential for future high-performance SAR missions. Full article
(This article belongs to the Special Issue Broadband Antennas and Antenna Arrays)
Show Figures

Figure 1

18 pages, 31572 KB  
Article
Polarimetric Time-Series InSAR for Surface Deformation Monitoring in Mining Area Using Dual-Polarization Data
by Xingjun Ju, Sihua Gao and Yongfeng Li
Sensors 2025, 25(19), 5968; https://doi.org/10.3390/s25195968 - 25 Sep 2025
Viewed by 583
Abstract
Timely and reliable surface deformation monitoring is critical for hazard prevention and resource management in mining areas. However, traditional Time-Series Interferometric (TSI) Synthetic Aperture Radar techniques often suffer from low coherent point density in mining environments, limiting their effectiveness. To overcome this limitation, [...] Read more.
Timely and reliable surface deformation monitoring is critical for hazard prevention and resource management in mining areas. However, traditional Time-Series Interferometric (TSI) Synthetic Aperture Radar techniques often suffer from low coherent point density in mining environments, limiting their effectiveness. To overcome this limitation, we propose an adaptive Polarimetric TSI (PolTSI) method that exploits dual-polarization Sentinel-1 data to achieve more reliable deformation monitoring in complex mining terrains. The method employs a dual-strategy optimization: amplitude dispersion–based optimization for Permanent Scatterer (PS) pixels and minimum mean square error (MMSE)-based polarimetric filtering followed by coherence maximization for Distributed Scatterer (DS) pixels. Experimental results from an open-pit mining area demonstrate that the proposed approach significantly improves phase quality and spatial coverage. In particular, the number of coherent monitoring points increased from 31,183 with conventional TSI to 465,328 using the proposed approach, corresponding to a 1392% improvement. This substantial enhancement confirms the method’s robustness in extracting deformation signals from low-coherence, heterogeneous mining surfaces. As one of the few studies to apply Polarimetric InSAR (Pol-InSAR) in active mining regions, our work demonstrates the underexplored potential of dual-pol SAR data for improving both the spatial density and reliability of time-series deformation mapping. The results provide a solid technical foundation for large-scale, high-precision surface monitoring in complex mining environments. Full article
(This article belongs to the Special Issue Application of SAR and Remote Sensing Technology in Earth Observation)
Show Figures

Figure 1

24 pages, 8351 KB  
Article
The Information Consistency Between Full- and Improved Dual-Polarimetric Mode SAR for Multiscenario Oil Spill Detection
by Guannan Li, Gaohuan Lv, Tong Wang, Xiang Wang and Fen Zhao
Sensors 2025, 25(17), 5551; https://doi.org/10.3390/s25175551 - 5 Sep 2025
Viewed by 1096
Abstract
Detecting marine oil spills is vital for protecting the marine environment, ensuring maritime traffic safety, supporting marine development, and enabling effective emergency response. The dual-polarimetric (DP) synthetic aperture radar (SAR) system represents an evolution from single to full polarization (FP), which has become [...] Read more.
Detecting marine oil spills is vital for protecting the marine environment, ensuring maritime traffic safety, supporting marine development, and enabling effective emergency response. The dual-polarimetric (DP) synthetic aperture radar (SAR) system represents an evolution from single to full polarization (FP), which has become an essential tool for oil spill detection with the growing availability of open-source and shared datasets. Recent research has focused on enhancing DP information structures to better exploit this data. This study introduces improved DP models’ structure with modified the scattering vector coefficients to ensure consistency with the corresponding components of the FP system, enabling comprehensive comparison and analysis with traditional DP structure, includes theoretical and quantitative evaluations of simulated data from FP system, as well as validation using real DP scenarios. The results showed the following: (1) The polarimetric entropy HL obtained through the improved DP scattering matrix CL can achieve higher information consistency results closely aligns with FP system and better performance, compared to the typical two DP scattering structures. (2) For multiple polarimetric features from DP scattering matrix (both traditional feature and combination feature), the improved DP scattering matrix CL can be used for oil spill extraction effectively with prominent results. (3) For oil spill extraction, the polarimetric features-based CL tend to have relatively high contribution, especially the H_A feature combination, leading to substantial gains in improved classification performance. This approach not only enriches the structural information of the DP system under VV–VH mode but also improves oil spill identification by integrating multi-structured DP features. Furthermore, it offers a practical alternative when FP data are unavailable. Full article
(This article belongs to the Section Environmental Sensing)
Show Figures

Graphical abstract

24 pages, 125401 KB  
Article
Continuous Monitoring of Fire-Induced Forest Loss Using Sentinel-1 SAR Time Series and a Bayesian Method: A Case Study in Paragominas, Brazil
by Marta Bottani, Laurent Ferro-Famil, René Poccard-Chapuis and Laurent Polidori
Remote Sens. 2025, 17(16), 2822; https://doi.org/10.3390/rs17162822 - 14 Aug 2025
Viewed by 1148
Abstract
Forest fires, intensified by climate change, threaten tropical ecosystems by accelerating biodiversity loss, releasing carbon emissions, and altering hydrological cycles. Continuous detection of fire-induced forest loss is therefore critical. However, commonly used optical-based methods often face limitations, particularly due to cloud cover and [...] Read more.
Forest fires, intensified by climate change, threaten tropical ecosystems by accelerating biodiversity loss, releasing carbon emissions, and altering hydrological cycles. Continuous detection of fire-induced forest loss is therefore critical. However, commonly used optical-based methods often face limitations, particularly due to cloud cover and coarse spatial resolution. This study explores the use of C-band Sentinel-1 Synthetic Aperture Radar (SAR) time series, combined with Bayesian Online Changepoint Detection (BOCD), for detecting and continuously monitoring fire-induced vegetation loss in forested areas. Three BOCD variants are evaluated: two single-polarization approaches individually using VV and VH reflectivities, and a dual-polarization approach (pol-BOCD) integrating both channels. The analysis focuses on a fire-affected area in Baixo Uraim (Paragominas, Brazil), supported by field-validated reference data. BOCD performance is compared against widely used optical products, including MODIS and VIIRS active fire and burned area data, as well as Sentinel-2-based difference Normalized Burn Ratio (dNBR) assessments. Results indicate that pol-BOCD achieves spatial accuracy comparable to dNBR (88.2% agreement), while enabling detections within a delay of three Sentinel-1 acquisitions. These findings highlight the potential of SAR-based BOCD for rapid, cloud-independent monitoring. While SAR enables continuous detection regardless of atmospheric conditions, optical imagery remains essential for characterizing the type and severity of change. Full article
Show Figures

Figure 1

16 pages, 3847 KB  
Article
Water Body Extraction Methods for SAR Images Fusing Sentinel-1 Dual-Polarized Water Index and Random Forest
by Min Zhai, Huayu Shen, Qihang Cao, Xuanhao Ding and Mingzhen Xin
Sensors 2025, 25(15), 4868; https://doi.org/10.3390/s25154868 - 7 Aug 2025
Viewed by 1082
Abstract
Synthetic Aperture Radar (SAR) technology has the characteristics of all-day and all-weather functionality; accordingly, it is not affected by rainy weather, overcoming the limitations of optical remote sensing, and it provides irreplaceable technical support for efficient water body extraction. To address the issues [...] Read more.
Synthetic Aperture Radar (SAR) technology has the characteristics of all-day and all-weather functionality; accordingly, it is not affected by rainy weather, overcoming the limitations of optical remote sensing, and it provides irreplaceable technical support for efficient water body extraction. To address the issues of low accuracy and unstable results in water body extraction from Sentinel-1 SAR images using a single method, a water body extraction method fusing the Sentinel-1 dual-polarized water index and random forest is proposed. This novel method enhances water extraction accuracy by integrating the results of two different algorithms, reducing the biases associated with single-method water body extraction. Taking Dalu Lake, Yinfu Reservoir, and Huashan Reservoir as the study areas, water body information was extracted from SAR images using the dual-polarized water body index, the random forest method, and the fusion method. Taking the normalized difference water body index extraction results obtained via Sentinel-2 optical images as a reference, the accuracy of different water body extraction methods when used with SAR images was quantitatively evaluated. The experimental results show that, compared with the dual-polarized water body index and the random forest method, the fusion method, on average, increased overall water body extraction accuracy and Kappa coefficients by 3.9% and 8.2%, respectively, in the Dalu Lake experimental area; by 1.8% and 3.5%, respectively, in the Yinfu Reservoir experimental area; and by 4.1% and 8.1%, respectively, in the Huashan Reservoir experimental area. Therefore, the fusion method of the dual-polarized water index and random forest effectively improves the accuracy and reliability of water body extraction from SAR images. Full article
(This article belongs to the Section Radar Sensors)
Show Figures

Figure 1

18 pages, 3618 KB  
Article
Quality Assessment of Dual-Polarization C-Band SAR Data Influenced by Precipitation Based on Normalized Polarimetric Radar Vegetation Index
by Jisung Geba Chang, Simon Kraatz, Yisok Oh, Feng Gao and Martha Anderson
Remote Sens. 2025, 17(14), 2343; https://doi.org/10.3390/rs17142343 - 8 Jul 2025
Viewed by 1327
Abstract
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar [...] Read more.
Advanced Synthetic Aperture Radar (SAR) has become an essential modality in remote sensing, offering all-weather capabilities and sensitivity to vegetation biophysical parameters and surface conditions, while effectively complementing optical sensor data. This study evaluates the impact of precipitation on the Normalized Polarimetric Radar Vegetation Index (NPRVI) using dual-polarization Sentinel-1 C-band SAR data from agricultural fields at the Beltsville Agricultural Research Center (BARC). Field-measured precipitation and Global Precipitation Measurement (GPM) precipitation datasets were temporally aligned with Sentinel-1 acquisition times to assess the sensitivity of radar signals to precipitation events. NPRVI exhibited a strong sensitivity to precipitation, particularly within the 1 to 7 h prior to the satellite overpass, even for small amounts of precipitation. A quality assessment (QA) framework was developed to flag and correct precipitation-affected radar observations through interpolation. The adjusted NPRVI values, based on the QA framework using precipitation within a 6 h window, showed strong agreement between field- and GPM-derived data, with an RMSE of 0.09 and a relative RMSE of 19.8%, demonstrating that GPM data can serve as a viable alternative for quality adjustment despite its coarse spatial resolution. The adjusted NPRVI for both soybean and corn fields significantly improved the temporal consistency of the time series and closely followed NDVI trends, while also capturing crop-specific seasonal variations, especially during periods of NDVI saturation or limited variability. These findings underscore the value of the proposed radar-based QA framework in enhancing the interpretability of vegetation dynamics. NPRVI, when adjusted for precipitation effects, can serve as a reliable and complementary tool to optical vegetation indices in agricultural and environmental monitoring. Full article
(This article belongs to the Section Remote Sensing in Agriculture and Vegetation)
Show Figures

Figure 1

24 pages, 7933 KB  
Article
Multi-Temporal Dual Polarimetric SAR Crop Classification Based on Spatial Information Comprehensive Utilization
by Qiang Yin, Yuming Du, Fangfang Li, Yongsheng Zhou and Fan Zhang
Remote Sens. 2025, 17(13), 2304; https://doi.org/10.3390/rs17132304 - 4 Jul 2025
Viewed by 431
Abstract
Dual polarimetric SAR is capable of reflecting the biophysical and geometrical information of terrain with open access data availability. When it is combined with time-series observations, it can effectively capture the dynamic evolution of scattering characteristics of crops in different growth cycles. However, [...] Read more.
Dual polarimetric SAR is capable of reflecting the biophysical and geometrical information of terrain with open access data availability. When it is combined with time-series observations, it can effectively capture the dynamic evolution of scattering characteristics of crops in different growth cycles. However, the actual planting of crops often shows spatial dispersion, and the same crop may be dispersed in different plots, which fails to adequately consider the correlation information between dispersed plots of the same crop in spatial distribution. This study proposed a crop classification method based on multi-temporal dual polarimetric data, which considered the utilization of information between near and far spatial plots, by employing superpixel segmentation and a HyperGraph neural network, respectively. Firstly, the method utilized the dual polarimetric covariance matrix of multi-temporal data to perform superpixel segmentation on neighboring pixels, so that the segmented superpixel blocks were highly compatible with the actual plot shapes from a long-term period perspective. Then, a HyperGraph adjacency matrix was constructed, and a HyperGraph neural network (HGNN) was utilized to better learn the features of plots of the same crop that are distributed far from each other. The method fully utilizes the three dimensions of time, polarization and space information, which complement each other so as to effectively realize high-precision crop classification. The Sentinel-1 experimental results show that, under the optimal parameter settings, the classified accuracy of combined temporal superpixel scattering features using the HGNN was obviously improved, considering the near and far distance spatial correlations of crop types. Full article
(This article belongs to the Special Issue Cutting-Edge PolSAR Imaging Applications and Techniques)
Show Figures

Graphical abstract

30 pages, 5702 KB  
Article
Monitoring Tropical Forest Disturbance and Recovery: A Multi-Temporal L-Band SAR Methodology from Annual to Decadal Scales
by Derek S. Tesser, Kyle C. McDonald, Erika Podest, Brian T. Lamb, Nico Blüthgen, Constance J. Tremlett, Felicity L. Newell, Edith Villa-Galaviz, H. Martin Schaefer and Raul Nieto
Remote Sens. 2025, 17(13), 2188; https://doi.org/10.3390/rs17132188 - 25 Jun 2025
Viewed by 1162
Abstract
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of [...] Read more.
Tropical forests harbor a significant portion of global biodiversity but are increasingly degraded by human activity. Assessing restoration efforts requires the systematic monitoring of tropical ecosystem status and recovery. Satellite-borne synthetic aperture radar (SAR) supports monitoring changes in vegetation structure and is of particular utility in tropical regions where clouds obscure optical satellite observations. To characterize tropical forest recovery in the Lowland Chocó Biodiversity Hotspot of Ecuador, we apply over a decade of dual-polarized (HH + HV) L-band SAR datasets from the Japanese Space Agency’s (JAXA) PALSAR and PALSAR-2 sensors. We assess the complementarity of the dual-polarized imagery with less frequently available fully-polarimetric imagery, particularly in the context of their respective temporal and informational trade-offs. We examine the radar image texture associated with the dual-pol radar vegetation index (DpRVI) to assess the associated determination of forest and nonforest areas in a topographically complex region, and we examine the equivalent performance of texture measures derived from the Freeman–Durden polarimetric radar decomposition classification scheme applied to the fully polarimetric data. The results demonstrate that employing a dual-polarimetric decomposition classification scheme and subsequently deriving the associated gray-level co-occurrence matrix mean from the DpRVI substantially improved the classification accuracy (from 88.2% to 97.2%). Through this workflow, we develop a new metric, the Radar Forest Regeneration Index (RFRI), and apply it to describe a chronosequence of a tropical forest recovering from naturally regenerating pasture and cacao plots. Our findings from the Lowland Chocó region are particularly relevant to the upcoming NASA-ISRO NISAR mission, which will enable the comprehensive characterization of vegetation structural parameters and significantly enhance the monitoring of biodiversity conservation efforts in tropical forest ecosystems. Full article
(This article belongs to the Special Issue NISAR Global Observations for Ecosystem Science and Applications)
Show Figures

Figure 1

15 pages, 2654 KB  
Article
Comprehensive Assessment of Ocean Surface Current Retrievals Using SAR Doppler Shift and Drifting Buoy Observations
by Shengren Fan, Biao Zhang and Vladimir Kudryavtsev
Remote Sens. 2025, 17(12), 2007; https://doi.org/10.3390/rs17122007 - 10 Jun 2025
Cited by 1 | Viewed by 1032
Abstract
Ocean surface radial current velocities can be derived from synthetic aperture radar (SAR) Doppler shift observations using the Doppler centroid technique and a recently developed Doppler velocity model. However, comprehensive evaluations of the accuracy and reliability of these retrievals remain limited. To address [...] Read more.
Ocean surface radial current velocities can be derived from synthetic aperture radar (SAR) Doppler shift observations using the Doppler centroid technique and a recently developed Doppler velocity model. However, comprehensive evaluations of the accuracy and reliability of these retrievals remain limited. To address this gap, we analyzed 6341 Sentinel-1 SAR scenes acquired over the South China Sea (SCS) between December 2017 and October 2023, in conjunction with drifting buoy observations, to systematically validate the retrieved radial current velocities. A linear fitting method and the dual co-polarization Doppler velocity (DPDop) model were applied to correct for the influence of non-geophysical factors and sea state effects. The validation against the drifter data yielded a bias of 0.01 m/s, a root mean square error (RMSE) of 0.18 m/s, and a mean absolute error (MAE) of 0.16 m/s. Further comparisons with the Surface and Merged Ocean Currents (SMOC) dataset revealed bias, RMSE, and MAE values of 0.07 m/s, 0.14 m/s, and 0.12 m/s in the Beibu Gulf, and −0.06 m/s, 0.23 m/s, and 0.19 m/s in the Kuroshio intrusion area. These results demonstrate that SAR Doppler measurements have a strong potential to complement existing ocean observations in the SCS by providing high-resolution (1 km) ocean surface current maps. Full article
Show Figures

Figure 1

36 pages, 6489 KB  
Article
Improving SAR Ship Detection Accuracy by Optimizing Polarization Modes: A Study of Generalized Compact Polarimetry (GCP) Performance
by Guo Song, Yunkai Deng, Heng Zhang, Xiuqing Liu and Sheng Chang
Remote Sens. 2025, 17(11), 1951; https://doi.org/10.3390/rs17111951 - 5 Jun 2025
Cited by 1 | Viewed by 1527
Abstract
The debate surrounding the optimal polarimetric modes—compact polarimetry (CP) versus dual polarization (DP)—for PolSAR ship detection persists. This study pioneers a systematic investigation into Generalized Compact Polarimetry (GCP) for this application. By synthesizing and evaluating 143 distinct GCP configurations from fully polarimetric data, [...] Read more.
The debate surrounding the optimal polarimetric modes—compact polarimetry (CP) versus dual polarization (DP)—for PolSAR ship detection persists. This study pioneers a systematic investigation into Generalized Compact Polarimetry (GCP) for this application. By synthesizing and evaluating 143 distinct GCP configurations from fully polarimetric data, this study presents the first comprehensive comparison of their ship detection performance against conventional modes using Target-to-Clutter Ratio (TCR) and deep learning-based accuracy (AP50). Experiments on the FPSD dataset reveal that an optimized GCP mode (e.g., ellipse/orientation: [−10, −5]) consistently outperforms traditional CP and DP modes, yielding TCR gains of 0.2–2.7 dB. This translates to AP50 improvements of 0.5–4.7% (Faster R-CNN) and 0.1–5.5% (RetinaNet) over five common baseline modes. Crucially, this enhancement arises from optimizing the interaction between the polarization mode and target/clutter scattering characteristics rather than algorithmic improvements, supporting the proposed “optimization from the information source” strategy. These findings offer significant implications for future PolSAR system design and operational mode selection. Full article
Show Figures

Figure 1

20 pages, 6516 KB  
Article
On Flood Detection Using Dual-Polarimetric SAR Observation
by Su-Young Kim, Yeji Lee and Sang-Eun Park
Remote Sens. 2025, 17(11), 1931; https://doi.org/10.3390/rs17111931 - 2 Jun 2025
Cited by 1 | Viewed by 1340
Abstract
This study aims to elucidate the optimal exploitation of polarimetric scattering information in dual-pol SAR data. For an effective comparison of the flood detection performance between dual-pol parameters, we presented a simple fuzzy-based flood detection algorithm. Scattering characteristics of water surface and non-water [...] Read more.
This study aims to elucidate the optimal exploitation of polarimetric scattering information in dual-pol SAR data. For an effective comparison of the flood detection performance between dual-pol parameters, we presented a simple fuzzy-based flood detection algorithm. Scattering characteristics of water surface and non-water land can vary depending on the region and flood conditions. Therefore, the flood detection performance of the dual-pol parameters was evaluated across three datasets with different geographic, climatic, and land cover conditions. The results demonstrated that accurate and stable performance in the detection of inundated areas under different surface conditions can be achieved by combining water body information from dual-pol channels in a disjunctive way. It also suggests that synergy in flood detection can be expected when using polarization observation data by considering each polarimetric channel as an independent information source and combining them rather than deriving the most relevant polarization parameter. Furthermore, combining common information from two dual-pol channels in a conjunctive way could provide the most reliable SAR flood detection results with minimum false alarms from the user’s perspective. Based on these experimental results, a two-class flood classification scheme was proposed for improving the applicability of SAR remote sensing in identifying flooded areas. Full article
Show Figures

Figure 1

21 pages, 6990 KB  
Article
Machine Learning-Driven Rapid Flood Mapping for Tropical Storm Imelda Using Sentinel-1 SAR Imagery
by Reda Amer
Remote Sens. 2025, 17(11), 1869; https://doi.org/10.3390/rs17111869 - 28 May 2025
Cited by 1 | Viewed by 2527
Abstract
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) [...] Read more.
Accurate and timely flood mapping is critical for informing emergency response and risk mitigation during extreme weather events. This study presents a synthetic aperture radar (SAR)-based approach for rapid flood extent mapping using Sentinel-1 imagery, demonstrated for Tropical Storm Imelda (17–21 September 2019) in southeastern Texas. Dual-polarization Sentinel-1 SAR data (VH and VV) were processed by computing the VH/VV backscatter ratio, and the resulting ratio image was classified using a supervised Random Forest classifier to delineate water and land. All Sentinel-1 images underwent radiometric calibration, speckle noise filtering, and terrain correction to ensure precision in flood delineation. The Random Forest classifier achieved an overall flood mapping accuracy exceeding 94%, with Cohen’s kappa coefficients of approximately 0.75–0.80, demonstrating the approach’s reliability in distinguishing transient floodwaters from permanent water bodies. The spatial distribution of flooding was strongly influenced by topography and land cover. Analysis of Shuttle Radar Topography Mission (SRTM) digital elevation data revealed that low-lying, flat terrain was most vulnerable to inundation; correspondingly, the land cover types most affected were hay/pasture, cultivated land, and emergent wetlands. Additionally, urban areas with low-intensity development experienced extensive flooding, attributed to impervious surfaces exacerbating runoff. A strong, statistically significant correlation (R2 = 0.87, p < 0.01) was observed between precipitation and flood extent, indicating that heavier rainfall led to greater inundation; accordingly, the areas with the highest rainfall totals (e.g., Jefferson and Chambers counties) experienced the most extensive flooding, as confirmed by SAR-based change detection. The proposed approach eliminates the need for manual threshold selection, thereby reducing misclassification errors due to speckle noise and land cover heterogeneity. Harnessing globally available Sentinel-1 data with near-real-time processing and a robust classifier, this approach provides a scalable solution for rapid flood monitoring. These findings underscore the potential of SAR-based flood mapping under adverse weather conditions, thereby contributing to improved disaster preparedness and resilience in flood-prone regions. Full article
Show Figures

Figure 1

21 pages, 10161 KB  
Article
Supervised Semantic Segmentation of Urban Area Using SAR
by Joanna Pluto-Kossakowska and Sandhi Wangiyana
Remote Sens. 2025, 17(9), 1606; https://doi.org/10.3390/rs17091606 - 1 May 2025
Viewed by 1300
Abstract
Cyclical analyses of dynamic changes in urban areas are critical and necessary for policymakers and societies. Remote sensing data processing methods are currently in place to determine the distribution of built-up and sealed areas on global and continental scales. However, there is a [...] Read more.
Cyclical analyses of dynamic changes in urban areas are critical and necessary for policymakers and societies. Remote sensing data processing methods are currently in place to determine the distribution of built-up and sealed areas on global and continental scales. However, there is a lack of research on distinguishing among urban classes at a larger scale for a city or its district. SAR sensors register features of urban areas that, when further processed, such as textures, can help in automatic recognition. We present a novel dataset for urban classification focusing on density analysis. Machine learning methods, including a selection of artificial neural networks and other classifiers, have been used to distinguish among different classes of built-up areas, as defined according to the Urban Atlas database. This dataset was used to establish benchmarks for classification, conduct verification tests, and evaluate accuracy. The C-band of Sentinel-1 images, for the same study areas as ICEYE X-band images and their texture derivatives, were used to classify variants. Better results were obtained using the CNN-based Unet model. The best overall accuracy was 79% for the X-band and 73% for the C-band datasets. The results indicate that the single-polarization X-band is more suitable for this classification despite the presence of more SAR features in the C-band with dual polarization. Full article
(This article belongs to the Special Issue Applications of SAR for Environment Observation Analysis)
Show Figures

Figure 1

Back to TopTop