Sign in to use this feature.

Years

Between: -

Subjects

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Journals

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Article Types

Countries / Regions

remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline
remove_circle_outline

Search Results (1,421)

Search Parameters:
Keywords = dry and wet season

Order results
Result details
Results per page
Select all
Export citation of selected articles as:
24 pages, 3176 KiB  
Article
Influence of Seasonality and Pollution on the Presence of Antibiotic Resistance Genes and Potentially Pathogenic Bacteria in a Tropical Urban River
by Kenia Barrantes-Jiménez, Bradd Mendoza-Guido, Eric Morales-Mora, Luis Rivera-Montero, José Montiel-Mora, Luz Chacón-Jiménez, Keilor Rojas-Jiménez and María Arias-Andrés
Antibiotics 2025, 14(8), 798; https://doi.org/10.3390/antibiotics14080798 - 5 Aug 2025
Abstract
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in [...] Read more.
Background/Objectives: This study examines how seasonality, pollution, and sample type (water and sediment) influence the presence and distribution of antibiotic resistance genes (ARGs), with a focus on antibiotic resistance genes (ARGs) located on plasmids (the complete set of plasmid-derived sequences, including ARGs) in a tropical urban river. Methods: Samples were collected from three sites along a pollution gradient in the Virilla River, Costa Rica, during three seasonal campaigns (wet 2021, dry 2022, and wet 2022). ARGs in water and sediment were quantified by qPCR, and metagenomic sequencing was applied to analyze chromosomal and plasmid-associated resistance profiles in sediments. Tobit and linear regression models, along with multivariate ordination, were used to assess spatial and seasonal trends. Results: During the wet season of 2021, the abundance of antibiotic resistance genes (ARGs) such as sul-1, intI-1, and tetA in water samples decreased significantly, likely due to dilution, while intI-1 and tetQ increased in sediments, suggesting particle-bound accumulation. In the wet season 2022, intI-1 remained low in water, qnrS increased, and sediments showed significant increases in tetQ, tetA, and qnrS, along with decreases in sul-1 and sul-2. Metagenomic analysis revealed spatial differences in plasmid-associated ARGs, with the highest abundance at the most polluted site (Site 3). Bacterial taxa also showed spatial differences, with greater plasmidome diversity and a higher representation of potential pathogens in the most contaminated site. Conclusions: Seasonality and pollution gradients jointly shape ARG dynamics in this tropical river. Plasmid-mediated resistance responds rapidly to environmental change and is enriched at polluted sites, while sediments serve as long-term reservoirs. These findings support the use of plasmid-based monitoring for antimicrobial resistance surveillance in aquatic systems. Full article
(This article belongs to the Special Issue Origins and Evolution of Antibiotic Resistance in the Environment)
Show Figures

Graphical abstract

15 pages, 997 KiB  
Article
Reactive Power Optimization Control Method for Distribution Network with Hydropower Based on Improved Discrete Particle Swarm Optimization Algorithm
by Tao Liu, Bin Jia, Shuangxiang Luo, Xiangcong Kong, Yong Zhou and Hongbo Zou
Processes 2025, 13(8), 2455; https://doi.org/10.3390/pr13082455 - 3 Aug 2025
Viewed by 206
Abstract
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems [...] Read more.
With the rapid development of renewable energy, the proportion of small hydropower as a clean energy in the distribution network (DN) is increasing. However, the randomness and intermittence of small hydropower has brought new challenges to the operation of DN; especially, the problems of increasing network loss and reactive voltage exceeding the limit have become increasingly prominent. Aiming at the above problems, this paper proposes a reactive power optimization control method for DN with hydropower based on an improved discrete particle swarm optimization (PSO) algorithm. Firstly, this paper analyzes the specific characteristics of small hydropower and establishes its mathematical model. Secondly, considering the constraints of bus voltage and generator RP output, an extended minimum objective function for system power loss is established, with bus voltage violation serving as the penalty function. Then, in order to solve the following problems: that the traditional discrete PSO algorithm is easy to fall into local optimization and slow convergence, this paper proposes an improved discrete PSO algorithm, which improves the global search ability and convergence speed by introducing adaptive inertia weight. Finally, based on the IEEE-33 buses distribution system as an example, the simulation analysis shows that compared with GA optimization, the line loss can be reduced by 3.4% in the wet season and 13.6% in the dry season. Therefore, the proposed method can effectively reduce the network loss and improve the voltage quality, which verifies the effectiveness and superiority of the proposed method. Full article
Show Figures

Figure 1

7 pages, 1048 KiB  
Data Descriptor
Dataset of Morphometry and Metal Concentrations in Coptodon rendalli and Oreochromis mossambicus from the Shongweni Dam, South Africa
by Smangele Ncayiyana, Neo Mashila Maleka and Jeffrey Lebepe
Data 2025, 10(8), 124; https://doi.org/10.3390/data10080124 - 1 Aug 2025
Viewed by 205
Abstract
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of [...] Read more.
The uMlazi River receives effluents from wastewater work before feeding the Shongweni Dam. However, local communities are consuming fish from this dam for protein supplements. This study was undertaken to investigate the metal concentrations in the water and sediment, the general health of Coptodon rendalli and Oreochromis mossambicus, and metal bioaccumulation. Sampling was conducted during the dry (July–August) and wet seasons (November and December) in 2021. Water was sampled using acid-pre-treated sampling bottles, whereas sediment was collected using the Van Veen grab at the inflow, middle, and dam wall. Fish were collected, and their tissues were digested using aqua regia. Metal concentrations were measured using inductively coupled plasma optical emission spectroscopy (ICP-OES). This data manuscript reports the physical parameters of the water and concentrations of antimony, arsenic, cadmium, copper, iron, manganese, lead, selenium, and strontium in the water and sediment from the Shongweni Dam. Moreover, the fish morphometric data and metal concentrations observed in the muscle are also presented. This data could be used as baseline information on metal concentrations in the Shongweni Dam. Moreover, it provides insight into the potential impact of wastewater effluents on metal increases in freshwater bodies. Full article
Show Figures

Figure 1

30 pages, 4804 KiB  
Article
Deep Storage Irrigation Enhances Grain Yield of Winter Wheat by Improving Plant Growth and Grain-Filling Process in Northwest China
by Xiaodong Fan, Dianyu Chen, Haitao Che, Yakun Wang, Yadan Du and Xiaotao Hu
Agronomy 2025, 15(8), 1852; https://doi.org/10.3390/agronomy15081852 - 31 Jul 2025
Viewed by 246
Abstract
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects [...] Read more.
In the irrigation districts of Northern China, the flood resources utilization for deep storage irrigation, which is essentially characterized by active excessive irrigation, aims to have the potential to mitigate freshwater shortages, and long-term groundwater overexploitation. It is crucial to detect the effects of irrigation amounts on agricultural yield and the mechanisms under deep storage irrigation. A three-year field experiment (2020–2023) was conducted in the Guanzhong Plain, according to five soil wetting layer depths (RF: 0 cm; W1: control, 120 cm; W2: 140 cm; W3: 160 cm; W4: 180 cm) with soil saturation water content as the irrigation upper limit. Results exhibited that, compared to W1, the W2, W3, and W4 treatments led to the increased plant height, leaf area index, and dry matter accumulation. Meanwhile, the W2, W3, and W4 treatments improved kernel weight increment achieving maximum grain-filling rate (Wmax), maximum grain-filling rate (Gmax), and average grain-filling rate (Gave), thereby enhancing the effective spikes (ES) and grain number per spike (GS), and thus increased wheat grain yield (GY). In relative to W1, the W2, W3, and W4 treatments increased the ES, GS, and GY by 11.89–19.81%, 8.61–14.36%, and 8.17–13.62% across the three years. Notably, no significant difference was observed in GS and GY between W3 and W4 treatments, but W4 treatment displayed significant decreases in ES by 3.04%, 3.06%, and 2.98% in the respective years. The application of a structural equation modeling (SEM) revealed that deep storage irrigation improved ES and GS by positively regulating Wmax, Gmax, and Gave, thus significantly increasing GY. Overall, this study identified the optimal threshold (W3 treatment) to maximize wheat yields by optimizing both the vegetative growth and grain-filling dynamics. This study provides essential support for the feasibility assessment of deep storage irrigation before flood seasons, which is vital for the balance and coordination of food security and water security. Full article
(This article belongs to the Section Water Use and Irrigation)
Show Figures

Figure 1

24 pages, 3832 KiB  
Article
Temperature and Precipitation Extremes Under SSP Emission Scenarios with GISS-E2.1 Model
by Larissa S. Nazarenko, Nickolai L. Tausnev and Maxwell T. Elling
Atmosphere 2025, 16(8), 920; https://doi.org/10.3390/atmos16080920 - 30 Jul 2025
Viewed by 267
Abstract
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which [...] Read more.
Atmospheric warming results in increase in temperatures for the mean, the coldest, and the hottest day of the year, season, or month. Global warming leads to a large increase in the atmospheric water vapor content and to changes in the hydrological cycle, which include an intensification of precipitation extremes. Using the GISS-E2.1 climate model, we present the future changes in the coldest and hottest daily temperatures as well as in extreme precipitation indices (under four main Shared Socioeconomic Pathways (SSPs)). The increase in the wet-day precipitation ranges between 6% and 15% per 1 °C global surface temperature warming. Scaling of the 95th percentile versus the total precipitation showed that the sensitivity for the extreme precipitation to the warming is about 10 times stronger than that for the mean total precipitation. For six precipitation extreme indices (Total Precipitation, R95p, RX5day, R10mm, SDII, and CDD), the histograms of probability density functions become flatter, with reduced peaks and increased spread for the global mean compared to the historical period of 1850–2014. The mean values shift to the right end (toward larger precipitation and intensity). The higher the GHG emission of the SSP scenario, the more significant the increase in the index change. We found an intensification of precipitation over the globe but large uncertainties remained regionally and at different scales, especially for extremes. Over land, there is a strong increase in precipitation for the wettest day in all seasons over the mid and high latitudes of the Northern Hemisphere. There is an enlargement of the drying patterns in the subtropics including over large regions around Mediterranean, southern Africa, and western Eurasia. For the continental averages, the reduction in total precipitation was found for South America, Europe, Africa, and Australia, and there is an increase in total precipitation over North America, Asia, and the continental Russian Arctic. Over the continental Russian Arctic, there is an increase in all precipitation extremes and a consistent decrease in CDD for all SSP scenarios, with the maximum increase of more than 90% for R95p and R10 mm observed under SSP5–8.5. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

27 pages, 3840 KiB  
Article
A Study of Monthly Precipitation Timeseries from Argentina (Corrientes, Córdoba, Buenos Aires, and Bahía Blanca) for the Period of 1860–2023
by Pablo O. Canziani, S. Gabriela Lakkis and Adrián E. Yuchechen
Atmosphere 2025, 16(8), 914; https://doi.org/10.3390/atmos16080914 - 29 Jul 2025
Viewed by 254
Abstract
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the [...] Read more.
This study investigates the long-term variability and extremes of monthly precipitation during 150 years or more at 4 locations in Argentina: Corrientes, Córdoba, Buenos Aires, and Bahía Blanca. Annual and seasonal trends, extreme dry and wet months over the whole period, and the relationships between large-scale climate drivers and monthly rainfall are considered. Results show that, except for Córdoba, the complete anomaly timeseries trend analysis for all other stations yielded null trends over the centennial study period. Considerable month-to-month variability is observed for all locations together with the existence of low-frequency decadal to interdecadal variability, both for monthly precipitation anomalies and for statistically significant excess and deficit months. Linear fits considering oceanic climate indicators as drivers of variability yield significant differences between locations, while not between full records and seasonally sampled. Issues regarding the use of linear analysis to quantify variability, the dispersion along the timeline of record extreme rainy months at each location, together with the evidence of severe daily precipitation events not necessarily coinciding with the ranking of the rainiest months at each location, highlights the challenges of understanding the drivers of variability of both monthly and severe daily precipitation and the need of using extended centennial timeseries whenever possible. Full article
(This article belongs to the Section Meteorology)
Show Figures

Figure 1

22 pages, 6926 KiB  
Article
Exploring Heavy Metals Exposure in Urban Green Zones of Thessaloniki (Northern Greece): Risks to Soil and People’s Health
by Ioannis Papadopoulos, Evangelia E. Golia, Ourania-Despoina Kantzou, Sotiria G. Papadimou and Anna Bourliva
Toxics 2025, 13(8), 632; https://doi.org/10.3390/toxics13080632 - 27 Jul 2025
Viewed by 1050
Abstract
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential [...] Read more.
This study investigates the heavy metal contamination in urban and peri-urban soils of Thessaloniki, Greece, over a two-year period (2023–2024). A total of 208 composite soil samples were systematically collected from 52 sites representing diverse land uses, including high-traffic roadsides, industrial zones, residential neighborhoods, parks, and mixed-use areas, with sampling conducted both after the wet (winter) and dry (summer) seasons. Soil physicochemical properties (pH, electrical conductivity, texture, organic matter, and calcium carbonate content) were analyzed alongside the concentrations of heavy metals such as Cd, Co, Cr, Cu, Mn, Ni, Pb, and Zn. A pollution assessment employed the Geoaccumulation Index (Igeo), Contamination Factor (Cf), Pollution Load Index (PLI), and Potential Ecological Risk Index (RI), revealing variable contamination levels across the city, with certain hotspots exhibiting a considerable to very high ecological risk. Multivariate statistical analyses (PCA and HCA) identified distinct anthropogenic and geogenic sources of heavy metals. Health risk assessments, based on USEPA models, evaluated non-carcinogenic and carcinogenic risks for both adults and children via ingestion and dermal contact pathways. The results indicate that while most sites present low to moderate health risks, specific locations, particularly near major transport and industrial areas, pose elevated risks, especially for children. The findings underscore the need for targeted monitoring and remediation strategies to mitigate the ecological and human health risks associated with urban soil pollution in Thessaloniki. Full article
(This article belongs to the Special Issue Distribution and Behavior of Trace Metals in the Environment)
Show Figures

Figure 1

23 pages, 852 KiB  
Article
Does Foraging or the Avoidance of Predation Determine Habitat Selection by Selective Resident Grazers in the Serengeti Woodlands? A Mixed Strategy with Season
by Patrick Duncan and Anthony R. E. Sinclair
Animals 2025, 15(15), 2202; https://doi.org/10.3390/ani15152202 - 26 Jul 2025
Viewed by 256
Abstract
Savanna systems are characterised by a community of large mammal herbivores with up to 30 species; coexistence is based on resource partitioning. In this paper we analyse the features of the landscape and plant structure which lead herbivores to use particular locations, a [...] Read more.
Savanna systems are characterised by a community of large mammal herbivores with up to 30 species; coexistence is based on resource partitioning. In this paper we analyse the features of the landscape and plant structure which lead herbivores to use particular locations, a key to resource partitioning. The processes involved, top-down versus bottom-up, are well known for large species and small ones but not for medium-sized ones. We use two resident, medium-sized species, topi (Damaliscus lunatus jimela) and kongoni, (Alcelaphus buselaphus cokei) in the central woodlands of the Serengeti; selection of habitat by the residents is important for predator-prey interactions and for interactions among the grazers. Using Principal Component Analysis and Multiple Regression we develop highly predictive models which show that resource availability is the critical determinant of habitat selection in the dry season; and reduction in predation risk appears to be important in the wet season. These results show for the first time that habitat selection by the medium-sized herbivores is driven by different strategies in the two seasons. This contributes to understanding the processes involved in the dynamics of this globally important savanna system, a necessary foundation for management. Full article
(This article belongs to the Section Ecology and Conservation)
Show Figures

Figure 1

12 pages, 249 KiB  
Data Descriptor
Time Series Dataset of Phenology, Biomass, and Chemical Composition of Cassava (Manihot esculenta Crantz) as Affected by Time of Planting and Variety Interactions in Field Trials at Koronivia, Fiji
by Poasa Nauluvula, Bruce L. Webber, Roslyn M. Gleadow, William Aalbersberg, John N. G. Hargreaves, Bianca T. Das, Diogenes L. Antille and Steven J. Crimp
Data 2025, 10(8), 120; https://doi.org/10.3390/data10080120 - 23 Jul 2025
Viewed by 610
Abstract
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen [...] Read more.
Cassava is the sixth most important food crop and is cultivated in more than 100 countries. The crop tolerates low soil fertility and drought, enabling it to play a role in climate adaptation strategies. Cassava generally requires careful preparation to remove toxic hydrogen cyanide (HCN) before its consumption, but HCN concentrations can vary considerably between varieties. Climate change and low inputs, particularly carbon and nutrients, affect agriculture in Pacific Island countries where cassava is commonly grown alongside traditional crops (e.g., taro). Despite increasing popularity in this region, there is limited experimental data about cassava crop management for different local varieties, their relative toxicity and nutritional value for human consumption, and their interaction with changing climate conditions. To help address this knowledge gap, three field experiments were conducted at the Koronivia Research Station of the Fiji Ministry of Agriculture. Two varieties of cassava with contrasting HCN content were planted at three different times coinciding with the start of the wet (September-October) or dry (April) seasons. A time series of measurements was conducted during the full 18-month or differing 6-month durations of each crop, based on destructive harvests and phenological observations. The former included determination of total biomass, HCN potential, carbon isotopes (δ13C), and elemental composition. Yield and nutritional value were significantly affected by variety and time of planting, and there were interactions between the two factors. Findings from this work will improve cassava management locally and will provide a valuable dataset for agronomic and biophysical model testing. Full article
22 pages, 3283 KiB  
Article
Optimal Configuration of Distributed Pumped Storage Capacity with Clean Energy
by Yongjia Wang, Hao Zhong, Xun Li, Wenzhuo Hu and Zhenhui Ouyang
Energies 2025, 18(15), 3896; https://doi.org/10.3390/en18153896 - 22 Jul 2025
Viewed by 232
Abstract
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering [...] Read more.
Aiming at the economic problems of industrial users with wind power, photovoltaic, and small hydropower resources in clean energy consumption and trading with superior power grids, this paper proposes a distributed pumped storage capacity optimization configuration method considering clean energy systems. First, considering the maximization of the investment benefit of distributed pumped storage as the upper goal, a configuration scheme of the installed capacity is formulated. Second, under the two-part electricity price mechanism, combined with the basin hydraulic coupling relationship model, the operation strategy optimization of distributed pumped storage power stations and small hydropower stations is carried out with the minimum operation cost of the clean energy system as the lower optimization objective. Finally, the bi-level optimization model is solved by combining the alternating direction multiplier method and CPLEX solver. This study demonstrates that distributed pumped storage implementation enhances seasonal operational performance, improving clean energy utilization while reducing industrial electricity costs. A post-implementation analysis revealed monthly operating cost reductions of 2.36, 1.72, and 2.13 million RMB for wet, dry, and normal periods, respectively. Coordinated dispatch strategies significantly decreased hydropower station water wastage by 82,000, 28,000, and 52,000 cubic meters during corresponding periods, confirming simultaneous economic and resource efficiency improvements. Full article
Show Figures

Figure 1

20 pages, 1220 KiB  
Article
Color and Attractant Preferences of the Black Fig Fly, Silba adipata: Implications for Monitoring and Mass Trapping of This Invasive Pest
by Ricardo Díaz-del-Castillo, Guadalupe Córdova-García, Diana Pérez-Staples, Andrea Birke, Trevor Williams and Rodrigo Lasa
Insects 2025, 16(7), 732; https://doi.org/10.3390/insects16070732 - 17 Jul 2025
Viewed by 497
Abstract
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata [...] Read more.
The black fig fly, Silba adipata (Diptera: Lonchaeidae), is an invasive pest recently introduced to Mexico, where it has rapidly spread across fig-producing regions. Despite its economic importance, effective monitoring strategies remain poorly studied. The present study evaluated the response of S. adipata adults to visual (color) and olfactory (attractant) cues under laboratory and field conditions in fig orchards. No significant color preferences were observed in laboratory choice tests using nine colors or in field trials using traps of four different colors. In the laboratory, traps containing 2% ammonium sulfate solution, torula yeast + borax, or Captor + borax, captured similar numbers of flies, whereas CeraTrap® was less attractive. Traps containing 2% ammonium sulfate were more effective than 2% ammonium acetate, though attraction was comparable when ammonium acetate was diluted to 0.2% or 0.02%. In the field, torula yeast + borax and 2% ammonium sulfate mixed with fig latex outperformed the 2% ammonium sulfate solution alone, although seasonal variation influenced trap performance. A high proportion of field-captured females were sexually immature. Torula yeast + borax attracted high numbers of non-target insects and other lonchaeid species, which reduced its specificity. In contrast, traps containing fig latex mixtures showed higher selectivity, although some S. adipata adults could not be sexed due to specimen degradation. These findings highlight the value of torula yeast pellets and 2% ammonium sulfate plus fig latex for monitoring this pest, but merit validation in field studies performed over the entire crop cycle across both wet and dry seasons. Future studies should evaluate other proteins, ammonium salt combinations and fig latex volatiles in order to develop effective and selective monitoring or mass trapping tools targeted at this invasive pest. Full article
(This article belongs to the Special Issue Surveillance and Management of Invasive Insects)
Show Figures

Figure 1

24 pages, 1976 KiB  
Article
The Efficacy of Pre-Emergence Herbicides Against Dominant Soybean Weeds in Northeast Thailand
by Ultra Rizqi Restu Pamungkas, Sompong Chankaew, Nakorn Jongrungklang, Tidarat Monkham and Santimaitree Gonkhamdee
Agronomy 2025, 15(7), 1725; https://doi.org/10.3390/agronomy15071725 - 17 Jul 2025
Viewed by 394
Abstract
Soybean production in Thailand faces significant challenges from malignant weed competition, potentially reducing yields by up to 37% and incurring annual economic losses of approximately USD 3.8 billion. Pre-emergence herbicides are critical for integrated weed management, but their efficacy varies depending on local [...] Read more.
Soybean production in Thailand faces significant challenges from malignant weed competition, potentially reducing yields by up to 37% and incurring annual economic losses of approximately USD 3.8 billion. Pre-emergence herbicides are critical for integrated weed management, but their efficacy varies depending on local conditions and soybean varieties. This study evaluates the performance of three pre-emergence herbicides, pendimethalin (1875 g a.i. ha−1), s-metolachlor (900 g a.i. ha−1), and flumioxazin (125 g a.i. ha−1), on weed control efficiency (WCE), soybean growth, phytotoxicity, and yield in Northeast Thailand using a randomised complete block design with two varieties (CM60 and Morkhor60) across rainy (2023) and dry (2024/2025) seasons. Herbicide performance varied seasonally: s-metolachlor showed optimal rainy season results (61.54% weed control efficiency at 63 days after herbicide application (DAA), with a yield of 1036 kg ha−1), while flumioxazin excelled in dry conditions (64.32% WCE, <4% phytotoxicity, and 1243 kg ha−1 yield). Pendimethalin performed poorly under wet conditions but improved in drier weather. Among five dominant weed species, Cyperus rotundus proved the most resilient. CM60 demonstrated superior herbicide tolerance and yield stability, particularly under rainy conditions. These results emphasise that season-specific herbicide selection and variety matching are crucial for herbicide resistance management and effective weed control in Thailand’s rainfed soybean systems. Full article
(This article belongs to the Special Issue Recent Advances in Legume Crop Protection)
Show Figures

Figure 1

17 pages, 2951 KiB  
Article
Long-Term Rainfall–Runoff Relationships During Fallow Seasons in a Humid Region
by Rui Peng, Gary Feng, Ying Ouyang, Guihong Bi and John Brooks
Climate 2025, 13(7), 149; https://doi.org/10.3390/cli13070149 - 16 Jul 2025
Viewed by 690
Abstract
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various [...] Read more.
The hydrological processes of agricultural fields during the fallow season in east-central Mississippi remain poorly understood, due to the region’s unique rainfall patterns. This study utilized long-term rainfall records from 1924 to 2023 to evaluate runoff characteristics and the runoff response to various rainfall events during fallow seasons in Mississippi by applying the DRAINMOD model. The analysis revealed that the average rainfall during the fallow season was 760 mm over the past 100 years, accounting for 65% of the annual total. In dry, normal, and wet fallow seasons, the average rainfall was 528, 751, and 1010 mm, respectively, corresponding to runoff of 227, 388, and 602 mm. Runoff frequency increased with wetter weather conditions, rising from 16 events in dry seasons to 23 in normal seasons and 30 in wet seasons. Over the past century, runoff dynamics were predominantly regulated by high-intensity rainfall events during the fallow season. Very heavy rainfall events (mean frequency = 11 events) generated 215 mm of runoff and accounted for 53% of the total runoff, while extreme rainfall events (mean frequency = 2 events) contributed 135 mm of runoff, making up 34% of the total runoff. Water table depth played a critical role in shaping spring runoff dynamics. As the water table decreased from 46 mm in March to 80 mm in May, the soil pore space increased from 5 mm in March to 14 mm in May. This increased soil infiltration and water storage capacity, leading to a steady decline in runoff. The study found that the mean daily runoff frequency dropped from 13.5% in March to 7.6% in May, while monthly runoff decreased from 74 to 38 mm. Increased extreme rainfall (R95p) in April contributed over 45% of the total runoff and resulted in the highest daily mean runoff of 20 mm, compared to 18 mm in March and 16 mm in May. The results from this century-long historical weather data could be used to enhance field-scale water resource management, predict potential runoff risks, and optimize planting windows in the humid east-central Mississippi. Full article
(This article belongs to the Section Weather, Events and Impacts)
Show Figures

Figure 1

17 pages, 4165 KiB  
Article
Assessing the Cooling Effects of Water Bodies Based on Urban Environments: Case Study of Dianchi Lake in Kunming, China
by Zhihao Wang, Ziyang Ma, Yifei Chen, Pengkun Zhu and Lu Wang
Atmosphere 2025, 16(7), 856; https://doi.org/10.3390/atmos16070856 - 14 Jul 2025
Viewed by 249
Abstract
This research addresses urban heat island intensification driven by urbanization using Dianchi Lake in Kunming, China, as a case study, aiming to quantitatively evaluate the spatial extent, intensity, and land cover sensitivity differences in the cooling effects of large urban water bodies across [...] Read more.
This research addresses urban heat island intensification driven by urbanization using Dianchi Lake in Kunming, China, as a case study, aiming to quantitatively evaluate the spatial extent, intensity, and land cover sensitivity differences in the cooling effects of large urban water bodies across dry/wet seasons and complex urban landscapes (forest, cropland, and impervious surfaces) to provide a scientific basis for optimizing thermal environments in low-latitude plateau cities. Based on Landsat 8/9 satellite data from dry (January) and wet (May) seasons in 2020 and 2023 used for land surface temperature (LST) retrieval combined with land use data, buffer zone gradient analysis was adopted to quantify the spatial heterogeneity of key cooling indicators within 0–1500 m lakeshore buffers. The results demonstrated significant seasonal differences. The wet season showed a greater cooling extent (600 m) and higher intensity (6.0–6.6 °C) compared with the dry season (400 m; 2.4–3.9 °C). The land cover responses varied substantially, with cropland having the largest influence (600 m), followed by impervious surfaces (400 m), while forest exhibited a minimal effective cooling range (100 m) but localized warming anomalies at 200–400 m. Sensitivity analysis confirmed that impervious surfaces were the most sensitive to water-cooling, followed by cropland, whereas forest showed the lowest sensitivity. Full article
(This article belongs to the Special Issue Urban Heat Islands, Global Warming and Effects)
Show Figures

Figure 1

21 pages, 3698 KiB  
Article
Forecasting Climate Change Impacts on Water Security Using HEC-HMS: A Case Study of Angat Dam in the Philippines
by Kevin Paolo V. Robles and Cris Edward F. Monjardin
Water 2025, 17(14), 2085; https://doi.org/10.3390/w17142085 - 12 Jul 2025
Viewed by 792
Abstract
The Angat Reservoir serves as a major water source for Metro Manila, providing most of the region’s domestic, agricultural, and hydropower needs. However, its dependence on rainfall makes it sensitive to climate variability and future climate change. This study assesses potential long-term impacts [...] Read more.
The Angat Reservoir serves as a major water source for Metro Manila, providing most of the region’s domestic, agricultural, and hydropower needs. However, its dependence on rainfall makes it sensitive to climate variability and future climate change. This study assesses potential long-term impacts of climate change on water availability in the Angat watershed using the Hydrologic Engineering Center–Hydrologic Modeling System (HEC-HMS). Historical rainfall data from 1994 to 2023 and projections under both RCP4.5 (moderate emissions) and RCP8.5 (high emissions) scenarios were analyzed to simulate future hydrologic responses. Results indicate projected reductions in wet-season rainfall and corresponding outflows, with declines of up to 18% under the high-emission scenario. Increased variability during dry-season flows suggests heightened risks of water scarcity. While these projections highlight possible changes in the watershed’s hydrologic regime, the study acknowledges limitations, including assumptions in rainfall downscaling and the absence of direct streamflow observations for model calibration. Overall, the findings underscore the need for further investigation and planning to manage potential climate-related impacts on water resources in Metro Manila. Full article
(This article belongs to the Special Issue Hydroclimate Extremes: Causes, Impacts, and Mitigation Plans)
Show Figures

Figure 1

Back to TopTop