Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (5,083)

Search Parameters:
Keywords = drying–wetting

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
16 pages, 2050 KiB  
Article
Effects of Activated Cold Regenerant on Pavement Properties of Emulsified Asphalt Cold Recycled Mixture
by Fuda Chen, Jiangmiao Yu, Yuan Zhang, Zengyao Lin and Anxiong Liu
Materials 2025, 18(15), 3529; https://doi.org/10.3390/ma18153529 - 28 Jul 2025
Abstract
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, [...] Read more.
Limited recovery of the viscoelastic properties of aged asphalt on RAP surfaces at ambient temperature reduces interface fusion and bonding with new emulsified asphalt, degrading pavement performance and limiting large-scale promotion and high-value applications of the emulsified asphalt cold recycled mixture (EACRM). Therefore, a cold regenerant was independently prepared to rapidly penetrate, soften, and activate aged asphalt at ambient temperature in this paper, and its effects on the volumetric composition, mechanical strength, and pavement performance of EACRM were systematically investigated. The results showed that as the cold regenerant content increased, the air voids, indirect tensile strength (ITS), and high-temperature deformation resistance of EACRM decreased, while the dry–wet ITS ratio, cracking resistance, and fatigue resistance increased. Considering the comprehensive pavement performance requirements of cold recycled pavements, the optimal content of the activated cold regenerant for EACRM was determined to be approximately 0.6%. Full article
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

29 pages, 4258 KiB  
Review
Corrosion Performance of Atmospheric Corrosion Resistant Steel Bridges in the Current Climate: A Performance Review
by Nafiseh Ebrahimi, Melina Roshanfar, Mojtaba Momeni and Olga Naboka
Materials 2025, 18(15), 3510; https://doi.org/10.3390/ma18153510 - 26 Jul 2025
Viewed by 158
Abstract
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance [...] Read more.
Weathering steel (WS) is widely used in bridge construction due to its high corrosion resistance, durability, and low maintenance requirements. This paper reviews the performance of WS bridges in Canadian climates, focusing on the formation of protective patina, influencing factors, and long-term maintenance strategies. The protective patina, composed of stable iron oxyhydroxides, develops over time under favorable wet–dry cycles but can be disrupted by environmental aggressors such as chlorides, sulfur dioxide, and prolonged moisture exposure. Key alloying elements like Cu, Cr, Ni, and Nb enhance corrosion resistance, while design considerations—such as drainage optimization and avoidance of crevices—are critical for performance. The study highlights the vulnerability of WS bridges to microenvironments, including de-icing salt exposure, coastal humidity, and debris accumulation. Regular inspections and maintenance, such as debris removal, drainage system upkeep, and targeted cleaning, are essential to mitigate corrosion risks. Climate change exacerbates challenges, with rising temperatures, altered precipitation patterns, and ocean acidification accelerating corrosion in coastal regions. Future research directions include optimizing WS compositions with advanced alloys (e.g., rare earth elements) and integrating climate-resilient design practices. This review highlights the need for a holistic approach combining material science, proactive maintenance, and adaptive design to ensure the longevity of WS bridges in evolving environmental conditions. Full article
Show Figures

Figure 1

23 pages, 852 KiB  
Article
Does Foraging or the Avoidance of Predation Determine Habitat Selection by Selective Resident Grazers in the Serengeti Woodlands? A Mixed Strategy with Season
by Patrick Duncan and Anthony R. E. Sinclair
Animals 2025, 15(15), 2202; https://doi.org/10.3390/ani15152202 - 26 Jul 2025
Viewed by 50
Abstract
Savanna systems are characterised by a community of large mammal herbivores with up to 30 species; coexistence is based on resource partitioning. In this paper we analyse the features of the landscape and plant structure which lead herbivores to use particular locations, a [...] Read more.
Savanna systems are characterised by a community of large mammal herbivores with up to 30 species; coexistence is based on resource partitioning. In this paper we analyse the features of the landscape and plant structure which lead herbivores to use particular locations, a key to resource partitioning. The processes involved, top-down versus bottom-up, are well known for large species and small ones but not for medium-sized ones. We use two resident, medium-sized species, topi (Damaliscus lunatus jimela) and kongoni, (Alcelaphus buselaphus cokei) in the central woodlands of the Serengeti; selection of habitat by the residents is important for predator-prey interactions and for interactions among the grazers. Using Principal Component Analysis and Multiple Regression we develop highly predictive models which show that resource availability is the critical determinant of habitat selection in the dry season; and reduction in predation risk appears to be important in the wet season. These results show for the first time that habitat selection by the medium-sized herbivores is driven by different strategies in the two seasons. This contributes to understanding the processes involved in the dynamics of this globally important savanna system, a necessary foundation for management. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

33 pages, 15108 KiB  
Article
Effect of Matric Suction on Shear Strength and Elastic Modulus of Unsaturated Soil in Reconstituted and Undisturbed Samples
by Jorge Erazo, Carlos Solórzano-Blacio, Guillermo Realpe and Jorge Albuja-Sánchez
Appl. Sci. 2025, 15(15), 8309; https://doi.org/10.3390/app15158309 - 25 Jul 2025
Viewed by 216
Abstract
Most soils in natural environments undergo wetting and drying cycles, without reaching full saturation. Therefore, it is essential to analyze their properties under unsaturated conditions. However, these analyses often require expensive equipment. This study proposes an empirical-experimental methodology to evaluate the elastic modulus [...] Read more.
Most soils in natural environments undergo wetting and drying cycles, without reaching full saturation. Therefore, it is essential to analyze their properties under unsaturated conditions. However, these analyses often require expensive equipment. This study proposes an empirical-experimental methodology to evaluate the elastic modulus and shear strength of unsaturated soils under total stress conditions using undisturbed and reconstituted samples of silty soil from Quito, Ecuador. Techniques for suction measurement, soil water characteristic curve (SWCC), and predictive models for shear strength and stiffness in partially saturated soils were reviewed. Unconfined compression tests were performed, and the SWCC was determined using the filter paper method. A three-dimensional (3D) plot was generated to correlate the matric suction, shear strength, and normal stress across varying suction levels. In the reconstituted samples, the shear strength and elastic modulus exhibited nonlinear increases in the low suction range (≤500 kPa). In the high-suction range, the strength declined beyond 2228 kPa (40.23% saturation), whereas the elastic modulus stabilized. Undisturbed samples displayed greater variability owing to their heterogeneity, macrostructure, and hysteresis. The results suggest that matric suction enhances the shear strength and stiffness of the surface layers, whereas a higher saturation at depth reduces these properties. This paper further discusses the limitations and practical applicability of the proposed methodology. Full article
(This article belongs to the Special Issue Geotechnical Engineering: Principles and Applications)
Show Figures

Figure 1

19 pages, 3405 KiB  
Article
Study on Hydrological–Meteorological Response in the Upper Yellow River Based on 100-Year Series Reconstruction
by Xiaohui He, Xiaoyu He, Yajun Gao and Fanchao Li
Water 2025, 17(15), 2223; https://doi.org/10.3390/w17152223 - 25 Jul 2025
Viewed by 137
Abstract
Precipitation, as a key input in the water cycle, directly influences the formation and change process of runoff. Meanwhile, the return runoff intuitively reflects the available quantity of water resources in a river basin. An in-depth analysis of the evolution laws and response [...] Read more.
Precipitation, as a key input in the water cycle, directly influences the formation and change process of runoff. Meanwhile, the return runoff intuitively reflects the available quantity of water resources in a river basin. An in-depth analysis of the evolution laws and response relationships between precipitation and return runoff over a long time scale serves as an important support for exploring the evolution of hydrometeorological conditions and provides an accurate basis for the scientific planning and management of water resources. Taking Lanzhou Station on the upper Yellow River as a typical case, this study proposes the VSSL (LSTM Fusion Method Optimized by SSA with VMD Decomposition) deep learning precipitation element series extension method and the SSVR (SVR Fusion Method Optimized by SSA) machine learning runoff element series extension method. These methods achieve a reasonable extension of the missing data and construct 100-year precipitation and return runoff series from 1921 to 2020. The research results showed that the performance of machine learning and deep learning methods in the precipitation and return runoff test sets is better than that of traditional statistical methods, and the fitting effect of return runoff is better than that of precipitation. The 100-year precipitation and return runoff series of Lanzhou Station from 1921 to 2020 show a non-significant upward trend at a rate of 0.26 mm/a and 0.42 × 108 m3/a, respectively. There is no significant mutation point in precipitation, while the mutation point of return runoff occurred in 1991. The 100-year precipitation series of Lanzhou Station has four time-scale alternations of dry and wet periods, with main periods of 60 years, 20 years, 12 years, and 6 years, respectively. The 100-year return runoff series has three time-scale alternations of dry and wet periods, with main periods of 60 years, 34 years, and 26 years, respectively. During the period from 1940 to 2000, an approximately 50-year cycle, precipitation and runoff not only have strong common-change energy and significant interaction, but also have a fixed phase difference. Precipitation changes precede runoff, and runoff responds after a fixed time interval. Full article
(This article belongs to the Section Water and Climate Change)
Show Figures

Figure 1

21 pages, 1186 KiB  
Article
The Genotoxic Potential of Organic Emissions from Domestic Boilers Combusting Biomass and Fossil Fuels
by Jitka Sikorova, Frantisek Hopan, Lenka Kubonova, Jiri Horak, Alena Milcova, Pavel Rossner, Antonin Ambroz, Kamil Krpec, Oleksandr Molchanov and Tana Zavodna
Toxics 2025, 13(8), 619; https://doi.org/10.3390/toxics13080619 - 25 Jul 2025
Viewed by 58
Abstract
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This [...] Read more.
Solid fuels are still widely used in household heating in Europe and North America. Emissions from boilers are released in proximity to people. Therefore, there is a need to minimise the toxicity of emissions affecting human health to the greatest extent possible. This study compares the genotoxic potential of the emissions of four boilers of modern and old design (automatic, gasification, down-draft, over-fire) operating at reduced output to simulate the real-life combustion fed by various fossil and renewable solid fuels (hard coal, brown coal, brown coal briquettes, wood pellets, wet and dry spruce). Organic emissions were tested for genotoxic potential by analysing bulky DNA adducts and 8-oxo-dG adduct induction. There was no consistent genotoxic pattern among the fuels used within the boilers. Genotoxicity was strongly correlated with polycyclic aromatic hydrocarbon (PAH) content, and even stronger correlation was observed with particulate matter (PM). In all measured variables (PM, PAHs, genotoxicity), the technology of the boilers was a more important factor in determining the genotoxic potential than the fuels burned. The highest levels of both bulky and 8-oxo-dG DNA adducts were induced by organics originating from the over-fire boiler, while the automatic boiler exhibited genotoxic potential that was ~1000- and 100-fold lower, respectively. Full article
(This article belongs to the Section Human Toxicology and Epidemiology)
Show Figures

Figure 1

14 pages, 2195 KiB  
Article
Experimental and Simulation Analysis on Wet Slip Performance Between Tread Rubber and Road Surface
by Yang Wan, Benlong Su, Guochang Lin, Youshan Wang, Gege Huang and Jian Wu
J. Compos. Sci. 2025, 9(8), 394; https://doi.org/10.3390/jcs9080394 - 25 Jul 2025
Viewed by 186
Abstract
Optimisation of the anti-skid properties of tyres is a significant area of composite applications. For investigating the wet slip friction characteristics, the wet slip friction test of tread rubber and road surface was carried out using the comprehensive tire friction testing machine. The [...] Read more.
Optimisation of the anti-skid properties of tyres is a significant area of composite applications. For investigating the wet slip friction characteristics, the wet slip friction test of tread rubber and road surface was carried out using the comprehensive tire friction testing machine. The wet slip properties of different formulated rubbers under various working conditions such as different slip speeds, water film thicknesses and vertical loads were compared through the test. Subsequently, an orthogonal test programme was designed to investigate the degree of significant influence of each factor on the wet slip performance. A three-dimensional finite element model of tread rubber and road surface with water film was established in order to facilitate analysis of the wet slip properties. The simulation results were utilised to elucidate the pattern of the effects of different loads on the wet slip friction characteristics. Results indicate that the wet slip friction coefficient is subject to decrease in proportion to the magnitude of the vertical load; the friction coefficient of rubber block in wet slip condition exhibits a decline of approximately 26% in comparison with that of dry condition; the factor that exerts the most significant influence on the coefficient of friction is the vertical load, while the water film thickness exerts the least influence. The results obtained can serve as a reference source for the design of tire anti-skid performance enhancement. Full article
(This article belongs to the Special Issue Theoretical and Computational Investigation on Composite Materials)
Show Figures

Figure 1

20 pages, 7113 KiB  
Article
Effect of Cu Content on Corrosion Resistance of 3.5%Ni Weathering Steel in Marine Atmosphere of South China Sea
by Yuanzheng Li, Ziyu Guo, Tianle Fu, Sha Sha, Bing Wang, Xiaoping Chen, Shujun Jia and Qingyou Liu
Materials 2025, 18(15), 3496; https://doi.org/10.3390/ma18153496 - 25 Jul 2025
Viewed by 190
Abstract
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was [...] Read more.
The influence of the copper (Cu) content on the corrosion resistance of 3.5%Ni low-carbon weathering steel was investigated using periodic dry–wet cycle accelerated corrosion tests. The mechanical properties of the steels were assessed via tensile and low-temperature impact tests, while corrosion resistance was evaluated based on weight loss measurements. Surface oxide layers were characterized using three-dimensional laser confocal microscopy, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), and electrochemical methods. Electron probe microanalysis (EPMA) was employed to examine the cross-sectional morphology of the oxide layer after 72 h of accelerated corrosion tests. The results indicate that the solution state of Cu increased the strength of 3.5%Ni steels but significantly damaged the low-temperature toughness. As the Cu content increased from 0.75% to 1.25%, the corrosion rate decreased from 4.65 to 3.74 g/m2 h. However, when there was a further increase in the Cu content to 2.15%, there was little decrease in the corrosion rate. With the increase in the Cu content from 0.75% to 2.15%, the surface roughness of 3.5%Ni weathering steel after corrosion decreased from 5.543 to 5.019 μm, and the corrosion behavior was more uniform. Additionally, the α/γ protective factor of the oxide layer of the surface layer increased from 2.58 to 2.84 with an increase in the Cu content from 0.75% to 1.25%, resulting in the oxide layer of the surface layer being more protective. For 1.25%Cu steel, the corrosion current density of rusted samples is lower (ranging from 1.2609 × 10−4 A/cm2 to 3.7376 × 10−4 A/cm2), and the corrosion potential is higher (ranging from −0.85544 V to −0.40243 V). Therefore, the rusted samples are more corrosion resistant. The Cu in the oxide layer of the surface layer forms CuO and CuFeO2, which are helpful for increasing corrosion resistance, which inhibits the penetration of Cl. Full article
(This article belongs to the Special Issue Advances in Corrosion and Protection of Metallic Materials)
Show Figures

Figure 1

16 pages, 5265 KiB  
Article
Crack Development in Compacted Loess Subjected to Wet–Dry Cycles: Experimental Observations and Numerical Modeling
by Yu Xi, Mingming Sun, Gang Li and Jinli Zhang
Buildings 2025, 15(15), 2625; https://doi.org/10.3390/buildings15152625 - 24 Jul 2025
Viewed by 200
Abstract
Loess, a typical soil widely distributed in China, exhibits engineering properties that are highly sensitive to environmental changes, leading to increased erosion and the development of surface cracks. This article examines the influence of initial moisture content, dry density, and thickness on crack [...] Read more.
Loess, a typical soil widely distributed in China, exhibits engineering properties that are highly sensitive to environmental changes, leading to increased erosion and the development of surface cracks. This article examines the influence of initial moisture content, dry density, and thickness on crack formation in compacted loess subjected to wet–dry cycles, using both laboratory experiments and numerical simulation analysis. It quantitatively analyzes the process of crack evolution using digital image processing technology. The experimental results indicate that wet–dry cycles can cause cumulative damage to the soil, significantly encouraging the initiation and expansion of secondary cracks. New cracks often branch out and extend along the existing crack network, demonstrating that the initial crack morphology has a controlling effect over the final crack distribution pattern. Numerical simulations based on MultiFracS software further revealed that soil samples with a thickness of 0.5 cm exhibited more pronounced surface cracking characteristics than those with a thickness of 2 cm, with thinner layers of soil tending to form a more complex network of cracks. The simulation results align closely with the indoor test data, confirming the reliability of the established model in predicting fracture dynamics. The study provides theoretical underpinnings and practical guidance for evaluating the stability of engineering slopes and for managing and mitigating fissure hazards in loess. Full article
(This article belongs to the Special Issue Research on Building Foundations and Underground Engineering)
Show Figures

Figure 1

12 pages, 828 KiB  
Communication
Enhanced Protein Extraction from Auxenochlorella protothecoides Through Synergistic Mechanical Cell Disruption and Alkaline Solubilization
by Jun Wei Ng, Sze Ying Lee, Tong Mei Teh, Melanie Weingarten and Md. Mahabubur Rahman Talukder
Foods 2025, 14(15), 2597; https://doi.org/10.3390/foods14152597 - 24 Jul 2025
Viewed by 134
Abstract
Microalgae proteins are increasingly recognized in the food and nutraceutical industries for their functional versatility and high nutritional value. Mild alkaline treatment is commonly used for cell wall degradation and intracellular protein solubilization, consequently enhancing the protein extraction yield. The findings of this [...] Read more.
Microalgae proteins are increasingly recognized in the food and nutraceutical industries for their functional versatility and high nutritional value. Mild alkaline treatment is commonly used for cell wall degradation and intracellular protein solubilization, consequently enhancing the protein extraction yield. The findings of this study reveal that alkaline treatment alone, even at higher NaOH concentration (up to 0.3 M) and treatment time (up to 90 min), was ineffective (max. 2.4% yield) for the extraction of protein from Auxenochlorella protothecoides biomass. This challenge was significantly reduced through synergistic application of mechanical cell disruption using high-pressure homogenization (HPH) and alkaline solubilization. Single-pass HPH (35 k psi) alone without alkaline treatment led to 52.3% protein solubilization from wet biomass directly harvested from culture broth, while it was only 18.5% for spray-dried biomass. The combined effect of HPH and alkaline (0.1 M NaOH) treatment significantly increased protein extraction yield to 68.0% for a spray-dried biomass loading of 50 g L−1. Through replacing spray-dried biomass with wet biomass, the requirement of NaOH was reduced by 5-fold to 0.02 M to achieve a similar yield of 68.1%. The process integration of HPH with the mild alkaline solubilization and utilization of wet biomass from culture broth showed high potential for industrialization of microalgae protein extraction. This method achieves high extraction yield while reducing alkaline waste and eliminating the need for energy-consuming drying of biomass, thereby minimizing the environmental impact. Full article
Show Figures

Figure 1

19 pages, 3806 KiB  
Article
Farmdee-Mesook: An Intuitive GHG Awareness Smart Agriculture Platform
by Mongkol Raksapatcharawong and Watcharee Veerakachen
Agronomy 2025, 15(8), 1772; https://doi.org/10.3390/agronomy15081772 - 24 Jul 2025
Viewed by 236
Abstract
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, [...] Read more.
Climate change presents urgent and complex challenges to agricultural sustainability and food security, particularly in regions reliant on resource-intensive staple crops. Smart agriculture—through the integration of crop modeling, satellite remote sensing, and artificial intelligence (AI)—offers data-driven strategies to enhance productivity, optimize input use, and mitigate greenhouse gas (GHG) emissions. This study introduces Farmdee-Mesook, a mobile-first smart agriculture platform designed specifically for Thai rice farmers. The platform leverages AquaCrop simulation, open-access satellite data, and localized agronomic models to deliver real-time, field-specific recommendations. Usability-focused design and no-cost access facilitate its widespread adoption, particularly among smallholders. Empirical results show that platform users achieved yield increases of up to 37%, reduced agrochemical costs by 59%, and improved water productivity by 44% under alternate wetting and drying (AWD) irrigation schemes. These outcomes underscore the platform’s role as a scalable, cost-effective solution for operationalizing climate-smart agriculture. Farmdee-Mesook demonstrates that digital technologies, when contextually tailored and institutionally supported, can serve as critical enablers of climate adaptation and sustainable agricultural transformation. Full article
(This article belongs to the Special Issue Smart Farming Technologies for Sustainable Agriculture—2nd Edition)
Show Figures

Figure 1

17 pages, 3023 KiB  
Article
Slip-Resistance Performance of Basketball Shoes Tread Patterns on Common Courts
by Pramod Yadav, Shubham Gupta, Dishant Sharma and Arnab Chanda
Appl. Mech. 2025, 6(3), 54; https://doi.org/10.3390/applmech6030054 - 24 Jul 2025
Viewed by 245
Abstract
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court [...] Read more.
Basketball requires intense movements like jumping and sudden changes in direction, increasing the risk of slips and falls due to poor shoe–court traction. Therefore, a significant demand is for good traction performance in basketball shoes, particularly in the heel region on different court surfaces, to prevent slipping. This study examined the traction performance of fifteen common basketball shoe designs that were considered and developed using thermoplastic polyurethane to assess the available coefficient of friction (ACOF) on popular floorings (hardwood, synthetic, and polyurethane) under dry and wet conditions using a robotic slip tester. Results indicate that the hardwood flooring provided better traction, followed by the synthetic flooring, while the polyurethane flooring showed reduced friction. The study also examined the traction with apparent contact areas. Shoes with herringbone and circular tread patterns demonstrated the highest traction on all flooring in dry conditions. This research is anticipated to help basketball shoemakers choose safer shoes for player safety and performance, providing a foundation for future research on shoe flooring interaction in basketball. Full article
Show Figures

Graphical abstract

12 pages, 249 KiB  
Data Descriptor
Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji
by Poasa Nauluvula, Bruce L. Webber, Roslyn M. Gleadow, William Aalbersberg, John N. G. Hargreaves, Bianca T. Das, Diogenes L. Antille and Steven J. Crimp
Data 2025, 10(8), 120; https://doi.org/10.3390/data10080120 - 23 Jul 2025
Viewed by 424
Abstract
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen [...] Read more.
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen cyanide (HCN) before its consumption, but HCN concentrations can vary considerably between varieties. Climate change and low inputs, particularly carbon and nutrients, affect agriculture in Pacific Island countries where cassava is commonly grown alongside traditional crops (e.g., taro). Despite increasing popularity in this region, there is limited experimental data about cassava crop management for different local varieties, their relative toxicity and nutritional value for human consumption, and their interaction with changing climate conditions. To help address this knowledge gap, three field experiments were conducted at the Koronivia Research Station of the Fiji Ministry of Agriculture. Two varieties of cassava with contrasting HCN content were planted at three different times coinciding with the start of the wet (September-October) or dry (April) seasons. A time series of measurements was conducted during the full 18-month or differing 6-month durations of each crop, based on destructive harvests and phenological observations. The former included determination of total biomass, HCN potential, carbon isotopes (δ13C), and elemental composition. Yield and nutritional value were significantly affected by variety and time of planting, and there were interactions between the two factors. Findings from this work will improve cassava management locally and will provide a valuable dataset for agronomic and biophysical model testing. Full article
14 pages, 1410 KiB  
Article
Uptake, Distribution, and Activity of Pluronic F68 Adjuvant in Wheat and Its Endophytic Bacillus Isolate
by Anthony Cartwright, Mohammad Zargaran, Anagha Wankhade, Astrid Jacobson, Joan E. McLean, Anne J. Anderson and David W. Britt
Agrochemicals 2025, 4(3), 12; https://doi.org/10.3390/agrochemicals4030012 - 23 Jul 2025
Viewed by 146
Abstract
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for [...] Read more.
Surfactants are widely utilized in agriculture as emulsifying, dispersing, anti-foaming, and wetting agents. In these adjuvant roles, the inherent biological activity of the surfactant is secondary to the active ingredients. Here, the hydrophilic non-ionic surface-active tri-block copolymer Pluronic® F68 is investigated for direct biological activity in wheat. F68 binds to and inserts into lipid membranes, which may benefit crops under abiotic stress. F68’s interactions with Triticum aestivum (var Juniper) seedlings and a seed-borne Bacillus spp. endophyte are presented. At concentrations below 10 g/L, F68-primed wheat seeds exhibited unchanged emergence. Root-applied fluorescein-F68 (fF68) was internalized in root epidermal cells and concentrated in highly mobile endosomes. The potential benefit of F68 in droughted wheat was examined and contrasted with wheat treated with the osmolyte, glycine betaine (GB). Photosystem II activity of droughted plants dropped significantly below non-droughted controls, and no clear benefit of F68 (or GB) during drought or rehydration was observed. However, F68-treated wheat exhibited increased transpiration values (for watered plants only) and enhanced shoot dry mass (for watered and droughted plants), not observed for GB-treated or untreated plants. The release of seed-borne bacterial endophytes into the spermosphere of germinating seeds was not affected by F68 (for F68-primed seeds as well as F68 applied to roots), and the planktonic growth of a purified Bacillus spp. seed endophyte was not reduced by F68 applied below the critical micelle concentration. These studies demonstrated that F68 entered wheat root cells, concentrated in endosomes involved in transport, significantly promoted shoot growth, and showed no adverse effects to plant-associated bacteria. Full article
Show Figures

Figure 1

Back to TopTop